二次根式知识点-典型例题-练习题

合集下载

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全1.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)()2= (≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】(2)、平方法当时,①如果,则;②如果,则。

例1、比较与的大小。

例2、比较与的大小。

(3)、分母有理化法通过分母有理化,利用分子的大小来比较。

例3、比较与的大小。

(4)、分子有理化法通过分子有理化,利用分母的大小来比较。

例4、比较与的大小。

(5)、倒数法例5、比较与的大小。

(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。

例6、比较与的大小。

(7)、作差比较法在对两数比较大小时,经常运用如下性质:①;②例7、比较与的大小。

(8)、求商比较法它运用如下性质:当a>0,b>0时,则:①;②例8、比较与的大小。

二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”)(1)()2=- ();(2)=- ()(3)(-)2=- ();(4)(2)2=2×=1 ()2.下面的计算中,错误..的是()A.=±0.03 B.±=±0.07C.=0.15 D.-=-0.133.下列各式中一定成立的是()A.=+=3+4=7 B.=-C.(-)2= D.=1-=4.()2-=________; 5.+(-)2=________.6.[-]·-6;7.数a在数轴上的位置如图所示,化简:-│1-a│=_______.8.计算:+=_______.9.--()2 10、-|-|11.+ 12.+ 13.二次根式的乘除练习题1、填空:(1)二次根式的乘法法则用式子表示为__________(2)二次根式的除法法则用式子表示为__________(3)把分母中的___化去,叫做分母有理化. 将式子分母有理化后等于_________ (4)成立的条件是_________(5)成立的条件是_________(6)(6)成立的条件是_________(7)化简:(8)计算:1.下列运算正确的是()A.()2=-5 B.(-)2=-5 C.-=5 D.=5a -2-12102.下面的计算中,正确的是( )A .=0.1;B .-=-0.03;C .±=±13;D .=-43.下列命题中,错误..的是( ) A .如果=5,则x=5;B .若a (a ≥0)为有理数,则是它的算术平方根C .化简的结果是-3D .在直角三角形中,若两条直角边分别是,2,那么斜边长为54.计算+|-11|-,正确的结果是( )A .-11B .11C .22D .-225.(-)2-+=________; 6.=________.7.-(2)2=__________.8.比较大小6______7.(填“>”,“=”,“<”号)9.数a 在数轴上的位置如图所示,化简:│-a-1│-2=________.10.=________.11.计算:+++…+=______.12.如果+│b-2│=0,求以a 、b 为边长的等腰三角形的周长.1、判断题:下列运算是否正确.( )(1)( )(2)( )(3)( )(4)( )(5)( )(6)( )(7)( )(8)1、运用乘法分配律进行简单的根式运算.例1 计算 (1) (2)(1) (2)(3)2、比较两个实数的大小.例2 比较下列两个数的大小(1)与(2)与1、与2、与3、与4、与3、二次根式的乘除混合运算.(1)(2)(1)(2)4、运用分母有理化进行计算.例3 化简分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,就可将原式变为不含分母的二次根式.思考题:计算二次根式的加减1.若与是同类二次根式,则a=_______,b=_______.2.在,,,中能与进行加减合并的根式有_________.3.计算: +=_________.4.已知长方形的长和宽分别为,,则它的周长是________.5.在实数范围内分解因式:a2-4=_________.6. +与+大小关系是_________.7.下列根式中与其他三个不同类的是()A. B. C. D.8.下列各组二次根式中,可以进行加减合并的一组是()A.与 B.与 C.与2 D.18与9.下列根式合并过程正确的是()A.2--=2 B.a+b=a+bC.5+=a+ D. -=10.计算: ++-的值是()A. +5 B. +8 C.6+ D.12+11.若5+=6,则y值为()A. B.1 C.2 D.312.一个等腰三角形的两边分别为2,3,则这个三角形的周长为()A.3+4 B.6+2C.6+4 D.3+4或6+213.计算:(1)2+3 (2)5+-7(3)++-+ (4)+6a-3a214.如果△ABC的三边a=7,b=4,c=2,求周长P.巩固练习1. 下列根式中,与是同类二次根式的是()A. B. C. D.2. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B.与是同类二次根式C.与不是同类二次根式D. 同类二次根式是根指数为2的根式3. 与不是同类二次根式的是()A. B. C. D.4. 下列根式中,是最简二次根式的是()A. B. C. D.★5. 若,则化简的结果是()A. B. C. 3 D. -3★6. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 37. 下列式子中正确的是()A. B.C. D.8. 在中,与是同类二次根式的是。

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

《二次根式》期末复习知识清单及典型例题

《二次根式》期末复习知识清单及典型例题

二次根式期末复习知识清单及典型例题知识点1:二次根式的定义:形如()0≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,a 才有意义.【例1】下列各式()511,()52-,()232+-x ,()44,()2315⎪⎭⎫ ⎝⎛-,()a -16,()1272+-a a 其中是,二次根式的是_________(填序号).变式:1、下列各式中,一定是二次根式的是()A 、a B 、10-C 、1a +D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是. 变式:1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3B 、x ≥3C 、x>4D 、x ≥3且x ≠4 2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、使代数式221x x -+-有意义的x 的取值范围是 【例3】若y=5-x +x -5+2009,则x+y=变式:1、若11x x ---2()x y =+,则x -y 的值为()A .-1B .1C .2D .3 2、当a 取什么值时,代数式112++a 取值最小,并求出这个最小值。

【例4】已知a 是5整数部分,b 是5的小数部分,求12a b ++的值。

变式:1、若3的整数部分是a ,小数部分是b ,则=-b a 3。

2、若17的整数部分为x ,小数部分为y ,求yx 12+的值. 知识点2:2、双重非负性:a a ()≥0是一个非负数.即①0≥a;②0≥a3、平方的形式(双胞胎公式):(1)()()a aa 20=≥;(2)a a a a a a 200==≥-<⎧⎨⎩||()().公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系:(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 【例5】若()04322=-+-+-c b a 则c b a +-=.变式:若1+-b a 与42++b a 互为相反数,则()2017b a -=。

数学二次根式知识点-+典型题含答案

数学二次根式知识点-+典型题含答案

一、选择题1.下列二次根式中是最简二次根式的为( )A B C D2.已知x 1x 2,则x₁²+x₂²等于( ) A .8B .9C .10D .113.下列运算中,正确的是( )A =B 1=C =D =4.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D 5.下列二次根式中,是最简二次根式的是( ).A .BC D6.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤47.下列各式计算正确的是( )A B .C .D8.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或9.a =-成立,那么a 的取值范围是( ) A .0a ≤B .0a ≥C .0a <D .0a >10.a 的值是( ) A .2B .-1C .3D .-1或3二、填空题11.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.12.已知2216422x x ---=,则22164x x -+-=________.13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 14.已知函数1x f xx,那么21f _____.15.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.16.把1a-17.36,3,2315,,则第100个数是_______.18.4102541025-+++=_______. 19.若实数23a =-,则代数式244a a -+的值为___. 20.2m 1-1343m --mn =________.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.23.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.24.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22=4-23-[32-(23)2]-4=4-23+3-4=3-23【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①; ②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.26.阅读下面的解答过程,然后作答:2a b + m 和n ,使m 2+n 2=a 且b ,则a b 可变为m 2+n 2+2mn ,即变成(m +n )22a b + 例如:∵66=3)2+2)26=32)2 ∴526+()232+32请你仿照上例将下列各式化简 (1423+27210- 【答案】(1)3252-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵2224231233)(13)+=+=, 24+23=(13)13+=(2)∵2227210(5)252(2)(52)-=-=, ∴27210(52)52-=-=27.计算 (11132528+(2251694y y y +- (3)31)2a b b a b÷ (4)(23+5235 【答案】(1)32272y 334)7. 【分析】(1)先把各二次根式化为最简二次根式,然后合并即可; (2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算; (4)利用平方差公式计算; 【详解】(1+22=+=;(2==;(3÷==;(4)((22=-=7 【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.28.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A=不是最简二次根式,本选项错误; BC=不是最简二次根式,本选项错误; D=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.3.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D2=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.4.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b cp+++==∴其面积为4 S====故选:A.【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.5.A解析:A【详解】根据最简二次根式的意义,可知=.故选A.6.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.7.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.8.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.9.A解析:A【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.10.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.二、填空题11.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a =135,b =540时,即2=1;⑦当a =540,b =135时,即2=1; 故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a ,b )共有 7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a 、b 可能的取值.12.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.13.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为16.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.17.【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.18.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)6=+21)=t∴=.1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.19.3【解析】∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】 根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343n m m -=⎧⎨-=-⎩, 解得,73m n =⎧⎨=⎩, ∴7321.mn =⨯=故答案为21.三、解答题21.无22.无24.无25.无26.无27.无28.无。

二次根式知识点及题型(本人) 2

二次根式知识点及题型(本人) 2

二次根式一:二次根式的概念:题型一:判断哪些式子为二次根式例题1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). 总结: 形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

二次根式:式子a (a ≥0)叫做二次根式。

题型二:根据二次根式的意义求取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0时,没有意义。

例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x练习:1. 使式子4x -有意义的条件是 。

2. 当__________时,212x x ++-有意义。

3. 若11m m -++有意义,则m 的取值范围是 。

4. 当__________x 时,()21x -是二次根式。

题型三:根据二次根式的意义及非负性求代数式的值例3、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xyy x x x y例4、已知=+=++++-b a b a b a 2,0125则 。

例5、若1a b -+与24a b ++互为相反数,则()2005_____________a b -=总结:()表示a 的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

八年级数学下册《二次根式》知识点+解题技巧+章节测试(含答案)

八年级数学下册《二次根式》知识点+解题技巧+章节测试(含答案)

五、求值:(每小题 7 分,共 14 分)
3 2
3 2
x3 xy2
25.已知 x=
,y=
,求
的值.
3 2
3 2
x4 y 2x3y2 x2 y3
x
2x x2 a2
1
26.当 x=1- 2 时, 求


的值.
x2 a2 x x2 a2 x2 x x2 a2
x2 a2
六、解答题:(共 20 分)
=______.
ab c2d 2
1
1
12.比较大小:- _________- .
27
43
13.化简:(7-5
2
2018
) ·(-7-5
2
2017
) =______________.
14.若
x 1+
y
3
2
2
=0,则(x-1) +(y+3) =____________.
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________.
四、巧配方,独占鳌头
例 4. 计算 分析:因为
都有意义,所以
所以
所以
解:原式
五、整体代入,别开生面
例 5. 已知
,求下列各式的值。
(1)
(2)
分析:根据 x、y 值的特点,可以求得
,如果能将所求的值的
式子变形为关于
或 xy 的式子,再代入求值要比直接代入求值简单得多。
解:因为 所以 (1)
(2) (也可以将
1
32
2、【提示】

=-( 3 +2).【答案】×.
32 34
3、【提示】 (x 1)2 =|x-1|, ( x 1)2 =x-1(x≥1).两式相等,必须 x≥1.但等式左边 x 可取任

数学二次根式知识点-+典型题附解析

数学二次根式知识点-+典型题附解析

数学二次根式知识点-+典型题附解析一、选择题1.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-12.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A . B .C .D .3.下列计算正确的是( ) A 93=±B 820-=C 532=D 2(5)5-=-4.下列二次根式是最简二次根式的是( ) A 12B 3C 0.01D 125.下列式子中,属于最简二次根式的是( ) A 4B 3C 12D 206.下列算式:(1257=2)5x 2x 3x =3)8+502=4257=;(4)33a 27a 63a += ) A .(1)和(3) B .(2)和(4) C .(3)和(4) D .(1)和(4) 7.31m -m 能取的最小整数值是( )A .m = 0B .m = 1C .m = 2D .m = 38.设a 3535+-b 633633+-21b a-的值为( ) A 621+ B 621+C 621D 6219.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4. ②若12a a ++值为2,则3a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( )A .①B .①②C .①③D .①②③10.若12x x +-有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠211.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( ) A .3B .4C .6D .912.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C 24D 0.3二、填空题13.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式) 14.3x x=,且01x <<2691x x x =+-______.15.)230m m --≤,若整数a 满足52m a +=a =__________. 16.把31a -根号外的因式移入根号内,得________ 17.把1a-18.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____. 19.已知x 51-,y =512,则x 2+xy +y 2的值为______. 20.1+x有意义,则x 的取值范围是____. 三、解答题21.1123124231372831-+-533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】2-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.解:设x222x=+,x=++2334x2=10∴x=10.0.【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x2=2+2+即x2=4+4+6,x2=14∴x=.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.24.已知x=2,求代数式(7+x2+(2)x【答案】2【解析】试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x2=(2)2=7﹣则原式=(7﹣+(2=49﹣25.先将2x -x 的值,代入后,求式子的值. 【答案】答案见解析. 【解析】 试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义. 试题解析:原式==2x ==- 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=226.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)a ===b ===2222()22312a b a b ab +=+-=-=-=⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.27.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.29.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.30.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项. 【详解】 解:由题意得: x-1≥0 解之:x≥1.1>. 故选:A . 【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.2.D解析:D 【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可. 【详解】∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 3.B解析:B【分析】直接利用二次根式的性质化简得出答案.【详解】=,故此选项错误;3=,正确;D. 5=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.4.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:ABC0.1,故此选项错误;D2故选:A.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.5.B解析:B【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可. 【详解】解:A =2,不是最简二次根式,故本选项错误;BC =D =,不是最简二次根式,故本选项错误; 故选:B . 【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.6.B解析:B 【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案. 【详解】(1(2),正确;(3)2=22=,错误;(4)== 故选:B . 【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.7.B解析:B 【分析】根据被开方数大于等于0列式计算即可得解. 【详解】310m-≥, 解得13m ≥, 所以,m 能取的最小整数值是1. 故选:B . 【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.B解析:B 【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题. 【详解】∴a ,∴b ,∴21b a -, 故选:B . 【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.9.C解析:C 【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.10.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0, 解得:x≥-1且x≠2.故选:D .【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.11.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【详解】A不是同类二次根式,故此选项错误;B3C=不是同类二次根式,故此选项错误;D=不是同类二次根式,故此选项错误;10故选B.二、填空题13.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式====220400x x x-.【点睛】 此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.14..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运解析:12. 【分析】,再把它们相乘得到1x x -,再对原式进行变形凑出1x x-的形式进行计算. 【详解】3=,∴221239x x =++==, ∴17x x+=,∴212725x x =-+=-=, ∵01x <<,=,∴1x x =-=-∴原式====.. 【点睛】 本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.15.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.16.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:. 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】解:∵310a-≥,∴0a <,∴a ===.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a ≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键. 18.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y -xy=251515151)222=5-1=4. 20.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0. 【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键. 解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0, 故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题21.无22.无23.无24.无26.无27.无28.无29.无30.无。

二次根式知识点-+典型题及答案

二次根式知识点-+典型题及答案

一、选择题1. )A B C D 2.下列各式中,正确的是( )A 2=±B =C 3=-D 2=3.下列计算正确的是( )A .+=B .()322326a ba b -=-C .222()a b a b -=- D .2422a ab a a b a -+⋅=-++4.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( )A .①B .①②C .①③D .①②③5.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n--6.已知实数x ,y 满足(x y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008 B .2008C .-1D .17.已知:,,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等8.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个9.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2 B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠210.与根式1x x--的值相等的是( ) A .x -B .2x x --C .x --D .x -二、填空题11.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.12.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.14.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.15.若613x ,小数部分为y ,则(213)x y 的值是___.16.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 17.已知4a2(3)|2|a a +--=_____.18.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 19.若a 、b 都是有理数,且2222480a ab b a -+++=ab .20.有意义,则x 的取值范围是____. 三、解答题21.计算及解方程组: (1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x =把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.(112===;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55=6=;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.24.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可; (3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=(2-+=(2)(()21-=22(181)---=452181--+=24+. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.26.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a=2b=原式12 ==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y)²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=BC不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.2.B解析:B 【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项. 【详解】A ,故该选项错误;B ==C 3=,故该选项错误;D 11223334=(2)2==,故该选项错误; 故选:B . 【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.3.D解析:D 【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可. 【详解】解:A. =A 选项错误; B. ()()()33322363228a ba b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D . 【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.4.C解析:C 【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案.【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.5.C解析:C【解析】【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n n n a a -=-=-. 故选C .【点睛】 本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.6.D解析:D【解析】由(x y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y 是方程的一个解由此可以解得,或者则3x 2-2y 2+3x -3y -2007=1,故选D. 7.C解析:C【解析】 因为1a b ⨯==,故选C. 8.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】≠,解:由题意得:2x-40∴≠±,x2x+≥,又∵20∴x≥-2.x≠.∴x的取值范围是:x>-2且2故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以-x-=故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题11.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.12.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出的最大值.解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】10-b 4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 13.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 14.a+3根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3 【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解. 【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2,y=4-,所以(2xy=(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 16.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:220202a b b a b b ⎧>⎪⎪⎨⎪-<⎪⎩当时当时. 17.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a ,∴a+3<0,2-a>0,|2|a -=-a-3-2+a=-5,故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.20.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如a%)的代数式叫做二次根式。

当 a%时,Va表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号 下为负数,则无实数根)概念:式子a%)叫二次根式。

a%)是一个非负数。

题型一:判断二次根式_ 1(1)下列式子,哪些是二次根式,哪些不是二次根式:、、2、3 3、丄、、、x (x>o )、x.0、4 2、-2、(2)在式子店 xf 0 ,72, J y 1 y中,二次根式有()2、一^上有意义,则 _________________________ ;3、若i 卜 2 fx 2成立,贝y x 满足 ___________________ 。

v 3 x J 3 x典型练习题:1、当x 是多少时,、2 3+丄 在实数范围内有意义?____ x 12 、当x 是多少时, _ +^在实数范围内有意义?xx y (x 为,y?为)•2 、当 __________ 时,41 2x 有意义。

A. 2 个B. 3个 C. 4 个(3)下列各式一定是二次根式的是( D. 5)个A... ~7 B.1 22m C..a 2 1 D.b2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件(1) 3x 4 (2) 18a (3) .m 2 4(4)2 , J 2x x p 0 ,73, 1, x y4 、使式子..(x 5)2有意义的未知数x有()个.A .0B .1C .2D .无数5 、已知y=..亍匸+、丁P+5,求x的值.y6 、若—+ ~3有意义,则= ________________ .7、若、、一m 丄有意义,则m的取值范围是。

m 18 、已知x 2 22 x,则x的取值范围是。

9 、使等式.x 1 x 1 •. x—1g..x—1成立的条件是10、已知...x3 3x2= —x x 3,则( )(A) x< 0 (B) x< — 3 (C) x > — 3 (D)—3< x< 011、若x v y v0,贝U x2 2xy y2+ x2 2xy y2=( )(A) 2x (B) 2y (C)—2x ( D)—2y12、若0v x v 1,贝,(x 1)2 4 —一. (x 1)2 4 等( )V x \ x2 2(A) 2(B)— - (C)—2x (D) 2xx x13、化简----- (a v0)得( )a(A), a (B)— a (C)——・ a (D) .. a3、最简二次根式的化简最简二次根式是特殊的二次根式,他需要满足:(1)被开方数的因数是整数,字母因式是整式;(2)被开方数中不含能开的尽方的因数或因式.那么如何将一个二次根式化为最简二次根式呢?题型一:判断下列是不是最简二次根式:■■■. a2b 2ab2 b3、题型二:不同类型二次根式的化简成最简二次根式一、被开方数是整数或整数的积例 1 化简:(1).162 ; (2)32 75 .解:(1)原式=-81 2= 92 2 =、92、..2=9'.2 ;(2)原式=16 2 2 5 3 =.42 52 6 = . 42.. 52, 2 = 20 -6.温馨提示:当被开方数是整数或整数的积时,一般是先分解因数,再运用积 的算术平方根的性质进行化简•二、被开方数是数的和差温馨提示:当被开方数是数的和差时,应先求出这个和差的结果再化简 三、被开方数是含字母的整式 例 3 化简:(1) 18x 4y 3 ;( 2) a 2b 2ab 2 b 3 .解:(1)原式32 (x 2)2 y 2 2 y=3x 2y 、2y ; (2)原式=.b(a 2 2ab b 2) = ..b(a b)2 =(a b)、、b . 温馨提示:当被开方数是单项式时,应先把指数大于2的因式化为(a m )2或(a m )2 a 的形式再化简;当被开方数是多项式时,应先把多项式分解因式再化简, 但需注意,被移出根号的因式是多项式的需加括号 •四、被开方数是分式或分式的和差 例4化简:(1),年(2) y xV 8a 2b\ x y解:( 1)原式=¥ 2b =—x =6bx = x 6bx ;V 8a 2b 2b (42a 2b 2 2ab(2)原式=[□!=丿丄牡=丄而TV? • V xy V x y xy温馨提示:当被开方数是分式时,应先把分母化为平方的形式,再运用商的 算术平方根的性质化简;当被开方数是分式的和差时,要先通分,再化简 • 典型练习题: 1 、把二次根式 f (y>0)化为最简二次根式结果是().A .上x ( y>o )B . . (y>0)C .山 (y>0)D .以上都不对.y y2 、化简 ~x 2y 2 = _________ . (x > 0)3 、a 化简二次根式号后的结果是__________ .例2化简:•(;)24、已知xy 0,化简二次根式x ...;-y 的正确结果为4、同类的二次根式1、 以下二次根式:①.12 :②...:③2 :④「27中,与、3是同类二次根 式的是()•A.①和② B .②和③C .①和④D .③和④2、 在适、1 ,75a 、J 、9a 、,125、2、3、. 0.2、-2 . 1 中,与;3a 是同3 3a\8类二次根式的有 ________3、、-'ab 、— £ a'b 、―讣一是同类二次根式. …()3xYb4、若最简根式3a b 4a 3b 与根式•一 2ab 2 b 3 6b 2是同类二次根式,求a 、b 的值.5、若最简二次根式2~—与n ^4m 2~10是同类二次根式,求 m n 的值.35、二次根式的非负性1 .若、、厂+、、h=o ,求 a 2004+b 2004 的值.2. 已知.x y 1 + .x 3=0,求 x y 的值.3. 若x y y 2 4y 4 0,求 xy 的值。

4.若 Jx 1 + ____________________________ = 0,则(x — 1)2+ (y +3)2 = .5、已知a b 、c 为正数,d 为负数, 化简ab c 2d 2—4厂c 2d 25. 已知a,b为实数,且、、1 a b 1 -、1 b 0,求a2005b2006的值a a》06、聘a的应用a a v 01. a >0时,、.a2、( a)2、- .O7,比较它们的结果,下面四个选项中正确的是()•A . 、、a2= . ( a)2>- . a2B . a2> ( a)2 >-、、a2C .a2< . ( a)2 <- . a2D . - . a2 > . a2二.(a)22 •先化简再求值:当a=9时,求a+ ..1 2a a2的值,甲乙两人的解答如下:甲的解答为:原式二a+\(r~ar =a+ (1-a) =1 ;乙的解答为:原式=a^. (Ca)2 =a+ (a-1 ) =2a-仁17.两种解答中,_______ 的解答是错误的,错误的原因是___________ .3. 若 | 1995-a | + . a 2000 =a,求a-19952的值.(提示:先由a-2000 >0,判断1995-a?的值是正数还是负数,去掉绝对值)4. 若-3 <x<2 时,试化简 | x-2 | + .. 厂3)2 +「X2—血―25。

5. 化简a*. 的结果是().A . aB . J aC . - aD . - a6. 把(a-1 ) J ——中根号外的(a-1 )移入根号内得().耳a 17、求值问题1. 当x= .15^.7 ,y= 15- . 7 ,求x2-xy+y 2的值2 .已知a=3+^/2,b=3-2 运,贝U a2b-ab2= _________ .3.已知a=、, 3-1,求a3+2a2-a 的值j-乡4 .已知4x2+y2-4x-6y+10=0,求(2^9x +y2) - (x2J丄-5x )的值.3 V x y x5.已知馬迄236,求(.80- , 14) - (, 31 +4 .45 )的值.(结果精确到0.01 )■■ 5 1 5 56. 先化简,再求值.(6x J*jxy3) - (+ J36xy),其中x=| , y=27.7. 当x= J 时,求X 1'x_x+x的值.(结果用最简二次根式v2 1 x 1 J x2 x x 1 J x2 x 表示)(注:设分子分母分别为a、b,求出a+b与a-b)8. 已知x23x 1 0,求、x2;2的值9、已知x = _伞 ,y= 华,求—x3笃—亍的值.(先化简xy,V3 v2 V3 v2 x y 2x y x y再化简分式,求值)10、当x= 1- .2 时,x2a2x x2a22x x2a22 2 2 x x\ x a■ x2a2的值.11、若 x , y 为实数,且 y = Ji 4x +—1 + -.求—2 — - — 2 —2 v y — V y — 的值.8比较大小的问题1、 设 a=. 3、、2,b=2.3 , c= 5 2,则 a b 、c 的大小关系是2、 3、5与2 . 6比较大小。

3、 化简:(7 - 5 盪)2000 • - 7 -5 V2) 2001 =___________ .4、9. 2・、3和3,2的大小关系是( )9、二次根式的整数部分、小数部分的问题1、 x , y 分别为8—^6的整数部分和小数部分,贝U 2xy - y 2= ____________ .2、 已知ab 分别是6- 13的整数部分和小数部分,那么2a-b 的值为多少?3、 9.已知11 1的整数部分为a ,小数部分为b ,试求11 a b 1的值。

10、二次根式的化简计算1、当 a v 0,b v 0 时,一a + 2 ab - b 可变形为( (A ) (、a b)2(B ) - ( .a . b)2 (C ) (、a2、(亦罷 J2) B /5 的逅);35 ________ 4 _______ .4 '11 11 、7 3 •: TA.2、.3f 3.2 B.2、、3p 2 C. 2.33 2 D.不能确定■. b)2 (D ) ( . a . b)2精品文档-ab ... mn + - m)- a2b2m m . na、ab (a*b) •4、精品文档7、 10、6、 -3 8、 )(m>0 n>0)3m 2 3n 2"ax 、y y x x 、_y y x11(a>0)a . ba i ab b i ab b ab。

相关文档
最新文档