两角和与差及二倍角公式知识点

合集下载

(完整版)两角和与差及二倍角公式经典例题及答案

(完整版)两角和与差及二倍角公式经典例题及答案

成功是必须的:两角和与差及其二倍角公式知识点及典例知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )=T( a + 3 ): tan( a + 3 )=2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2h例 2 设 cos a —21 9’T 2 : tan2 . asin 2 — 23,其中n 2,n0, 2,求 cos( a+ 3).sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a =— — ,3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。

如T( a± 3可变形为:tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B、 tan 3 = 3, 7 11 变式2:已知03.ncos(— 4 435,sin( 4)—,求 sin( a + 3 )的值. 13则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;值(要求该三角函数应在角的范围内严格单调 );(3)求出角。

1 1例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值.(2)求角的某一个三角函数n a — 6 +A —症A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 43」 B辺B.5 4 q 5cosA = 5,cosB = 13, B 56 B.65sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C.65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( )C . 0 或 3 4D ・516 65 0或土 3A . 0B . ± 3 一.卜 2cos55 — j‘3sin55、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5B.o■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值• 11变式3:已知tan a =, tan 3 =-,并且a , 3均为锐角,求a +23的值.7 3题型4辅助角公式的应用J 22asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定,角的值由btan —确定)在求最值、化简时起着重要作用。

两角和与差及二倍角公式定理讲义,例题含规范标准答案

两角和与差及二倍角公式定理讲义,例题含规范标准答案

3.3 两角和与差及二倍角公式(答案)3.3 两角和与差及二倍角公式一.【复习要求】1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联.2.掌握二倍角的正弦、余弦、正切公式.2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.二、【知识回顾】1.两角和与差的三角函数sin()αβ+= ;sin()αβ-= ; cos()αβ+= ;cos()αβ-= ; tan()αβ+= ;tan()αβ-= ;2.二倍角公式:在sin(),cos(),tan()αβαβαβ+++中令αβ=,可得相应的二倍角公式。

sin2α= ;cos2α= = =tan 2α= 。

3.降幂公式2sin α= ; 2cos α= .注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用4.辅助角公式证明:)sin cos x x y x x +=+=sin sin cos )x x ϕϕ+)x ϕ+其中,cos ϕ=sin ϕ=,tan baϕ=且角ϕ终边过点(,)a b 在使用时,不必死记结论,而重在这种收缩(合二为一)思想如:sin cos αα+= ;sin cos αα-= 。

5.公式的使用技巧(1)连续应用:sin()sin[()]sin()cos cos()sin αβγαβγαβγαβγ++=++=+++ (2)“1”的代换:22sin cos 1αα+=,sin 1,tan124ππ==(3)收缩代换:sin cos y x x =+=)x ϕ+,(其中,a b 不能同时为0) (4)公式的变形:tan tan tan()1tan tan αβαβαβ++=-→tan()tan tan tan()tan tan αβαβαβαβ+=+++tan tan tan()1tan tan αβαβαβ--=+→tan()tan tan tan()tan tan αβαβαβαβ-=---如:tan 95tan 3595tan 35-=oooo。

最新高考数学专题复习精品课件 两角和与差及二倍角公式

最新高考数学专题复习精品课件 两角和与差及二倍角公式
5 10 【解析】∵ A 、 B 为锐角, sin A ,sin B 5 10 2 5 3 10 ∴ cos A , cos B . 5 10 cos( A B) cos A cos B sin A sin B .
2 5 3 10 5 10 2 . 5 10 5 10 2 ∵ 0 A B ,∴ A B . 4

∴ 3 3 tan 40 tan 20 tan 40 tan 20 ,

∴ tan 20 tan 40 3 tan 20 tan 40 3 .
0 0 0 0
【变式】
1 tan15 的值为( ) 1 tan15 3 3 1 A. B. C. 3 2 2
典例剖析
考点1 公式的应用
【例 1】求下列各式的值. (1) sin163 cos 223 sin 253 cos313 ;

(2) tan 20 tan 40 3 tan 20 tan 40 .

【解析】 (1)原式 sin(90 73 ) cos(2 90 43 )
1 10 【变式】已知 、 为锐角,且 tan ,sin .求 2 的值. 7 10 10 【解析】∵ 为锐角, sin , 10 1 3 10 ∴ cos 1 sin 2 , tan , 3 10 2 2 tan 3 3 ∴ tan 2 , 2 1 tan 1 1 4 9 1 3 tan tan 2 ∴ tan( 2 ) 7 4 1. 1 tan tan 2 1 1 3 7 4 10 0 0 2 ∵ 为锐角, sin ,∴ ,∴ , 4 2 10 ∵ 为锐角,∴ 0 2 ,∴ 2 . 4

两角和与差倍角半角公式

两角和与差倍角半角公式

两角和与差倍角半角公式一、两角和与差公式:两角和公式可以将两个角的三角函数之和表示为一个角的三角函数。

具体来说,对于任意两个角A和B,有以下两角和公式:1. 正弦和:sin(A + B) = sin A cos B + cos A sin B2. 余弦和:cos(A + B) = cos A cos B - sin A sin B3. 正切和:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)类似地,两角差公式可以将两个角的三角函数之差表示为一个角的三角函数。

具体来说,对于任意两个角A和B,有以下两角差公式:1. 正弦差:sin(A - B) = sin A cos B - cos A sin B2. 余弦差:cos(A - B) = cos A cos B + sin A sin B3. 正切差:tan(A - B) = (tan A - tan B) / (1 + tan A tan B)这些公式的推导可以通过欧拉公式和三角函数的定义推导得到。

二、倍角公式:倍角公式可以将一个角的三角函数表示为另一个角的三角函数。

具体来说,对于任意角A,有以下倍角公式:1. 正弦倍角:sin(2A) = 2sin A cos A2. 余弦倍角:cos(2A) = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A3. 正切倍角:tan(2A) = (2tan A) / (1 - tan^2 A)倍角公式的推导可以通过两角和公式和三角函数的定义推导得到。

三、半角公式:半角公式可以将一个角的三角函数表示为另一个角的三角函数。

具体来说,对于任意角A,有以下半角公式:1. 正弦半角:sin(A/2) = ±√((1 - cos A) / 2)2. 余弦半角:cos(A/2) = ±√((1 + cos A) / 2)3. 正切半角:tan(A/2) = ±√((1 - cos A) / (1 + cos A))半角公式的推导可以通过两角和公式和三角函数的定义推导得到。

两角和与差及其二倍角公式知识点及典学生用

两角和与差及其二倍角公式知识点及典学生用

两角和与差及其二倍角公式知识点及典例1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=; C(α+β):cos(α+β)=;S(α+β):sin(α+β)=; S(α-β):sin(α-β)=;T(α+β):tan(α+β)=; T(α-β):tan(α-β)=;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。

如T(α±β)可变形为: tan α±tan β=_____________; tan αtan β= =. 1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、711B 、-713C 、713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( )A .-235 B.235C .-45D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665D .-16654、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B.3C .2 D .1例1求[2sin 50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒-例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.例3已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.变式3:已知tan α= 17,tan β= 13,并且α,β 均为锐角,求α+2β的值.例4求函数25f (x )sin xcos x x =-x R )∈的单调递增区间?变式4(1)如果()()sin 2cos()f x x x ϕϕ=+++是奇函数,则tan ϕ= ;(2)若方程sin x x c =有实数解,则c 的取值范围是___________.1、下列各式中,值为12的是 ( )A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .- D 2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件3、已知3sin 5α=,tan 0α<则tan()4πα-= . 4、=︒+︒-︒20sin 6420cos 120sin 32225、2sin()2sin()cos()333x x x πππ++---=______________.6、0000cos(27)cos(18)sin(18)sin(27)x x x x +---+=7、若sin α=sin β=,αβ都为锐角,则αβ+= 8、在△ABC 中,已知tan A 、tan B 是方程3x 2+8x -1=0的两个根,则tan C 等于9、110sin - ;10、︒︒-︒70sin 20sin 10cos 2= 11、(1tan 22)(1tan 23)︒︒++=12、)20tan 10(tan 320tan 10tan ︒+︒+︒︒=13、(福建理17)在ABC △中,1tan 4A =,3tan 5B =.求角C 的大小; 14、已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(1)求α2tan 的值.(2)求β.15、如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B (1)求tan(α+β)的值;(2)求α+2β的值.。

两角和与差及二倍角公式经典例题及答案

两角和与差及二倍角公式经典例题及答案

, :两角和与差及其二倍角公式知识点及典例2,22 2 2知识要点:1、两角和与差的正弦、余弦、正切公式 C(α - β ): cos(α - β )= ; C(α + β ): cos(α + β )= ; S(α + β): sin(α +β )= ; S(α - β ): sin(α - β )=;T( α+ β ): tan( α + β )= ; T( α- β ): tan( α - β )=;例 2 设 cos α- β=- 1 2 9 α 2- β= 2 ,其中 α∈ 3 π 2,π, β∈ 0 π,求 cos(α+β). 2 2、二倍角的正弦、余弦、正切公式 变式 2: 已知 0π 3 ππ,cos( )3,sin( 3 π5), 求 sin( α+β ) 的值. S 2 :sin2α = ; T 2 :tan2α = ; 4 4 45 413C 2 :cos2α= ==;3、在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题 :如公式的正用、逆用和变形用等。

如 T( α± β)可变形为 : tan α± tan β= ; tan αtan β==.考点自测:题型 3 给值求角已知三角函数值求角,一般可分以下三个步骤:(1) 确定角所在的范围; (2) 求角的某一个三角函数值( 要求该三角函数应在角的范围内严格单调 ) ;( 3) 求出角。

1、已知 tan α = 4,tan β= 3,则 tan( α + β) = ()例 3 已知 α, β∈(0, π),且 tan(α- β)= 1 , tan β=- 1,求 2α-β的值. 7 7C 7 72 7A 、B 、-1111、 D 、-13132、已知 cos α-π+ sin α= 43,则 sin α+7π的值是 ( ) 6 A .- 2 3 5 B.2 3 6 C .- 4D.4变式 3: 已知 tan α = 1, tan β = 1,并且 α , β 均为锐角 , 求 α +2β 的值 .5 5 55 733、在△ ABC 中,若 cosA = 4, cosB = 5,则 cosC 的值是 ( ) 5 16 56 A. B. 13 C.16或5616D .-65 65 65 65 65 题型 4 辅助角公式的应用4、若 cos2θ+ cos θ= 0,则 sin2θ+ sin θ的值等于 ( )A . 0B . ± 3C . 0 或 3D . 0 或± 3asin x bcosxa2b 2sin x(其中 角所在的象限由 a, b 的符号确定, 角的值由2cos55 -° 3sin5 °b 5、三角式 3 cos5 °值为 ( )tan确定 ) 在求最值、化简时起着重要作用。

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式、知识要点:1. 两角和与差的正弦、余弦、正切公式(1) sin(:z 二I')=⑵cos(.二I )=(3) tan(.二I )=2. 二倍角的正弦、余弦、正切公式(1) sin 2:= (2) cos2:=⑶tan 2:=3. 常用的公式变形(1) tan a 土tan E =tan(a ±E)(1 干tana tan E);2 1 cos2: 21 -cos2:(2) cos : =,sin :=;2 2(3) 1 sin2:-(sin::、" cos: )2,1-sin2: - (sin : - cos: )2,sin 二里cos: = . 2sin(: —).44. 辅助角公式函数f (x) = asin x+ bcosx (a ,内常数),可以化为f (x) = l廿十^ sin( )』占+ b cos(*e 其中甲(8)可由a,b的值唯一确定.两个技巧一(1)一一一握角一、…携角技互二…(2) 一一化简技一巧二切化霎L…一一':1':一一的代换笠一.…一一【双基自测】(人教A版教材习题改编)下列各式的值为1的是()4sin 2上A.3 .右tan a =3,则-- 2—=().2 2__Q 2 tan 22.50o o2cos 衫 T B . 1 -2sin 75 C. ~-一2 & 5° D. sin15 cos152. sin 68°sin 67°—sin23°cos68°=( )A. 一岂经乎D. 1cos :■A. 2 B . 3 C . 4 D . 64 .已知sin a 2贝U cos(兀一A. D.5.1设sin(—+8)=-,贝U sin 26 =()4 3A. D.6. tan200 +tan40° + 后tan200 tan400 =r 5 , ,-.、 2 …7.右tan(—+ot)= —,则tan a =t 4 5考点一三角函数式的化简与求值[例1]求值:①cos15:-sin150;②sin50°(1 + T3tan100).cos15 sin15x 二[例2]已知函数f (x) =2sin(一一一), x 匚R .3 6,-5一:■■:: 10 6 ,(1)求f (宇)的值;⑵设a, E e件一',f (3。

两角和与差及二倍角三角函数公式

两角和与差及二倍角三角函数公式
解。
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教学辅导教案
姓名
年级 高二 性别
教学课题
教学 目标
掌握记忆公式的的方法,技巧,会熟练运用公式。

重点 难点
教学重点:掌握公式的特征,准确记忆公式。

教学难点:公式的符号特征,名称变化。

课前检查 作业完成情况:优□ 良□ 中□ 差□ 建议__________________________________________
课 堂 教 学 过 程
三角函数公式
三角函数的符号
α Ⅰ Ⅱ Ⅲ Ⅳ sin α
cos α
tan α
特殊角的三角函数值
α 0 30
45
60
90
180
270
sin α
cos α
tan α
两个周期内三角函数的图象(标出特殊角及其三角函数值)
sin y x =
最值正周期: ;最大值: ;最小值: ;对称轴: ;
对称中心: ;增区间: ;减区间: ;
cos y x =
最值正周期: ;最大值: ;最小值: ;对称轴: ;
对称中心: ;增区间: ;减区间: ; 同角三角函数的基本关系
sin tan cos α
αα=
22sin cos 1αα+= 1sec cos αα=
1
csc sin αα= 221tan sec αα+=
两角和与差的三角函数
sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+ tan tan tan()1tan tan αβαβαβ++=
- tan tan tan()1tan tan αβ
αβαβ
--=+
二倍角公式
sin 22sin cos ααα= 22cos 2cos sin ααα=-22cos 1α=-212sin α=-
2
2tan tan 21tan α
αα
=
- 降幂公式
1sin cos sin 22ααα= 21cos 2cos 2αα+= 21cos 2sin 2
α
α-=
诱导公式 公式一:
sin(2)sin k παα+= cos(2)cos k παα+= tan(2)tan k παα+=
公式二:
sin()sin παα+=- cos()cos παα+=- tan()tan παα+=
公式三:
sin()sin αα-=- cos()cos αα-= tan()tan αα-=-
公式四:
sin()sin παα-= cos()cos παα-=- tan()tan παα-=-
公式五:
sin()cos 2παα-= cos()sin 2
π
αα-=
公式六:
sin()cos 2παα+= cos()sin 2
π
αα+=- 辅助角公式
22sin cos sin()224πααα+=+ 22sin cos sin()224πααα-=- 22cos sin sin()224
πααα-=-- 31sin cos sin()226πααα+=+ 31sin cos sin()226πααα-=- 31cos sin sin()223πααα+=+ 31cos sin sin()223
πααα-=-- sin cos 2sin()4π
ααα+=+
sin cos 2sin()4π
ααα-=-
cos sin 2sin()4
π
ααα-=--
3sin cos 2sin()6πααα+=+
3sin cos 2sin()6π
ααα-=-
3cos sin 2sin()3
π
ααα+=+
3cos sin 2sin()3
π
ααα-=--
课堂检测听课及知识掌握情况反馈_________________________________________________________。

测试题(累计不超过20分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□
课后巩固
签字教学组长签字:学习管理师:
老师课后赏识评价老师最欣赏的地方:老师想知道的事情:老师的建议:。

相关文档
最新文档