小学奥数等差数列
【四升五】小学数学奥数第10讲:等差数列-课件

练习三
有一个等差数列的第1项是2.4,第7项是26.4, 求它的第5项。
a7a6da16d
a12.4,a7 26.4代入上式,
2.4 62.46d, d 4, a 5 a 1 4 d 2 .4 4 4 1.4 8
答:第5项是18.4。
例题四
游乐园的智慧梯最高一级宽60厘米,最低一级宽 150厘米,中间还有9级,各级的宽度成等差数列,求 正中间一级的宽。
首项 项数
通项公式:
ana1(n1)d
第n项
公差
例题三
一批货箱,上面的标号是按等差数列排列的, 第一项是3.6,第五项是12,求它的第2项。
a5a4da14d
a13.6,a5 12代入上式,
123.64d, d2.1 a 2 a 1 d 3 .6 2 .1 5 .7
答:第二项是5.7。
580 8n4, n=(580+4)÷8=73
答:580是第73项。
练习二
等差数列3,9,15,21,…中,381是第几项?
a1 3, d936,
an a1 (n 1)d
3(n1)6
6n3
我们把381代入
a
,
n
381 6n3, n=(381+3)÷6=64
答:381是第64项。
小结
等差数列:
ana1(n1)d
通项公式
例题一
求等差数列3,8,13,18,…的第38项和第69项。
a1 3, d835,
an a1 (n 1)d 3(n1)5 5n2
a3853 82188 a69569 2343
答:第38项是188,第69项是343。
练习一
等差数列1,4,7,10,13,…的第20项和第89项。
小学奥数培优等差数列含答案

小学奥数培优等差数列含答案第四讲等差数列(一)问题解决方法若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引文】:等差序列:3,6,9,。
,96.这是一个序列,第一项为3,最后一项为96,项目数为32,公差为3。
计算等差数列的相关公式:(1)通用术语公式:哪个术语=第一项+(术语数量-1)×公差(2)项目数量公式:项目数量=(最后一项-第一项)÷公差+1(3)总和公式:总和=(第一项+最后一项)×项目数量÷2注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差分序列的求和公式。
例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项[提示]仔细观察后,我们可以发现后一项与相邻前一项之间的差值为3,因此这是一个以4为第一项、公差为3的等差序列,可以根据等差序列的项数公式进行求解。
解决方案:根据算术顺序的项目编号公式:项目编号=(最后一项-第一项)÷公差+1,项目编号=(25-4)÷3+1=8,因此这个数列共有8项。
引申1.有一个顺序:2,6,10,14,。
,106.这个序列中有多少项?。
答:这个数列共有27项2.有一个系列:5,8,11,。
,92,95,98. 这个系列有多少个项目?答:这个数列共有19项3.在算术序列中,第一项=1,最后一项=57,公差=2。
这个算术序列中有多少项?答:这个算术顺序有29项。
例题2有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?提示:仔细观察后,可以发现后一项和相邻前一项之间的差值等于5,因此这是一个等差序列,第一项为2,公差为5。
可根据等差序列的通用项公式求解:根据等差序列的通用项公式:哪个项=第一项+(项数-1)×公差,可用,第100项=2+(1oo-1)×5=497,所以这个等差数列的第100项是497。
(完整版)小学奥数--等差数列

等差数列
专题解析
典型例题
例1、求等差数列3,8,13,18,…的第38项和第69项。
例2、36个小学生排成一排玩报数游戏,后一个同学报的数部比前一个同学多报8,已知最后一个同学报的数是286,则第一个同学报的数是几?
例3、等差数列4,12,20,…中,580是第几项?
例4,一批货箱,上面标的号是按等差数列排列的,第一项是3.6,第五项是12,求它的第二项.
例5、游戏园的智慧梯最高一级宽60厘米,最低一级宽150厘米,中间还有13级,各级的宽度成等差数列,求正中一级的宽。
随堂巩固
1、求3+10+17+24+31+…+94的和
2、求100至200之间被7除余2的所有三位数的和是多少?
3、一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少?
4、有12个数组成等差数列,第六项与第七项的和是12,求这12个数的和。
5、在19和91之间插入5个数,使这7个数构成一个等差数列。
写出插入的五个数.
6、从广州到北京的某次快车中途要依靠8个大站,铁路局要为这次快车准备多少种不同的车票?这些车票中有多少种不同的票价?
7、学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛?
8、7个小队共种树100棵,各小队种的棵数都不相同,其中种树最多的小队种了18棵树,种树最少的小队至少种了多少棵树?。
小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LLL 和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089L(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=L⑵13578799L++++++=⑶471013404346L+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:L()+++++++=+⨯÷=34567677783787623078⑵算式中的等差数列一共有50项,所以:13578799(199)5022500L++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:L()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
小学奥数等差数列练习及答案【三篇】

小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2项数=(末项-首项)公差+1末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项-首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+1,便可求出。
(2)根据公式:末项=首项+公差(项数-1)解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67个数,第201个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这个数列,发现这是一个公差为1的等差数列。
要求和能够利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1的所有两位数的和。
分析一:在两位数中,被10除余1最小的是11,的是91。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们能够根据求和公式来计算。
解一:11+21+31+……+91=(11+91)92=459【篇三】1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。
(完整word版)六年级奥数等差数列

等差数列知识点:等差数列的和= (首项+末项)×项数÷2项数= (末项-首项)÷公差+1公差= 第二项-首项等差数列的第n项= 首项+(n-1)×公差首项= 末项-公差×(项数-1)例1、计算。
1+3+5+7+……+95+97+99解:1+3+5+7+……+95+97+99=(1+99)×50÷2=2500例2、(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)解:(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)=(1+1999)×1000÷2-(2+1998)×999÷2=-=1000例3、计算1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999解:1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999 ==例4、求首项为5,末项为155,项数是51的等差数列的和。
解:(5+155)×51÷2=160×51÷2=80×51=4080例5、有60个数,第一个数是7,从第二个数开始,后一个数总比前一个数我4 。
求这60个数的和。
解:(1)末项为: 7+4×(60-1)=7+4×59=7+236=243(2)60个数的和为:(7+243)×60÷2=250×60÷2=7500例6、数列3、8、13、18、……的第80项是多少?例7、求3+7+11+……+99=?例8、一个15项的等差数列,末项为110,公差为7,这个等差数列的和是多少?例9、一个大礼堂,第一排有28个座位,以后每排比前排多一个座位,第35排是最后一排,这个大礼堂共有多少个座位?练一练一、计算1、2+4+6+……+96+982、68+65+……+11+83、2+3+4+……+2000+2001+2002+2003二、列式计算1、8、15、22……这列数的第100项是多少?2、一个有20项的等差数列,公差为5,末项是104,这个数列的首项是几?3、一个公差为4的等差数列,首项为7,末项为155.这个数列共有多少项?4、有一列数,已知第1个数为11,从第二个数起每个数都比前一个数多3,这列数的前100个数的和是多少?三、解答下列各题1、王师傅每天工作8小时,第1小时加工零件50个,从第二小时起每小时比前一小时多加工零件3个,求王师傅一天加工多少个零件?2、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下,时钟一昼夜敲打多少次?3、一个剧院设置了30排座位,第一排有38个座位,往后每排都比前一排多1个座位,这个剧院共有多少个座位?4、一个物体从空中自由落下,第一秒下落4.9米,以后每秒多下落9.8米,经过20秒落到地面,物体原来离地面多高?。
小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案1.小学生奥数等差数列练习题及答案1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、……。
从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3×(1995-1)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149。
3、把1988表示成28个连续偶数的和,那么其中的那个偶数是多少?。
解答:28个偶数成14组,对称的2个数是一组,即最小数和数是一组,每组和为:1988÷14=142,最小数与数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:34×29+29=35×2934×30+30=35×3034×31+31=35×3134×32+32=35×3234×33+33=35×33以上数的和为35×(29+30+31+32+33)=54255、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
小学奥数《等差数列公式》及其练习

小学奥数《等差数列公式》及其练习等差数列练习知识点1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项ΛΛ以此类推,最后一个数叫做这个数列的末项(我们将用n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。
如:2,4,6,8,Λ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用d 来表示),即:1122312----=-==-=-=n n n n a a a a a a a a d Λ例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么)练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差即:d n a a n ?-+=)1(1(2)项数公式:项数=(末项-首项)÷公差+1即:1)(1+÷-=d a a n n(3)求和公式:总和=(首项+末项)×项数÷2即:()21321÷?+=+++n a a a a a a n n Λ在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1:求等差数列3,5,7,Λ的第 10 项,第 100 项,并求出前100 项的和。
【解析】我们观察这个等差数列,可以知道首项1a =3,公差d=2,直接代入通项公式,即可求得21293)110(110=?+=?-+=d a a ,2012993)1100(1100=?+=?-+=d a a . 同样的,我们知道了首项3,末项201以及项数100,利用等差数列求和公式即可求和:3+5+7+Λ201=(3+201)?100÷2=10200.解:由已知首项 1a =3,公差d=2,所以由通项公式 d n a a n ?-+=)1(1,得到21293)110(110=?+=?-+=d a a2012993)1100(1100=?+=?-+=d a a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列的定义
定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为
等差数列.
譬如: 2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列
100、95、90、85、80、 从第二项起,每一项比前一项小5 ,递减数列
关键词:
首项:一个数列的第一项,通常用1a 表示
末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;
公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .
二、三个重要的公式
① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()
递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 拓展公式:n m a a n m d -=-⨯(),n m >()
② 项数公式:项数=(末项-首项)÷公差+1
11n n a a d =-÷+() (若1n a a >); 11n n a a d =-÷+() (若1n a a >).
知识结构
等差数列的基本概念及公式
③ 求和公式:和=(首项+末项)⨯项数÷2 (思路1) 1239899100+++
+++
11002993985051=
++++++++共50个101
()()()()101505050=⨯=
(思路2)这道题目,还可以这样理解: 2349899100
1009998973212101101101101101101101
++++
+++=+++++++=++++
+++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=
三、一个重要定理:中项定理
1、项数为奇数的等差数列,和=中间项×项数.
譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,
题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089+++
+++=+⨯÷=⨯=(),
题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.
2、项数是偶数的等差数列,中间一项等于中间两项的平均数。
和=中间项×项数.
(1) 找出题目中首项、末项、公差、项数。
(2) 必要时调整数列顺序。
重难点
板块一:等差数列的基本认识
【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
①6,10,14,18,22,…,98; ②1,2,1,2,3,4,5,6; ③ 1,2,4,8,16,32,64; ④ 9,8,7,6,5,4,3,2; ⑤3,3,3,3,3,3,3,3; ⑥1,0,1,0,l ,0,1,0;
【练习1】312+、610+、128+、246+、484+、……是按一定规律排列的一串算式,其中第六个算式的计算结果是 。
板块二:求项数
【例 2】 小朋友们,你知道每一行数列各有多少个数字吗? (1) 3、4、5、6、……、76、77、78 (2)2、4、6、8、……、96、98、100 (3) 1、3、5、7、……、87、89、91 (4) 4、7、10、13、……、40、43、46
例题精讲
【练习2】
2-1 在等差数列6,13,20,27,…中,从左向右数,第_______个数是1994.2-2 5、8、11、14、17、20、,65是其中的第几项?
2-3 已知等差数列2、5、8、11、14 …… ,问47是其中第几项?
2-4 已知等差数列9、13、17、21、25、…… ,问93是其中第几项?
板块三:求通项
【例 3】已知数列0、4、8、12、16、20、…… ,它的第43项是多少?
【练习3】
3-1 5、8、11、14、17、20、,它的第201项是多少?
3-2 3、5、7、9、11、13、15、…… ,它的第102项是多少?
3-3 1,3,5,7,……是从1开始的奇数,其中第2005个奇数是________。
板块三:中项定理
【例 4】2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.
【练习4】
4-1 1、3、5、7、9、11、是个奇数列,如果其中8个连续奇数的和是256,那么这8个奇数中最大的数是多少?
4-2 15个连续奇数的和是1995,其中最大的奇数是多少?
4-3 把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
板块四:等差数列求和
【例 5】用等差数列的求和公式会计算下面各题吗?
⑴3456767778
+++++++=
⑴13578799
++++++=
⑴471013404346
+++++++=
【练习5】
5-1 1+2+……+8+9+10+9+8+……+2+1=_____。
-----
5-2 500024698100
+++++++
5-3 1357199519971999
+++⋯++++⋯+++÷=
5-4 (123200720082007321)2008
【例 6】计算:
⑴1351997199924619961998
++++++++++
()-()
⑴40005101595100
------
⑴99198297396495594693792891990
+++++++++
【练习6】计算246198419861988135198319851987()()++++++-++++++
【作业1】 1966、1976、1986、1996、2006这五个数的总和是多少?
【作业2】 计算:110+111+112+ (126)
【作业3】 计算下列一组数的和:105,110,115,120,…,195,200
【作业4】 聪明的小朋友们,PK 一下吧.
⑴4812163236++++++
⑵656361531++++++
【作业5】 计算: ⑴ 2469698100135959799++++++-+++
+++(
)()
家庭作业
(2)1000999998997996995106105104103102101
+-++-+++-++-.【作业6】计算:13520092462008
()()
++++-++++
【作业7】13467910121366676970
+++++++++++++;(难)
【作业8】20072006200520042003200254321
-+-+-++-+-+
【进门考】
1、在数列2,5,8,……,329中,一共有多少项?
2、在数列7,11,15,19,……中,203是第几项?
3、已知等差数列1,6,11,16,……,请问:第31项是多少?
4、 1+11+21+31+……+201
5、 7+11+15+……+207。