数字显示调节仪的PID参数自整定

合集下载

pid参数的整定过程

pid参数的整定过程

pid参数的整定过程
PID(比例-积分-微分)控制器是一种常用的反馈控制器,用于调节和稳定系统。

PID控制器的参数整定过程通常包括以下几个步骤:
1.初始参数设定:根据系统的性质和需求,设置PID控制器的初
始参数。

通常情况下,可以将三个参数(比例增益Kp、积分时
间Ti、微分时间Td)都设为一个较小的初始值。

2.比例增益调整:从零开始逐步增加比例增益Kp的数值,观察
系统响应的变化。

如果Kp过小,系统响应可能过慢;如果Kp
过大,系统可能会出现超调或不稳定的情况。

通过不断调整Kp
的数值,直到找到一个合适的值,使得系统响应快速且稳定。

3.积分时间调整:在找到合适的Kp之后,开始调整积分时间Ti
的数值。

增大Ti会增加积分作用的影响,降低控制器对于持续
偏差的敏感度。

然而,过大的Ti可能导致系统响应的延迟和振
荡。

通过逐步调整Ti的数值,找到一个使系统响应稳定且快速
的值。

4.微分时间调整:在完成比例增益和积分时间的调整后,可以开
始调整微分时间Td的数值。

微分作用可以抑制系统响应中的
过冲和振荡,并提高系统的稳定性。

然而,过大的Td可能会引
入噪声的放大。

通过逐步调整Td的数值,找到一个能够平衡系
统响应速度和稳定性的值。

5.反复迭代:整定PID参数是一个迭代的过程。

一旦完成了上述
步骤,需要对整个系统进行测试和观察,以确定参数的最佳组合。

如果发现系统仍然存在问题,可以根据实际情况再次进行参数调整,直到达到满意的控制效果。

PID控制参数整定

PID控制参数整定

PID控制参数整定PID控制是一种常用的控制算法,用于调节系统的输出值,使其与期望值尽可能接近。

PID控制参数整定是指根据具体系统的特性,确定PID 控制器中的比例系数P、积分系数I和微分系数D的数值,以实现系统的高性能控制。

\[u(t) = K_p*e(t) + K_i*\int_{0}^{t}e(t)dt +K_d*\frac{d}{dt}e(t)\]其中,u(t)表示输出值,e(t)表示误差,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。

1. 经验整定法:根据经验公式或实践中的经验值,设置PID控制参数。

例如,经验法则中的经验公式Ziegler-Nichols方法可以通过计算系统的临界增益和临界周期来确定PID控制参数。

2.频率响应法:通过分析系统的频率响应曲线,确定PID控制参数。

常用的频率响应法有相位裕度法、幅值裕度法等。

3.试探法:通过系统的响应实验,不断调整PID控制参数,直到达到所期望的控制效果。

4. 最优控制原理:根据最优控制理论,通过优化函数优化PID控制参数。

例如,线性二次调节器LQR方法可以通过解决Riccati方程得到最优的PID控制参数。

5.自适应控制:根据系统的实时性能和动态特性,自动调整PID控制参数。

自适应控制方法可以根据系统的不确定性和变化实时调整PID控制参数。

在实际应用中,确定PID控制参数需要根据具体的系统特性和控制要求,选择合适的整定方法。

同时,PID控制参数的整定也是一个迭代过程,需要反复实验和校正,以达到期望的控制效果。

总结起来,PID控制参数整定是一个重要的控制工程问题。

合理的PID控制参数选择可以实现系统的高性能控制,提高系统的稳定性和响应速度。

根据具体的系统特性和控制要求,可以选择合适的整定方法,调整PID控制参数,以满足系统的控制要求。

XMT9000(常规PID)系列使用说明书

XMT9000(常规PID)系列使用说明书

XMT*-9000(常规PID)系列智能数显温度调节仪使用说明书一、概述XMT*9000系列仪表为智能型双排四位显示仪表,分别显示测量值和设定值,仪表为四键操作,参数快捷设置,参数符号显示简洁,输入信息方便,控制方式有二位式、时间比例、模糊PID, 具有参数自整定功能,仪表采用进口超强抗干扰芯片设计、质量可靠,红绿双色双排数码管分别同时显示测量值与设定值。

二、主要技术参数1、测量误差:±0.5F·S±1字,附加冷端补尝误差±1℃2、继电器输出触点容量:阻性负载220V /7A3、驱动固态继电器信号输出:驱动电流≥15mA,电压≥9V4、驱动可控硅脉冲输出:幅度≥3V,宽度≥40us的移相或过零触发脉冲5、控制周期:继电器输出为2~120秒,其它为2秒6、工作电源:85V~242V,50Hz7、工作环境:0~50℃,相对湿度≤85%RH,无腐蚀性及无强电磁辐射场合三、型号和规格常用输入信号及测控范围(特殊规格可另订货)传感器名称分度号测控范围镍铬-铜镍 E 0~700℃镍铬-镍硅 K 0~1300℃热电偶铂铑10%-铂 S 0~1600℃铁—铜镍 J 0~900℃铜电阻 CU50 -50.0~150.0℃热电阻铂电阻 PT100-199.0~200.0℃、-199.9~600.0℃四、仪表面板布置五、内部参数表序 号提示符名 称 说 明设定范围 出厂值 一级菜单 SP 控制点设定按▼▲键设定所需控制点的温度全范围随机1 AL1 报警12 AL2 报警2 只有一路报警时采用报警1,需上下限或上下偏差两路报警时才采用报警2作下限或下偏差报警,有报警输出时相应报警指示灯点亮全范围 随机3 SC传感器误差平移修正测量值有误差时可以通过此项值加或减修正, ±20.0 或±204 P 比例带 比例带= P×20, 其决定了系统比例增益的大小, P 越大, 比例的作用越小,过冲越小, 但太小会增加升温时间; 设置P=0,仪表转为二位式控制状态。

PID参数自整定的方法及实现

PID参数自整定的方法及实现

PID参数自整定的方法及实现近年来出现的各种智能型数字显示调节仪,一般都具有PID参数自整定功能。

仪表在初次使用时,可通过自整定确定系统的最佳P、I、D调节参数,实现理想的调节控制。

在自整定启动前,因为系统在不同设定值下整定的参数值不完全相同,应先将仪表的设定值设置在要控制的数值(如果水电站或是中间值)上。

在启动自整定后,仪表强制系统产生扰动,经过2~3个振荡周期后结束自整定状态。

仪表通过检测系统从超调恢复到稳态(测量值与设定值一致)的过度特性,分析振荡的周期、幅度及波形来计算仪表的最佳调节参数。

理想的调节效果是,设定值应与测量值保持一致,可从动态(设定值变化或扰动)合稳态(设定值固定)两个方面来评价系统调节品质,通过PID参数自整定,能够满足大多数的系统。

不同的系统由于惯性不同,自整定时间有所不同,从几分钟到几小时不等。

我单位有一台DYJ-36-2型油加热器。

该油加热器是由加热炉体、载体传输通道、膨胀系统及电控装置构成,与用热设备组成了一个循环加热系统。

热载体(导热油)在炉体内被电热管加热后,用热油泵通过管路传送到用热设备,放热后再次回到炉体内升温,实现连续循环过程。

控制油温的调节仪表时日本SHIMADEN(岛电)公司的SR73型PID自整定温控仪。

温度控制系统为闭环负反馈系统。

由热电偶检测的油温信号对应的mV信号,传送至调节仪的信号输入端,调节仪输出DC15V、20mV的高电平信号,传送至SSR固态继电器,驱动晶闸管过零触发开关电路,改变固定期内的输出占空比,从而控制电热器的输出功率。

在系统投入运行前,我们对调节仪进行PID参数的自整定工作。

首先把它的设定值(SV)调至工艺常用温度90℃。

仪表提供了一组PID参数:比例带P=0.1%~999.9%积分时间I=1~6000s微分时间D=0~3600s再进入功能彩旦,把P、I、D参数分别按经验值设定为:P=3.0;I=120;D=30;超调抑制系数SF=0.4。

PID控制原理与参数整定方法

PID控制原理与参数整定方法

P I D控制原理与参数整定方法一、概述PID是比例-积分-微分控制的简称,也是一种控制算法,其特点是结构改变灵活、技术成熟、适应性强。

对一个控制系统而言,由于控制对象的精确数学模型难以建立,系统的参数经常发生变化,运用控制理论综合分析要耗费很大的代价,却不能得到预期的效果,所以人们往往采用PID调节器,根据经验在线整定参数,以便得到满意的控制效果。

随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现,由于软件系统的灵活性,PID算法可以得到修正而更加完善。

我们阳江基地有数以千计的采用PID控制的调节器,用于温度控制、压力控制、流量控制,在塑杯及灌装生产过程中,发挥着重要的作用。

因此,学习PID控制的基本原理,合理的设计PID控制系统,用好、维护好这些调节器,对提高产品质量,降低废品率,节约能源具有十分重要的意义。

本课程从系统的角度,采用多种分析方法,详细讲解经典PID控制的基本原理和PID参数的整定方法,简介现代数字PID控制思想,希望对大家使用PID调节器有所帮助。

二、调节系统的品质和特性一个调节系统的品质可以用静态品质和动态品质来衡量。

所谓静态品质就是系统稳定后,被控参数与给定值间的差值的大小。

偏差愈大则静差愈大,静差愈小静态品质愈好。

当系统受到扰动后或整定在一个新值时需要在较短时间内过渡到稳定,不发生振荡和发散,这便是衡量系统动态特性的指标。

一个好的调节系统应该二个品质都好。

但动静态品质往往是相互矛盾的,要静差小,系统的放大倍数就要大,系统放大倍数愈大则系统愈不稳定,即动态品质不好。

图1-1收敛型1 图1-2收敛型2 图1-3发散型落图1-4振荡型图1-1至1-4是几种典型的控制曲线,只有图1-1表示动静态品质都好。

一般的调节系统都具有惯性和滞后两种特性,只是大小不同而已。

这两个特性应从控制对象,控制作用这两个方面去理解。

弄懂以上关于调节系统的几个基本概念,对于理解PID控制的原理有很大的帮助。

PID控制器的参数整定(经验总结)

PID控制器的参数整定(经验总结)

PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

因此,可以改善系统的动态性能。

在微分时间选择合适情况下,可以减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。

微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。

在选择数字PID参数之前,首先应该确定控制器结构。

对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。

对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。

一般来说,PI、PID和P控制器应用较多。

对于有滞后的对象,往往都加入微分控制。

选择参数控制器结构确定后,即可开始选择参数。

参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。

工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。

pid参数自动整定方法

pid参数自动整定方法

PID参数自动整定方法1. 简介PID(Proportional-Integral-Derivative)是一种常用的控制算法,广泛应用于工业自动化系统中。

PID控制器通过对控制对象的测量值与设定值之间的偏差进行分析,根据比例、积分和微分三个参数来调节输出信号,使得系统能够快速、准确地达到设定值。

PID参数的选择对于控制系统的性能至关重要。

传统的手动整定方法需要经验丰富的工程师进行调试,耗时耗力且容易出错。

因此,自动整定方法应运而生。

本文将介绍几种常见的PID参数自动整定方法,并对其原理和优缺点进行详细讲解。

2. 常见的PID参数自动整定方法2.1 Ziegler-Nichols 方法Ziegler-Nichols 方法是最早提出的一种PID参数整定方法。

该方法通过实验确定系统的临界增益和临界周期,并根据这些数据计算出合适的PID参数。

具体步骤如下:1.将比例增益(Kp)设置为零。

2.逐渐增加比例增益(Kp),直到系统出现持续振荡。

3.记录下持续振荡时的比例增益(Ku)和周期(Tu)。

4.根据以下公式计算PID参数:–比例参数(Kp):0.6 * Ku–积分参数(Ki):1.2 * Ku / Tu–微分参数(Kd):0.075 * Ku * TuZiegler-Nichols 方法的优点是简单易行,只需要进行一次实验即可确定PID参数。

然而,该方法仅适用于具有明显反应时间和振荡特性的系统,对于非线性系统和快速响应系统效果较差。

2.2 Cohen-Coon 方法Cohen-Coon 方法是一种改进的PID参数整定方法,旨在提高对非线性系统和快速响应系统的适应性。

具体步骤如下:1.将比例增益(Kp)设置为零。

2.逐渐增加比例增益(Kp),直到系统出现持续振荡。

3.记录下持续振荡时的比例增益(Ku)和周期(Tu)。

4.根据以下公式计算PID参数:–比例参数(Kp):0.9 * Ku–积分参数(Ki):(1.2 * Ku) / (Tu * 2)–微分参数(Kd):(3 * Ku) * Tu / 40Cohen-Coon 方法相对于Ziegler-Nichols 方法,在非线性系统和快速响应系统上表现更好。

PID仪表自整定说明

PID仪表自整定说明

仪表自整定说明一、使用方法和工作原理:将仪表给定值(SV值)设定为所需的控制值,整个控制回路连接好后,按住“移位健”(此时oPAd=1)直至仪表SV窗口交替显示“At”和给定值后松开,此时仪表将根据给定值(SV值)进行PID自整定,将自动完成PID的控制参数设定(P、I、dt参数)。

当仪表SV窗口不再交替显示“At”和给定值时PID自整定完成。

如果当前的设定值与实际给定值不符或其他原因要停止PID自整定可继续按住“移位健”直至仪表SV窗口不显示“At”后松开,这时强制PID自整定结束。

如需重新进行PID自整定重复上述操作。

注意:仪表在正常工作前,PID参数均为出厂默认值,该参数不可能任何与任意所有的现场环境,所以都要进行PID自整定,否则仪表可能控制效果不佳。

例:仪表进行一般的PI D控制,通过4~20mA的电流信号控制加热对象的温度在200度。

先将给定值(SV值)设定为200,再将“oPAd”参数设定为1(或将“oPAd”参数设定为2在参数设定完成后自动进行自整定),“t”设置为0,“ot”参数设定为4,“oL”参数设定为0,“oH”参数设定为100。

然后在测量状态下按住“移位健”直至仪表SV窗口交替显示“At”和给定值后松开,当仪表SV窗口不在交替显示“At”和给定值时PID自整定完成。

如果控制效果不佳应检查上述参数是否设置正确或重新进行自整定(参数含义参见说明书)。

二、人工调整PID参数XM系列仪表的自整定功能具备较高的准确度,可满足超过90%用户的使用要求,但由于自动控制对象的复杂性,对于一些特殊应用场合,自整定出的参数可能并不是最佳,以下是人工调节P、I、dt参数时的方法:1、人工调节PID参数:如果正确的操作自整定而无法获得满意的控制,可人为修改P、I、dt参数。

人工调整时要注意观察系统的响应曲线,如果是短周期振荡(与自整定或位式调节时振荡周期相当或略长),可减小P(优先),加大I及dt;如果是长周期振荡(数倍于位式调节时振荡周期)可加大I(优先),加大P, dt;如果无振荡而是静差太大,可减小I(优先),加大P;如果最后能稳定控制但时间太长,可减小dt(优先),加大P,减小I。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字显示调节仪的PID参数自整定
各种智能型数字显示调节仪,一般都具有PID 参数自整定功能。

仪表在初次使用时,可通过自整定确定系统的最佳P、I、D 调节参数,实现理想的调节控制。

在自整定启动前,因为系统在不同设定值下整定的参数值不完全相同,应先将仪表的设定值设置在要控制的数值(如果水电站或是中间值)上。


启动自整定后,仪表强制系统产生扰动,经过2~3 个振荡周期后结束自整定状态。

仪表通过检测系统从超调恢复到稳态(测量值与设定值一致)的过度特性,
分析振荡的周期、幅度及波形来计算仪表的最佳调节参数。

理想的调节效果是,设定值应与测量值保持一致,可从动态(设定值变化或扰动)合稳态(设定值固定) 两个方面来评价系统调节品质,通过PID 参数自整定,能够满足大多数的系统。

不同的系统由于惯性不同,自整定时间有所不同,从几分钟到几小时不等。

在系统投入运行前,我们对调节仪进行PID 参数的自整定工作。

首先把它的设定值(SV)调至工艺常用温度90℃。

仪表提供了一组PID 参数:比例带P=0.1%~999.9%
积分时间I=1~6000s
微分时间D=0~3600s
再进入功能彩旦,把P、I、D 参数分别按经验值设定为:
P=3.0;I=120;D=30;超调抑制系数SF=0.4。

完成上述基本参数设置,且系统构成闭环,即仪表输入与传感器、输出
元件与负载连接完毕通电后,进入功能菜单启动自整定(AT)。

此时AT 指示灯
在闪烁,在接近设定值90℃时,仪表的OUT 指示灯时亮时灭,表示晶闸管时
断时通,已进入精确温控阶段。

自整定结束后,AT 灯灭。

此时,可以调处功
能菜单查看系统自整定后的PID 参数值,分别为。

相关文档
最新文档