与三角形有关的线段习题
三角形相关线段习题精选(含答案)

三角形相关线段习题精选1、如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.2、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=3、如图,在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为.4、直角三角形两直角边长分别为5和12,则它的斜边上的高为.5、如图,中,,,,点D是BC的中点,将沿AD翻折得到,联结CE,那么线段CE的长等于.第5题图第6题图第7题图第9题图6、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△ABC=4,则S△BFF=_______7、如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为_________.8、在△ABC中,AB=5,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9、如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条10、已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( )A.2 B.3 C.5 D.1311、如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10 B.11 C.16 D.2612、小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cm B.17cm C.22cm或23cm D.11cm13、下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm,7cm,10cm B.5cm,7cm,13cmC.7cm,10cm,13cm D.5cm,10cm,13cm14、若等腰三角形的两边长分别为4和9,则它的周长为()A.22 B.17 C.13 D.17或2215、如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9 B.8 C.7 D.616、如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.617、已知三角形的两边分别为4和9,则此三角形的第三边可能是()18、如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().A.高B.角平分线C.中线D.无法确定19、.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半20、下列长度的三条线段能组成三角形的是(),2cm,3cm ,2cm,3cm ,6cm,8cm ,12cm,6cm21、若某三角形的三边长分别为3,5,,则的取值范围是()A.0<<9 B.3<<9C.0<<7 D.3<<722、若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.423、、如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S=()△OACA.1:1:1 B.1:2:3 C.2:3:4 D.3:4:524、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A.B.C.D.25、如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,点D到AB的距离是()A.2B.C.D.26、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,1127、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长差为6的两个三角形,则ΔABC各边的长分别变为______。
《与三角形有关的线段》典型例题、习题精选

《与三角形有关的线段》典型例题、习题精选例题:1.三角形两边的长分别为3和5,则周长l的范围是( )A.2<l<8 B.10<l<18 C.10<l<16 D.无法确定答案:C说明:因为三角形中的任意两边之和大于第三边,所以要想构成三角形,第三边的长需要比5-3 = 2要大,但不能比3+5 = 8的值大,这样就不难得出该三角形周长l的范围应该是2+3+5<l<3+5+8,即10<l<16,所以答案为C.2.一个三角形的两边长为3cm、8cm,第三边的数值的奇数,那么这个三角形的周长为( )A. 18cm B. 20cm C. 19cmD. 18cm或 20cm答案:D说明:因为这个三角形的第三边的数值为奇数,并且三角形中任意两边之和大于第三边,所以第三边的数值一定大于5并且小于11,这样第三边长只能是7cm或9cm,因此,这个三角形的周长为18cm或20cm,答案为D.3.从长度为3、5、7、10的四条线段中任选三条组成一个三角形,这样的三角形有几个?解析:有四种不同的选法.①3,5,7;②3,5,10;③3,7,10;④5,7,10.其中,3+5<10,3+7 = 10.故只有两组线段长3,5,7和5,7,10可作为边长组成三角形,即有两个这样的三角形.4.如图,D为△ABC内一点,说明:AB+AC>BD+DC.解析:延长BD与AC相交于E.在△ABE中,AB+AE>BE = BD+DE,在△DEC中,DE+EC>CD..∴AB+AE+DE+EC>BD+DE+CD∴AB+AE+EC>BD+CD.即AB+AC>BD+DC.习题一一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个B.2个 C.3个 C.4个2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为 20cm和 30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )A. 10cm的木棒B. 20cm的木棒 C. 50cm的木棒D. 60cm的木棒4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为 12cm,则它的最短边长为( )A. 2cm B. 3cm C. 4cm D. 5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个B.3个C.4个D.5个二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是 1cm, 2cm, 3cm, 4cm, 5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC= 10cm,D为AC边上一点,且BD=AD,△BCD的周长为 15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为 4cm和 7cm,且它的周长大于 16cm,则第三边长为_____.三、基础训练:1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).2.已知等腰三角形的两边长分别为4,9,求它的周长.四、提高训练:设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c 为边的三角形共有几个?五、探索发现:若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?六、中考题与竞赛题:1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm,3cm, 6cm2.(2002.青海)两根木棒的长分别是 8cm, 10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以 5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5. 5cm 6. 7cm三、1.解:在△APB中,AP+BP>AB,同理BP+PC>BC,PC+AP>AC,三式相加得2(AP+BP+PC)>AB+AC+BC,∴AP+BP+CP>(AB+AC+BC).2.22四、5个五、25个六、1.C 2.2cm<x<18cm 25cm.习题二1.如图(1)所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点 B 落在点B′的位置,则线段AC具有性质( )A.是边BB′上的中线 B.是边BB′上的高C.是∠BAB′的角平分线 D.以上三种性质合一(1) (2)(3)2.如图(2)所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线 B.BD是△ABC的中线C.AD=DC,BE=EC D.∠C的对边是DE3.如图(3)所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S △ABC= 4cm2,则黄色部分面积等于( )A. 2cm2 B. 1cm 2 C.cm2 D.cm24.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )A.AH<AE<AD B.AH<AD<AE C.AH≤AD≤AE D.AH≤AE≤AD5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )A.30 B. 36 C.72 D.246.不是利用三角形稳定性的是( )A.自行车的三角形车架 B.三角形房架C.照相机的三角架 D.矩形门框的斜拉条二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.2.在△ABC中,AB=AC,AD是中线,△ABC的周长为 34cm,△ABD的周长为 30cm,求AD 的长.四、提高训练:在△ABC中,∠A = 50°,高BE,CF所在的直线交于点O,求∠BOC的度数.五、探索发现:如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.六、中考题与竞赛题:(2000.杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.答案:一、1.D 2.D 3.B 4.D 5.B 6.C二、1.135 2.3条或7条 3.20°4.三角形内部三角形内部三角形内部、边上或外部三、1.∠AEC=45° 2.AD= 13cm四、∠BOC=50°或130°五、s=3n-3,当n=13时,s=36.六、AD=AE.。
与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30° B.40° C.50° D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80° B.90° C.100° D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30° B.40° C.60° D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?1.1与三角形有关的线段11.1.1三角形的边1.C 2.B 3.C 4.6∠B AE∠AED∠C5.解:(1)∵|a-3|+(b-2)2=0,∴a-3=0,b-2=0,∴a=3,b=2.由三角形三边关系得3-2<c<3+2,即1<c<5.(2)∵c为整数,1<c<5,∴c=2或3或4.11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S△ABC=12AB·CE=12×6×4.5=13.5.(2)∵S△ABC=12BC·AD,∴BC=2S△ABCAD=2×13.55=5.4.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.D 2.B 3.30° 4.(1)27(2)29(3)595.解:∵∠BAC=65°,∠C=30°,∴∠B=85°.∵DE∥BC,∴∠BDE=180°-∠B=180°-85°=95°.第2课时直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A=70°,CE,BF是△ABC的两条高,∴∠EBF=20°,∠ECA=20°.又∵∠BCE =30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.7.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC =90°,∴CD⊥AB.11.2.2三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE=140°,∴∠ACB=40°.∵∠A=80°,∴∠1=40°+80°=120°.11.3多边形及其内角和11.3.1多边形1.A 2.B 3.B 4.B 5.18 6.457.解:(1)六边形ABCDEF,它的内角是∠A,∠B,∠C,∠D,∠E,∠F.(2)如图所示.(3)如图,∠DCG即为点C处的一个外角(答案不唯一).11.3.2多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n边形.由题意可得(n-2)·180°=3×360°,解得n=8.故该多边形为八边形.8.解:根据题意,设四边形ABCD的四个外角的度数分别为3x,4x,5x,6x,则3x+4x+5x+6x=360°,解得x=20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.。
2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上数学:第十一章三角形
11.1
与三角形有关的线段
一、选择题
1.下列各组数中,不可能是同一个三角形的三边长的是()
A.3,4,5B.5,7,7C.6,8,10D.5,7,12 2.劳动课上,小莉要用三根木棒首尾相接钉一个三角形框架,现有两根木棒长分别为4cm,5cm,则第三根木棒的长可取()
A.1cm B.4cm C.9cm D.10cm
3.已知三角形的三边长分别为3、5、x,则x的取值范围为()
A.8
x<<
x<<D.28
x>C.08
x<B.2
4.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形,这样做的数学根据是()
A.两点确定一条直线B.两点之间,线段最短
C.同角的余角相等D.三角形具有稳定性
5.若三角形的两边长分别为4和7,则该三角形的周长可能为()
A.9B.14C.18D.22
6.下列说法中,正确的是()
第1页(共12页)。
专题01 与三角形有关的线段(九大题型)(原卷版)

专题01 与三角形有关的线段(九大题型)【题型1 三角形的分类】【题型2 判断三角形的个数】【题型3 三角形的三边关系】【题型4三角形的稳定性】【题型5三角形的平分线、中线和高的概念辨别】【题型6 三角形中线与面积问题】【题型7 三角形中线与周长问题】【题型8 证明三角形中线段不等关系】【题型9 根据三角形的三边关系化简】【题型1 三角形的分类】1.(2022秋•颍泉区期中)如图,一个三角形纸片被木板遮掩了一部分,则这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定2.(2022秋•文峰区月考)有下列说法:①等边三角形是等腰三角形;②等腰三角形也可能是直角三角形;③三角形按边分类可分为等腰三角形、等边三角形和三边都不相等的三角形;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个B.2个C.3个D.4个3.(2022秋•民权县月考)关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲、乙两种分法均错误C.甲的分法错误,乙的分法正确D.甲的分法正确,乙的分法错误4.(2021春•宛城区期末)下列关于三角形的分类,正确的是()A.B.C.D.5.(2022秋•惠州月考)三角形按边可分为()A.等腰三角形,直角三角形,锐角三角形B.直角三角形,不等边三角形C.等腰三角形,不等边三角形D.等腰三角形,等边三角形6.(2022春•馆陶县期末)有下列两种图示均表示三角形分类,则正确的是()A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对7.(2022春•鼓楼区校级期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形8.(2021秋•威县期末)下列关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误【题型2 判断三角形的个数】9.(2022春•本溪县期末)如图,图中三角形的个数为()A.3B.4C.5D.6 10.(2022秋•玉州区期中)如图所示的图形中,三角形共有()A.5个B.6个C.3个D.4个11.(2022春•建邺区校级期中)如图,以AB为边的三角形的个数是()A.1个B.2个C.3个D.4个12.(2021秋•高阳县期末)如图,图中以BC为边的三角形的个数为.13.(2022秋•宜都市期中)如图,点D,E在△ABC的边BC上,则图中共有三角形个.【题型3 三角形的三边关系】14.(2023春•常州期末)用下列长度的三根细木棒首尾相接,能搭成三角形的是()A.1cm、2cm、3cm B.2cm、2cm、4cmC.2cm、3cm、4cm D.2cm、3cm、6cm15.(2023春•青岛期末)小亮想用三根木棒搭一个三角形,其中两根木棒的长度分别为2cm和9cm,如果第三根木棒的长度为奇数,则小亮所搭的三角形的周长为()A.18cm B.20cm C.22cm D.24cm 16.(2022秋•启东市校级期末)已知三条线段长分别为3cm、4cm、a,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值范围是()A.1cm<a<5cm B.2cm<a<6cm C.4cm<a<7cm D.1cm<a<7cm 17.(2023春•高明区月考)已知三角形的三边长分别为3,5,x,则x不可能是()A.5B.4C.3D.2 18.(2023春•盐城月考)已知某三角形三边长分别为4,x,11,其中x为正整数,则满足条件的x值的个数是()A.6B.7C.8D.9 19.(2023春•南京期中)把12cm长的铁丝截成三段,每段长度为整数.若将这三段铁丝首尾顺次相接组成三角形,则不同的三角形有()A.4种B.3种C.2种D.1种【题型4三角形的稳定性】20.(2023•裕华区二模)如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是()A.两点之间线段最短B.垂线段最短C.两点确定一条直线D.三角形具有稳定性21.(2023•山阴县模拟)如图是位于汾河之上的通达桥,是山西省首座独塔悬索桥,是连接二青会的水上运动、沙滩排球等项目及场馆的主要通道,被誉为“时代之门”.桥身通过吊索与主缆拉拽着整个桥面,形成悬索体系使其更加稳固.其中运用的数学原理是()A.三角形具有稳定性B.两点确定一条直线C.两点之间,线段最短D.三角形的两边之和大于第三边22.(2023春•睢宁县期中)下列图形中,具有稳定性的是()A.B.C.D.23.(2023•滨湖区一模)王师傅用6根木条钉成一个六边形木架,如图,要使这个木架不变形,他至少还要再钉上木条的条数为()A.0根B.1根C.2根D.3根【题型5三角形的平分线、中线和高的概念辨别】24.(2023•佛山模拟)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定25.(2023春•高明区月考)下列说法正确的个数有()①三角形的角平分线、中线和高都在三角形内;②直角三角形只有一条高;③三角形的高至少有一条在三角形内;④三角形的高是直线,角平分线是射线,中线是线段.A.1个B.2个C.3个D.4个26.(2022秋•磁县期末)三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形27.(2023•衡山县二模)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.28.(2023春•巴州区月考)如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE 29.(2023•丰润区模拟)如图,在△ABC中,∠1=∠2=∠3=∠4,则下列说法中,正确的是()A.AD是△ABE的中线B.AE是△ABC的角平分线C.AF是△ACE的高线D.AE是△DAF的中线30.(2022秋•荣昌区期末)下列说法中正确的是()A.平分三角形内角的射线叫做三角形的角平分线B.三角形的中线是经过顶点和对边中点的直线C.钝角三角形的三条高都在三角形外D.三角形的三条中线总在三角形内31.(2023•梁山县二模)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE【题型6 三角形中线与面积问题】32.(2022春•西乡塘区校级期末)如图,已知△ABC中,点D、E分别是边BC、AB的中点.若△ABC的面积等于8,则△BDE的面积等于()A.2B.3C.4D.5 33.(2022秋•张店区校级期末)已知:如图所示,在△ABC中,点D,E,F=4cm2,则阴影部分的面积为cm2.分别为BC,AD,CE的中点,且S△ABC34.(2023春•常州期末)如图,AD是△ABC的中线,,F是EC的中点.若S△BEF =10,则S△ABC=.35.(2023春•灌云县期中)如图,CD是△ABC的一条中线,E为BC边上一点且BE=2CE,AE、CD相交于F,四边形BDFE的面积为6,则△ABC的面积是.36.(2023春•济南期末)如图,AD是△ABC的中线,M是AC边上的中点,连接DM,若△ABC的面积为12cm2,则△ADM的面积为cm2.37.(2023春•于洪区期中)如图,CD,BE是△ABC的中线,它们相交于点O.若△ABC的面积是12,则图中阴影部分的面积为.38.(2023•德兴市一模)如图,BD是△ABC的中线,点E、F分别为BD、CE 的中点,若△AEF的面积为3cm2,则△ABC的面积是cm2.39.(2023春•香坊区校级期中)如图,在△ABC中,已知BD为△ABC的中线,过点A作AE⊥BD分别交BD、BC于点F、E,连接CF,若DF=2,AF=6,BE:EC=3:1,则S△ABC=.40.(2023春•大渡口区校级期中)如图,在△ABC中,已知D、E、F分别为BC、AD、CE的中点,且△ABC的面积等于8cm2,则阴影部分面积为.【题型7 三角形中线与周长问题】41.(2023春•二七区校级期中)在△ABC中,AD是BC边上的中线,△ADC 的周长比△ABD的周长多3,AB与AC的和为13,则AC的长为()A.5B.6C.7D.8 42.(2023春•良庆区校级期末)如图,△ABC中,AB=16,BC=10,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是()A.20B.24C.26D.28 43.(2023春•工业园区期中)如图,CM是△ABC的中线,BC=8cm,若△BCM 的周长比△ACM的周长大3cm,则AC的长为()A.3cm B.4cm C.5cm D.6cm 44.(2023•鲤城区校级模拟)如图,AD是△ABC的中线,AB=8,AC=6.若△ACD的周长为16,则△ABD周长为.45.(2023春•崂山区校级期中)如图,在△ABC中,点E是BC的中点,AB =7,AC=10,△ACE的周长是25,则△ABE的周长是.46.(2023春•碑林区校级期中)如图,AD为△ABC的中线,△ABD的周长为23,△ACD的周长为18,AB>AC,则AB﹣AC为.【题型8 证明三角形中线段不等关系】47.(2022春•南靖县校级月考)已知:△ABC中,AD是BC边上的中线.求证:AD+BD>(AB+AC).48.(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.49.(2022秋•富顺县校级期末)如图所示,已知P是△ABC内一点,试说明P A+PB+PC>(AB+BC+AC).50.(2022秋•海淀区校级期中)已知:如图,AC和BD相交于点O,说明:AC+BD>AB+CD.51.(2022秋•固始县期中)AM是△ABC的中线,求证:AM<.52.(2022春•卧龙区期末)如图,在△ABC中,∠ABC和∠ACB的平分线交于点D.连接AD,试说明DA+DB+DC与的大小关系.【题型9 根据三角形的三边关系化简】53.(2022秋•游仙区校级月考)设a,b,c是△ABC的三边.化简|﹣a﹣b+c|+2|a+c ﹣b|﹣|b﹣a﹣c|.54.(2022春•莲湖区期末)已知△ABC的三边长分别为1,4,a,化简:|a﹣2|﹣|a﹣1|+|a﹣6|.55.(2023春•丰泽区校级期中)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.56.(2023春•邗江区月考)已知△ABC的三边长是a,b,c.(1)若a=4,b=6,且三角形的周长是小于18的偶数.求c边的长;(2)化简|a+b﹣c|+|c﹣a﹣b|.。
人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)

人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)一、单选题1.已知ABC 中,D 、E 分别是边AB 、AC 上的点,连接DE 、BE 、DC ,下列各式中正确的是( ).A .ADE ABC S AD S AB =△△ B .ADE ABC S AE S AC =△△ C .ADC ABC S AD S AB =△△ D .ADE EDC S AE S AC=△△ 2.平面内,将长分别为1,5,1,1,d 的线段,顺次首尾相接组成凸五边形(如图),则d 可能是( )A .1B .2C .7D .83.下列说法中正确的是( )A .三角形的三条中线必交于一点B .直角三角形只有一条高C .三角形的中线可能在三角形的外部D .三角形的高线都在三角形的内部 4.如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的( )A .中线B .中位线C .高线D .角平分线5.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.106.如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为()A.15°或20°B.20°或30°C.15°或30°D.15°或25°二、填空题7.如图,BE是△ABC的中线,点D是BC边上一点,BD=2CD,BE、AD交于点F,若△ABC 的面积为24,则S△BDF﹣S△AEF等于_____.8.已知三角形三边长分别为2,9,x,若x为偶数,则这样的三角形有___________个.9.周长为30,各边长互不相等且都是整数的三角形共有_______个.--+-+---=______.10.已知a,b,c是ABC的三边长,则b c a a b c a b c三、解答题11.如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时.若AE=4,△ABC的面积为24,求CD的长;(2)当AD为∠BAC的角平分线时.①若∠C =65°,∠B =35°,求∠DAE 的度数;②若∠C -∠B =20°,则∠DAE = °.12.(1)若一个三角形三边分别为1x +,3,4,求x 的取值范围; (2)若一个三角形两边长为6和8,求最长边x 的取值范围.13.在△ABC 中,BC =8,AB =1;(1)若AC 是整数,求AC 的长;(2)已知BD 是△ABC 的中线,若△ABD 的周长为17,求△BCD 的周长考答案1.C2.C3.A4.D5.C6.C7.48.29.12##十二10.33a b c -+11.(1)6 ;(2)①15°;②10.12.(1)06x <<;(2)814x ≤<13.(1)8(2)24。
初二数学上册:与三角形有关的线段常考题型专练(含答案)

初二数学上册:与三角形有关的线段常考题型专练(含答案)专题一:三角形个数的确定1.如图,图中三角形的个数为(D)A.2B.18C.19D.20解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形 21 个.解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C 没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数123 (1007)构成不重叠的小三角形的个数357 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.专题二:根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是(B)A.-6<a<-3B.-5<a<-2C.2<a<5D.a<-5或a>-2解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有 10 个.解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.若三角形的三边长分别是2、x、8,且x是不等式>的正整数解,试求第三边x的长.原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.。
11.1——与三角形有关的线段(难)

2. 7条长度均为整数厘米的线段:a1,a2,a3,a4,a5,a6,a7,满足a1<a2<a3<a4<a5<a6<a7,且这7条 线段中的任意3条都不能构成三角形.若a1=1厘米,a7=21厘米,则a6能取的值是( ) A. 18厘米 B. 13厘米 C. 8厘米 D. 5厘米
3. 已知不等腰三角形三边长为a,b,c,其中a,b两边满足 a 2 -12a+36 + b-8 =0 ,那么这个三角形的最大边c的取 值范围是( ) A. c>8 B. 8<c<14 C. 6<c<8 D. 8≤c<14
38. 三角形纸片内有n个点,连同三角形的三个顶点的n+3个点中,没有任何三点在同一直线上,用剪刀把三角形 纸剪成这n+3个点为顶点的一个个小三角形.问: (1)当n=1时,这样的小三角形有多少个?当n=2,n=3时呢? (2)若要剪出2001个这样的小三角形,原三角形内需要有多少个符合条件的点,并需要剪几刀?
42. 从1、2、3、4…、2004中任选k个数,使所选的k个数中一定可以找到能构成三角形边长的三个数(这里要求 三角形三边长互不相等),试问满足条件的k的最小值是多少? 43. (1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的 每个三角形的各边所用火柴杆的根数. (2)现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数.如果其中任意3小段 都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段. 44. 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(如 图).
三、解答题 (共13小题,共 分)
33. 已知a、b、c为△ABC的三边,有2b-c =2c-a =2a-b =k,且满足4b2-c2=2bc+c2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与三角形有关的线段习题
画龙点睛
1.AD是△ABC的高,可表示为,AE是△ABC的角平分线,可表示为,BF是△ABC的中线,可表示为 .
2.如图7-1-3,AD是△ABC的角平分线,则∠ =∠ =
1
2
∠;E在
AC上,且AE=CE,则BE是△ABC的;CF是△ABC的高,则∠ =∠ =900,CF AB.
3.如图7-1-4,AD是△ABC的中线,AE是△ABC的角平分线,若BD=2cm,则BC= ;若∠BAC=600,则∠CAE= .
4.如图7-1-5,以AD为高的三角形共有 .
慧眼识金
1.三角形的一条高是一条……………………………()
A.直线
B.垂线
C.垂线段
D.射线
2.下列各组线段中能组成三角形的是…………………()
A.a=6,b=8,c=15
B.a=7,b=6,c=13
C.a=4,b=5,c=6
D.a=
1
2
,b=
1
4
,c=
1
8
3.下列说法中,正确的是………………………………()
A.三角形的角平分线是射线
B.三角形的高总在三角形的内部
C.三角形的高、中线、角平分线一定是三条不同的线段
D.三角形的中线在三角形的内部
4.下列图形具有稳定性的是………………………………()
A.正方形
B.梯形
C.三角形
D.平行四边形
5.如图7-1-6,AD⊥BC于D,CE⊥AB于E,AD、CE交于点O,OF⊥CE,则下列说法中正确的是………………………………………………………()
A.OE为△ABD中AB边上的高
B.OD为△BCE中BC边上的高
C.AE为△AOC中OC边上的高
D.OF为△AOC中AC边上的高
6.某同学把一块三角形玻璃打碎成如图7-1-7所示的三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是……………………()
A.带①去
B.带②去
C.带③去
D.带①和②去
C
A
B D
E
F
图7-1-3
A
B
D E C
图7-1-4
A
B
D
图7-1-5
A
B C
D
F
E
O
图7-1-6
1.已知△ABC 的周长是36cm ,a 、b 、c 是三边长,且a+b=2c,a:b=1:2,求△ABC 的三边长.
2.已知BD 是△ABC 的中线,AC 长为5cm ,△ABD 与△BDC 的周长差为3cm.AB 长为3cm ,求BC 的长.
1.如图7-1-8,在△ABC 中,∠ACB=900
,CD 是AB 边上的高,AB=5cm,BC=4cm,AC=3cm, 求(1) △ABC 的面积;(2)CD 的长.
2.如图7-1-9,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E,若∠EDA=∠EAD,试说明,AD 是△ABC 的角平分线.
小鹏同学有长分别为10cm ,8cm ,9cm ,2cm 的四根小木棒,用来钉成三角形.请你帮他设计,可钉成几种不同的三角形.
图7-1-8
A
E B C 图7-1-9
一块三角形的试验田,须将该试验田划分为面积相等的四小块,种植四个不同的优良品种,涉及两种以上的划分方案,并作图说明。