高中数学数列公式大全(很齐全哟-!)教学内容
高中数学数列公式大全很齐全哟~!

高中数学数列公式大全很齐全哟~!数列公式在高中数学中是非常重要的知识点之一。
数列是数学中一种基本的数学对象,它是由一个有限或无限多个数按照一定规律顺序排列所组成的。
在高中数学中,数列分为等差数列、等比数列、递推数列等各种类型。
下面将为大家介绍一下高中数学数列公式大全。
一、等差数列公式1. 等差数列的通项公式等差数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$ 表示第 $n$ 项,$a_1$ 表示第一项,$d$ 表示公差。
2. 等差数列的前 $n$ 项和公式等差数列的前 $n$ 项和公式为:$S_n =\dfrac{n}{2}[2a_1 + (n-1)d]$,其中 $S_n$ 表示前 $n$ 项和。
3. 等差数列的公差公式等差数列的公差公式为:$d = \dfrac{a_n - a_1}{n-1}$,其中 $d$ 表示公差。
4. 等差数列的中项公式等差数列的中项公式为:$a_{\dfrac{n+1}{2}} =\dfrac{a_1 + a_n}{2}$,其中 $a_{\dfrac{n+1}{2}}$ 表示中项。
5. 等差数列的求和公式等差数列的求和公式为:$S_n = \dfrac{n[\,2a_1 + (n-1)d\,]}{2}$,其中 $S_n$ 表示前 $n$ 项和。
二、等比数列公式1. 等比数列的通项公式等比数列的通项公式为:$a_n = a_1q^{n-1}$,其中$a_n$ 表示第 $n$ 项,$a_1$ 表示第一项,$q$ 表示公比。
2. 等比数列的前 $n$ 项和公式等比数列的前 $n$ 项和公式为:$S_n = \dfrac{a_1(1-q^n)}{1-q}$,其中 $S_n$ 表示前 $n$ 项和。
3. 等比数列的公比公式等比数列的公比公式为:$q = \sqrt[n-1]{\dfrac{a_n}{a_1}}$,其中 $q$ 表示公比。
4. 等比数列的求和公式等比数列的求和公式为:$S_n = \dfrac{a_1(1-q^n)}{1-q}$,其中 $S_n$ 表示前 $n$ 项和。
数列公式知识点归纳总结

数列公式知识点归纳总结数列公式是高中数学中的重要知识点,它在数学中的应用广泛且重要。
本文将对数列公式的相关知识点进行归纳总结,以帮助读者更好地理解和掌握这一内容。
一、等差数列公式等差数列是一种常见的数列,其中每一项与前一项之间的差值相等。
对于等差数列,我们可以通过以下公式来计算其通项公式和前n项和公式:1. 通项公式设等差数列的首项为a₁,公差为d,则该等差数列的通项公式为:an = a₁ + (n - 1)d2. 前n项和公式设等差数列的首项为a₁,公差为d,前n项和为Sn,则该等差数列的前n项和公式为:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n - 1)d) = n/2 * (2 * a₁ + (n - 1)d)二、等比数列公式等比数列是一种常见的数列,其中每一项与前一项之间的比值相等。
对于等比数列,我们可以通过以下公式来计算其通项公式和前n项和公式:1. 通项公式设等比数列的首项为a₁,公比为q,则该等比数列的通项公式为:an = a₁ * q^(n - 1)2. 前n项和公式设等比数列的首项为a₁,公比为q,前n项和为Sn,则该等比数列的前n项和公式为:Sn = a₁ * (1 - q^n) / (1 - q)三、斐波那契数列公式斐波那契数列是一种特殊的数列,第一项和第二项均为1,之后每一项都是前两项的和。
对于斐波那契数列,我们可以通过以下公式来计算其通项公式:1. 通项公式设斐波那契数列的第n项为Fn,则该斐波那契数列的通项公式为:Fn = (1/√5) * ((1 + √5) / 2)^n - (1/√5) * ((1 - √5) / 2)^n四、总结数列公式是数学中的重要内容,通过以上对等差数列、等比数列和斐波那契数列的公式归纳总结,我们可以更好地理解和掌握数列的相关知识点。
在实际应用中,数列公式可以帮助我们解决各种问题,如求解数列的通项、前n项和等。
高中数列公式大全基础知识点方法归纳及解题技巧超详细(完整版)

高中数列公式大全基础知识点方法归纳及解题技巧超详细!(完整版)1. 等差数列的定义与性质定义:(为常数), 等差中项:成等差数列前项和 性质:是等差数列(1)若,则(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为 (4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数n 2的等差数列,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有1n n a a d +-=d ()11n a a n d =+-x A y ,,2A x y ⇔=+n ()()11122n n a a n n n S nad +-==+{}n a m n p q +=+m n p q a a a a +=+;232n n n n n S S S S S --,,……a d a a d -+,,n n a b ,n n n S T ,2121m m m m a S b T --={}n a 2n S an bn ⇔=+a b ,n n S 2n S an bn =+{}n a 100a d ><,10n n a a +≥⎧⎨≤⎩n S n 100a d <>,10n n a a +≤⎧⎨≥⎩n S n {}n a {}n a)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:(为常数,),.等比中项:成等比数列,或前项和:(要注意!)性质:是等比数列(1)若,则 (2)仍为等比数列,公比为nq . 注意:由求时应注意什么?时,; 时,.3.求数列通项公式的常用方法 (1)求差(商)法 如:数列,,求 解 时,,∴①时, ②①—②得:,∴,∴1n na q a +=q 0q ≠11n n a a q -=x G y 、、2G xy ⇒=G =n ()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩{}n a m n p q +=+mn p q a a a a =··232n n n n n S S S S S --,,……n S n a 1n =11a S =2n ≥1n n n a S S -=-{}n a 12211125222n n a a a n +++=+……n a 1n =112152a =⨯+114a =2n ≥12121111215222n n a a a n --+++=-+……122n n a =12n n a +=114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列满足,求 注意到,代入得;又,∴是等比数列,时,(2)叠乘法如:数列中,,求 解,∴又,∴. (3)等差型递推公式由,求,用迭加法时,两边相加得∴[练习]数列中,,求()(4)等比型递推公式(为常数,)可转化为等比数列,设 令,∴,∴是首项为为公比的等比数列 ∴,∴ (5)倒数法如:,求 {}n a 111543n n n S S a a +++==,n a 11n n n a S S ++=-14n nS S +=14S ={}n S 4nn S =2n ≥1134n n n n a S S --=-==……·{}n a 1131n nana a n +==+,n a 3212112123n n a a a n a a a n--=·……·……11n a a n =13a =3n a n =110()n n a a f n a a --==,n a 2n ≥21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………1(2)(3)()n a a f f f n -=+++……0(2)(3)()n a a f f f n =++++……{}n a ()111132n n n a a a n --==+≥,na ()1312nn a =-1n n a ca d -=+c d 、010c c d ≠≠≠,,()()111n n n n a x c a x a ca c x --+=+⇒=+-(1)c x d -=1d x c =-1n d a c ⎧⎫+⎨⎬-⎩⎭11d a c c +-,1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭11212nn n a a a a +==+,n a由已知得:,∴ ∴为等差数列,,公差为,∴, ∴( 附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由∴ [练习]求和: (2)错位相减法若为等差数列,为等比数列,求数列(差比数列)前项和,可由,1211122n n n n a a a a ++==+11112n n a a +-=1n a ⎧⎫⎨⎬⎩⎭111a =12()()11111122n n n a =+-=+·21n a n =+{}n a d 111nk k k a a =+∑()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭111112123123n+++++++++++ (1)21n n a S n ===-+…………,{}n a {}n b {}n n a b n n n S qS -求,其中为的公比.如: ①②①—②时,,时, (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.相加[练习]已知,则由∴原式 (附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
高中数列公式总结大全

高中数列公式总结大全数列是数学中比较基础的概念,也是高中数学中常出现的内容之一。
在学习数列时,我们需要掌握一些基本的公式,下面是高中数列公式总结大全。
一、定义1. 数列:按照一定的规律排列成的数的序列。
2. 通项公式:数列中第 n 项 a_n 与 n 之间的关系式。
3. 通项公式(递推公式):数列中第 n 项 a_n 与前几项(如前一项)之间的关系式。
二、等差数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的差等于同一个常数 d,那么这个数列就称为等差数列。
2. 通项公式:a_n = a_1 + (n-1)d3. 前 n 项和公式:S_n = n/2( a_1 + a_n) = n/2[2a_1 + (n-1)d]4. 差值公式:d = a_n - a_{n-1} = a_{n+1} - a_n = ... = a_2 - a_15. 求和公式:(1)n 为奇数时:S_n = [n/2(a_1+a_n)](2)n 为偶数时:S_n = n/2 [a_1+a_n]6. 证明:设等差数列有n项,公差为d,则:S_n = a_1 + (a_1+d) + ... + (a_1 + (n-1)d)将公式第一项和最后一项括起来,第二项和倒数第二项括起来,以此类推:S_n = [(a_1+a_n)+(a_2+a_{n-1})+...+(a_{n-1}+a_2)+(a_n+a_1)]/2设 a_1 + a_n = a_2 + a_{n-1} = ... = a_{n/2}+a_{n/2+1} = S则 S_n = [n/2]S三、等比数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的比等于同一个常数 q,那么这个数列就称为等比数列。
2. 通项公式:a_n = a_1*q^{n-1}3. 前 n 项和公式(n≠1):S_n = a_1*(1-q^n)/(1-q)4. 无穷级数收敛条件(|q|<1):S = a_1/(1-q)5. 等比中项公式:a_m = sqrt(a_{m-1}*a_{m+1})6. 连续 n 项的和:Sn = a_1*(q^n-1)/(q-1)四、等差数列与等比数列的转化1. 等差数列转化为等比数列令 b_n = a_n/d,则有:b_n = a_n/d = a_1/d*q^{n-1}即 b_n 是以 q 为公比的等比数列,通项公式是 b_n = (a_1/d)*q^{n-1}。
高中数学数列公式大全(很齐全哟~!)之欧阳化创编

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n 的一次式;当d=0时,a n 是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n 的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1q n-1a n=a k q n-k (其中a1为首项、a k 为已知的第k项,a n≠0)5、等比数列的前n 项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则(c>0)是等比数列。
(完整版)数列公式汇总.doc

人教版数学必修五第二章数列重难点解析第二章课文目录2. 1数列的概念与简单表示法2. 2等差数列2. 3等差数列的前n 项和2. 4等比数列2. 5等比数列前n 项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列 n 项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n 项和公式推导,进一步熟练掌握等比数列的通项公式和前n 项和公式【难点】1、根据数列的前n 项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n 项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法⒈ 数列的定义:按一定次序排列的一列数叫做数列 .注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项 . 各项依次叫做这个数列的第 1 项(或首项),第2 项,,第 n 项, .⒊数列的一般形式:a1 , a2 , a3 , , a n , ,或简记为a n,其中 a n是数列的第n项⒋数列的通项公式:如果数列 a n 的第 n 项a n与 n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式 .注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1, 0, 1, 0, 1 , 0 ,它的通项公式可以是1 ( 1) n 1|.a n ,也可以是 a n | cos n 12 2⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:*数列可以看成以正整数集N(或它的有限子集{1 , 2, 3,, n} )为定义域的函数a n f (n) ,当自变量从小到大依次取值时对应的一列函数值。
高中数学数列公式及性质
高中数学数列基本公式及性质一、高中数列基本公式:1、一般数列的通项an 与前n项和Sn的关系:an=2、等差数列的通项公式:an =a1+(n-1)d an=ak+(n-k)d (其中a 1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:S n = Sn= Sn=当d≠0时,Sn 是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an = a1q n-1an= akq n-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn =n a1(是关于n的正比例式);当q≠1时,Sn = Sn=二、高中数学中有关等差、等比数列的一些性质总结1、等差数列{an }的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an }的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an }与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an }与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;11、{an}为等差数列,则(c>0)是等比数列。
12、{bn }(bn>0)是等比数列,则{logcbn} (c>0且c1) 是等差数列。
数列公式大全
数列公式大全数列是数学中的重要概念,在高考中也是常见的考点。
以下是数列的一些常见公式和性质,供高考复习参考。
1.等差数列等差数列是数列中最简单的一种形式,公式为:an = a1 + (n-1)d。
其中,an表示数列的第n项,a1表示首项,d表示公差。
常见性质:-公差d的求解方法:d=a2-a1=a3-a2=...- 前n项和公式:Sn = (a1 + an) * n / 2- 根据首尾两项和项数求公差:d = (an - a1) / (n-1)2.等比数列等比数列是指数列中后一项与前一项的比相等的数列。
公式为:an = a1 * r^(n-1)。
其中,an表示数列的第n项,a1表示首项,r表示公比。
常见性质:-公比r的求解方法:r=a2/a1=a3/a2=...-前n项和公式:Sn=a1*(1-r^n)/(1-r)(当,r,<1)-无穷项和公式:Sn=a1/(1-r)(当,r,<1)3.等差数列与等比数列的转换对于等差数列,可以通过等比数列进行转换。
公式为:an = ar^(n-1)。
其中,an表示等差数列的第n项,a表示等差数列的公差,r表示等差数列的首项和公差的比。
4.斐波那契数列斐波那契数列是一个特殊的数列,公式为:an = an-1 + an-2,其中a1 = 1,a2 = 1常见性质:5.平方数列平方数列是指数列中每一项都是一个平方数的数列。
公式为:an = n^2常见性质:-平方数和公式:Sn=n(n+1)(2n+1)/6-平方数的性质:n^2=(n-1)^2+2n-16.立方数列立方数列是指数列中每一项都是一个立方数的数列。
公式为:an = n^3常见性质:-立方数和公式:Sn=n^2(n+1)^2/4-立方数的性质:n^3=(n-1)^3+3n(n-1)+1除了以上几种常见的数列外,高考中还会涉及到其他类型的数列,如等差数列和等比数列的组合、绝对值数列、等差中项数列等等,这些数列的性质和公式需要根据具体的题目进行掌握和记忆。
高考数学必备:数列公式
高考数学必备:数列公式数列公式是高考数学中常考的内容,下面查字典高中数学网小编跟大家分享一些关于数列公式知识,希望能为同窗们提供这方面知识的良好指点。
一、高中数列基本公式:1、普通数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为的第k项) 当d≠0时,an是关于n 的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn= Sn= Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1an= ak qn-k(其中a1为首项、ak为的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn= Sn=二、高中数学中有关等差、等比数列的结论1、等差数列{an}的恣意延续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{an}中,假定m+n=p+q,那么3、等比数列{an}中,假定m+n=p+q,那么4、等比数列{an}的恣意延续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。
7、等差数列{an}的恣意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的恣意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;三、个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{an}为等差数列,那么 (c>;0)是等比数列。
高中数列公式总结大全
高中数列公式总结大全数列是数学中一个非常重要的概念,它在高中数学课程中占据着重要的地位。
数列是由一系列按照一定规律排列的数所组成的序列,而数列的规律则可以用数列公式来表示。
在高中数学学习中,数列公式的掌握对于学生来说至关重要。
本文将对高中数列公式进行总结,帮助学生更好地理解和掌握数列的相关知识。
1.等差数列公式。
等差数列是指数列中相邻两项之间的差都相等的数列。
等差数列的通项公式为,$a_n = a_1 + (n-1)d$,其中$a_n$表示等差数列的第n项,$a_1$表示等差数列的首项,d表示等差。
此外,等差数列的前n项和公式为,$S_n = \frac{n}{2}(a_1 +a_n)$。
2.等比数列公式。
等比数列是指数列中相邻两项之间的比值都相等的数列。
等比数列的通项公式为,$a_n = a_1 q^{n-1}$,其中$a_n$表示等比数列的第n项,$a_1$表示等比数列的首项,q表示公比。
等比数列的前n项和公式为,$S_n = \frac{a_1(1-q^n)}{1-q}$。
3.斐波那契数列公式。
斐波那契数列是一个非常特殊的数列,它的定义是,第一项和第二项均为1,从第三项开始,每一项都等于前两项之和。
斐波那契数列的通项公式为,$F_n =\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n (\frac{1-\sqrt{5}}{2})^n]$。
4.等差数列和等比数列的区别。
等差数列和等比数列是两种常见的数列形式,它们之间有着明显的区别。
等差数列是指数列中相邻两项之间的差都相等,而等比数列是指数列中相邻两项之间的比值都相等。
因此,在计算等差数列和等比数列的前n项和时,需要使用不同的公式进行计算。
5.常见数列的应用。
数列在现实生活中有着广泛的应用,例如金融领域中的利息计算、物理学中的运动规律、生物学中的生长规律等都可以用数列来进行描述和计算。
因此,掌握数列公式对于学生来说具有重要的实际意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学数列公式大全(很齐全哟-!)
一、高中数列基本公式:
1、一般数列的通项a n与前n项和S n的关系:
a n=
2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n 的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n=
S n=
当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k
(其中a1为首项、a k为已知的第k项,a n≠0)
5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);
当q≠1时,S n= S n=
三、高中数学中有关等差、等比数列的结论
1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则
3、等比数列{a n}中,若m+n=p+q,则
4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-
S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列
{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
11、{a n}为等差数列,则 (c>0)是等比数列。
12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。
13. 在等差数列中:
(1)若项数为,则
(2)若数为则,,14. 在等比数列中:
(1)若项数为,则
(2)若数为则,。