等差数列(三年级)

合集下载

三年级 第5讲 等差数列

三年级 第5讲 等差数列

【例 4】
【例 4】求出下面各数列的和: (1) 9, 13, 17, 21, 25, 29; (2) 1, 3, 5, 7 , … ,95, 97, 99.
●●●● 随 堂 练 习 4
(1)求出从0 到 100之内所有3 的倍数的和.
(2) 算 :H-11 + 21 + 31J-- 1-101 + 111.
●●●● 随 堂 练 习 3
(1)求和: (1) 4 + 6 + 8 + 10 + 12 + 14 + 16; (2) 2 + 3 + 4 + 5 + 6 + 7 + 8.
(2)计算:4 + 7 + 10 + 13 + ・・・ + 298 + 301.
(3) 算 :2 + 6 + 10 + 14 + … + 210 + 214.
●●●● 随 堂 练 习 5
(1)小张看一本故事书,第一天看25页,以后每天比前一天多看5 页, 最后一天看ห้องสมุดไป่ตู้5页,刚好看完.这本故事书共有多少页?
(2)自1开始,每隔两个数写一个数,得到数列:L 4, 7, 10, 13,…,求出 这个数列前100项之和.
(3)影剧院有座位若干排.第一排有25个座位,以后每排比前一排多3个 座位.最后一排有94个座位.问:这个影剧院共有多少个座位?
谢谢观看
——某某某老师网络课堂
课后巩固练习
① 246+97+754; ② 342-297+158; ③ 653+164-253; ④ 348-176-124; ⑤ 354+(256-198); ⑥ 489-(253+189);

三年级-第二讲-等差数列

三年级-第二讲-等差数列

第二讲等差数列1、1+2+3+……+1999=?2、11+12+13+……+31=?3、3+7+11+……+99=?4、求首项是25,公差是3的等差数列的前40项的和。

5、在下图中,每个最小的等边三角形的面积是12厘米²,边长是一根火柴棍。

问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴摆成?6、盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成三只球后放回到盒子里。

这时盒子里共有多少只乒乓球?7、计算下列各题:(1)2+4+6+ (200)(2)17+19+21+ (39)(3)5+8+11+14+ (50)(4)3+10+17+24+ (101)8、求首项是5,末项是93,公差是4的等差数列的和。

9、求首项是13,公差是5的等拆数列的前30项的和。

10、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。

问:时钟一昼夜敲打多少次?11、求100以内除以3余2的所有数的和。

12、在所有两位数中,十位数比个位数大的数共有多少个?1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、……。

从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3×(1995-1)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?.解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为:1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,最大数为(142+54)÷2=98。

(完整版)三年级数学上等差数列

(完整版)三年级数学上等差数列

等差数列假如一个数列,从第 2 项起,每一项与前一项的差是一个固定数,这样的数列叫做等差数列,这个差叫做这个数列的公差。

比如1,3,5,7,9 , ...,99 公差是 2数列的第一项叫首项,最后一项叫末项末项 = 首项 + (项数 -1 )×公差反之,项数 = (末项 - 首项)÷公差 +1下边议论怎样求等差数列的和【例 1】乞降:1+2+3+4+5+6+7+8=?随堂练习 1用上边的方法求出1+2+3+...+35+36【例 2】计算:1+2+3+...+98+99+100随堂练习 2计算: 2+4+6+8+...+200【例 3】乞降:( 1) 8+9+10+11+12+13(2)2+5+8+11+14+17+20随堂练习 3乞降:( 1) 4+6+8+10+12+14+16(2)2+3+4+5+6+7+8【例 4】求出下边各数列的和:( 1) 9,13,17,21,25,29(2)1,3,5,7,...,95,97,99随堂练习 4求出从 0 到 100 以内全部 3 的倍数的和。

【例 5】小红读一本长篇小说,第一天读了30 页,从次日起,每日读的页数都比前一天多 4 页,最后一天读了 70 页,恰好读完。

问:这本小说共有多少页?随堂练习 5小张看一本故事书,第一天看 25 页,此后每日比前一天多看 5 页,最后一天看 55 页,恰漂亮完,这本故事书共有多少页?练习题1、计算: 18+19+20+21+22+232、计算: 100+102+104+106+108+110+112+1143、计算: 73+77+81+85+89+934、计算: 995+996+997+998+9995、计算:(1999+1997+1995+...+13+11)-(12+14+16+...+1996+1998)6、计算: 1+3+5+7+...+37+397、计算: 2+6+10+14+...+210+2148、计算: 4+7+10+13+...+298+3019、计算: 1+11+21+31+...+101+11110、求出全部的 2 位数之和 .。

三年级奥数等差数列

三年级奥数等差数列

三年级奥数等差数列引言本文档旨在介绍三年级学生应了解的奥数等差数列的概念和基本计算方法。

什么是等差数列?等差数列是由一系列数按照相等的差值依次排列而成的数列。

每个数与它前一个数的差值都是相等的。

等差数列的特点1. 公差:等差数列中相邻两项之间的差值称为公差。

用字母"d"表示。

2. 首项:等差数列的第一项称为首项。

用字母"a"表示。

3. 通项公式:按照公差依次递增的等差数列的第n项可以表示为:an = a + (n-1)d。

等差数列的计算方法计算首项- 已知公差d和第n项an,首项可以通过公式a = an - (n-1)d来计算。

- 已知公差d和前一项an-1,首项可以通过公式a = an-1 + d来计算。

计算公差- 已知首项a和第n项an,公差可以通过公式d = (an - a) / (n-1)来计算。

- 已知前一项an-1和第n项an,公差可以通过公式d = an - an-1来计算。

计算第n项- 已知首项a和公差d,第n项可以通过公式an = a + (n-1)d来计算。

- 已知前一项an-1和公差d,第n项可以通过公式an = an-1 + d 来计算。

例子请考虑一个等差数列的实例:首项a=2,公差d=3。

我们来计算该等差数列的第5项。

根据通项公式:an = a + (n-1)d,我们计算得到:a5 = 2 + (5-1)*3 = 14。

结论通过本文档,我们了解了三年级奥数中关于等差数列的概念,以及计算等差数列中首项、公差和第n项的方法。

掌握了这些基础知识,学生可以更好地理解和解决与等差数列相关的问题。

三年级等差数列例题

三年级等差数列例题

三年级等差数列例题一、等差数列基础概念例题。

1. 例题:求等差数列3,7,11,15,…的第10项是多少?- 解析:- 我们要确定这个等差数列的首项a_1 = 3,公差d=7 - 3=4。

- 根据等差数列的通项公式a_n=a_1+(n - 1)d。

- 当n = 10时,a_10=3+(10 - 1)×4=3 + 9×4=3+36 = 39。

2. 例题:等差数列2,5,8,11,…,29,这个数列共有多少项?- 解析:- 已知首项a_1 = 2,公差d = 5-2 = 3,末项a_n=29。

- 根据通项公式a_n=a_1+(n - 1)d,可得到29 = 2+(n - 1)×3。

- 化简方程29=2 + 3n-3,即29=3n - 1。

- 移项可得3n=30,解得n = 10,所以这个数列共有10项。

3. 例题:在等差数列{a_n}中,a_1 = 5,d = 3,求前5项的和S_5。

- 解析:- 根据等差数列求和公式S_n=(n(a_1 + a_n))/(2),先求a_5。

- 由通项公式a_n=a_1+(n - 1)d,当n = 5时,a_5=5+(5 - 1)×3=5+12 = 17。

- 再代入求和公式S_5=(5×(5 + 17))/(2)=(5×22)/(2)=55。

4. 例题:已知等差数列1,4,7,10,…,求这个数列的第20项与前20项的和。

- 解析:- 首项a_1 = 1,公差d = 4 - 1=3。

- 第20项a_20=a_1+(20 - 1)d=1+(20 - 1)×3=1+19×3=1 + 57=58。

- 前20项和S_20=(20×(1 + 58))/(2)=10×59 = 590。

5. 例题:等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_1和d。

- 解析:- 根据等差数列通项公式a_n=a_1+(n - 1)d。

等差数列三年级奥数题

等差数列三年级奥数题

等差数列三年级奥数题摘要:1.等差数列的概念和基本性质2.等差数列求和公式3.三年级奥数等差数列求和习题及答案4.提高等差数列求和题目的解题技巧正文:一、等差数列的概念和基本性质等差数列是指一个数列,其中每个相邻的元素之差相等。

等差数列的基本性质包括:1.等差数列中任意两个相邻元素的差值相等;2.等差数列中任意两个元素之差的值都是相同的;3.等差数列中元素的和与项数成正比。

二、等差数列求和公式等差数列求和公式是指将一个等差数列的所有元素相加得到的总和的计算公式。

等差数列求和公式为:S = n * (a1 + an) / 2其中,S 表示等差数列的和,n 表示等差数列的项数,a1 表示等差数列的第一个元素,an 表示等差数列的最后一个元素。

三、三年级奥数等差数列求和习题及答案1.习题:一个等差数列的前5 个元素分别为1, 3, 5, 7, 9,求这个等差数列的和。

答案:S = 5 * (1 + 9) / 2 = 252.习题:一个等差数列的前10 个元素分别为2, 4, 6, 8, 10, 12, 14, 16, 18, 20,求这个等差数列的和。

答案:S = 10 * (2 + 20) / 2 = 110四、提高等差数列求和题目的解题技巧1.观察题目中的已知条件,如元素个数、首项和末项等,确定等差数列的性质;2.利用等差数列求和公式,将已知条件代入公式计算;3.注意数列中可能出现的公差为0 的情况,此时等差数列的所有元素都相等,和为元素个数乘以任意一项。

通过以上提纲和正文内容,我们可以了解到等差数列的概念和基本性质,以及等差数列求和公式的应用。

同时,我们通过三年级奥数等差数列求和习题及答案,学会了如何利用等差数列求和公式解决实际问题。

等差数列(三年级)

等差数列(三年级)

第九讲:计算问题(二)——等差数列1一、训练目标知识传递:让学生初步认识等差数列。

能力强化:观察能力、分析能力。

思想方法:配对思想、对比思想。

二、知识与方法归纳听过德国数学家高斯的故事吗?他8岁时,老师给他和班上的同学出了一道题:“1+2+3+4+5+……+100=?”小高斯很快报出了得数:5050,这个答案完全正确。

老师和同学都很惊讶他的速度!小高斯用什么办法算得这么快呢?今天我们就来了解一下高斯所采用的方法——配对求和。

三、经典例题例1.计算:1+2+3++4+5+6+7+8+9+10 1+4+7+10+13+16+19+22+25+28+31+34解:例2.计算:1+3+5+7+9+11+13+15+17 1+2+3+4+ …+99+100解:例3.计算:101+102+103+104+105+106+107+108+109+110解:体验训练1计算:101+102+103+ …+129+130解:101+102+103+ …+129+130====例4.计算:1000-1-2-3-4- …-19-20解:体验训练2计算:500-11-13-15-17-19-21-23-25-27-29解:例5.计算:10-9+8-7+6-5+4-3+2-1解:例6.计算:100-99+98-97+96-95+ …+4-3+2-1解:四、内化训练1.计算:12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28解:2.计算:3+7+11+15+19+23+27+31+35+39+43+47解:3.计算:11+12+13+ …+19+20解:4.计算:6000-1-2-3- …-99-100解:5.计算:40-39+38-37+36-35+ …+4-3+2-1解:6.计算:2010-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9解:7.速算:31+32+33+ …+68+69解:五、家庭交流内容例1解答提示:分析:在这个算式中,共有10个数,将和为11的两个数一一配对,可配成5对。

三年级等差数列题型及解题方法

三年级等差数列题型及解题方法

三年级等差数列题型及解题方法
一、等差数列的基本概念
1. 定义
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

这个常数叫做等差数列的公差,通常用字母公式表示。

例如数列公式就是一个等差数列,其中公差公式。

2. 通项公式
对于等差数列公式,其通项公式为公式,其中公式为首项(数列的第一项),公式为项数,公式为公差。

例如,在等差数列公式中,公式,公式,那么第公式项公式。

3. 求和公式
等差数列的前公式项和公式为公式或者公式。

例如,求等差数列公式的和。

这里公式,公式,公式。

先求项数公式,由公式可得公式,解方程公式,
即公式,解得公式。

再根据求和公式公式,可得公式。

二、三年级等差数列常见题型及解题方法
1. 求数列中的某一项
题目:在等差数列公式中,求第公式项是多少?
解析:
首先确定这个等差数列的首项公式,公差公式。

根据通项公式公式,当公式时,公式
先计算括号内公式,再计算公式,最后公式。

所以第公式项是公式。

2. 求数列的项数
题目:等差数列公式,这个数列有多少项?
解析:
已知公式,公式,公式。

根据通项公式公式,可得公式。

先展开括号得到公式,
移项可得公式,即公式,解得公式。

所以这个数列有公式项。

3. 求数列的和
题目:求等差数列公式的和。

解析:
这里公式,公式,公式。

方法一:根据求和公式公式,先求公式,公式
,则公式。

方法二:根据公式,公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九讲:计算问题(二)
——等差数列1
一、训练目标
知识传递:让学生初步认识等差数列。

能力强化:观察能力、分析能力。

思想方法:配对思想、对比思想。

二、知识与方法归纳
听过德国数学家高斯的故事吗?他8岁时,老师给他和班上的同学出了一道题:“1+2+3+4+5+……+100=?”小高斯很快报出了得数:5050,这个答案完全正确。

老师和同学都很惊讶他的速度!小高斯用什么办法算得这么快呢?今天我们就来了解一下高斯所采用的方法——配对求和。

三、经典例题
例1.计算:1+2+3++4+5+6+7+8+9+10 1+4+7+10+13+16+19+22+25+28+31+34解:
例2.计算:1+3+5+7+9+11+13+15+17 1+2+3+4+ …+99+100解:
例3.计算:101+102+103+104+105+106+107+108+109+110解:
体验训练1
计算:101+102+103+ …+129+130
解:101+102+103+ …+129+130
=
=
=
=
例4.计算:1000-1-2-3-4- …-19-20
解:
体验训练2
计算:500-11-13-15-17-19-21-23-25-27-29
解:
例5.计算:10-9+8-7+6-5+4-3+2-1
解:
例6.计算:100-99+98-97+96-95+ …+4-3+2-1
解:
四、内化训练
1.计算:12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28
解:
2.计算:3+7+11+15+19+23+27+31+35+39+43+47
解:
3.计算:11+12+13+ …+19+20
解:
4.计算:6000-1-2-3- …-99-100
解:
5.计算:40-39+38-37+36-35+ …+4-3+2-1
解:
6.计算:2010-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9
解:
7.速算:31+32+33+ …+68+69
解:
五、家庭交流内容
例1解答提示:
分析:在这个算式中,共有10个数,将和为11的两个数一一配对,可配成5对。

1 2 3 4 5 6 7 8 9 10
求这10个数的和就可以将它们先配成5对(每对的和是11),再求5个11是多少。

例2解答提示:
分析:用最小数1和最大数17相加得18,还有3+15=18,5+13=18,……由于相加的数的个数是奇数个,所以配对成功后,还有多余的数要把它加上去。

多余的一个数正好是配成一对数和的一半,用配对的方法求和,就是将加法变乘法。

总和=(第一个数+最后一个数)×个数÷2
解法一1+3+5+7+9+11+13+15+17
=(1+17)+(3+15)+(5+13)+(7+11)+9
=18×4+9
=
=
解法二1+3+5+7+9+11+13+15+17
=(1+17)×9÷2
=
=
=
例3解答提示
分析:赵、丁、钱三人中,一位是工人,一位是教师,一位是农民,
由“赵比教师体重重,赵和农民是朋友”,可知赵既不是又不是则赵是。

由“钱和教师体重不同”,可知钱是;
丁则是。

例4解答提示:
分析:可以先计算出一共需要减去的数,将1000-1-2-3-4- …-19-20看成1000-(1+2+3+4-……+19+20)
解1000-1-2-3-4- …-19-20
=1000-(1+2+3+4-……+19+20)
=
=
=
例5解答提示:
分析:此题中每个数里都包含了一个100,可以把这10个100分离出来。

解法一101+102+103+104+105+106+107+108+109+110
=(101+110)×10÷2
=
=
=
解法二101+102+103+104+105+106+107+108+109+110
=100×10+(1+2+3+4+5+6+7+8+9+10)
=
=
=
例6解答提示:
解:100-99+98-97+96-95+ …+4-3+2-1
=
= (100个数,两个数分成一组,共分成50组,则有50个1)
=
=
六、学习反思。

相关文档
最新文档