等差数列的概念与简单表示
等差数列的认识及公式运用

一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1知识点拨等差数列的认识与公式运用由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识例题精讲【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
等差数列的定义与通项公式

练习三
已知等差数列{an}中,a4=10,a7=19,求a1和d.
解:依题意得:
a1 3d 10 a1 6d 19
解之得:
a1 1 d 3
∴这个数列的首项是1,公差是3。
二、等差数列的判定:
例2、已知数列{an}的通项公式为 an 6n 1 问:这个数列是等差数列吗?若是等差数列 ,其首项与公差分别是多少?
1、若一个数列的通项公式为n的一次函数 an=pn+q,则这个数列为等差数列,p=公差d .
2、非常数列的等差数列通项公式是关于n的一次函数. 常数列的等差数列通项公式为常值函数。
(2)等差数列通项公式: an=a1 +(n-1)d
作业:
1、已知数列an ,满足
a
1
2, a n 1
(1)数列
1 an
a
2 an
n
2
是否是等差数列?说明理由。
(2)求数列 an 通项公式
1 1 1 是等差数列, (n 1) 3 1 (n 1) 3 an a1 an
1 an 3n 2
有些数列若通过取倒数代数变形方法, 可由复杂变为简单,使问题得以解决.
课堂小结:
(1)等差数列定义:
a
d 或 d (n>1) a a a n1 n n n1
等差数列的定义及通项 公式
复习:
1、等差数列的概念:
一般地,如果一个数列{an},从第2项起每一 项与它的前一项的差等于同一个常数,那么 这个数列就叫做等差数列,这个常数叫做等 差数列的公差。公差通常用字母 d 表示。 2、等差数列的定义式: d=an-an-1 3、等差数列的通项公式。
小学一年级数学题简单的数列和等差数列

小学一年级数学题简单的数列和等差数列数列是数学中的重要概念,对于小学一年级的学生来说,最简单的数列就是等差数列。
本文将介绍什么是数列,什么是等差数列,并讲解如何求解等差数列的和。
通过本文的学习,学生可以更好地理解数列和等差数列的概念,并能够解决简单的等差数列题目。
一、数列的概念数列是由一系列数字按照一定规律排列而成的序列。
在数列中,每一个数字称为数列的项,用字母a、b、c等表示。
数列通常用大括号{}表示,其中的项用逗号分隔。
例如,{1, 2, 3, 4, 5}是一个数列,其中的每一项分别为1、2、3、4、5。
二、等差数列的概念等差数列是指一个数列中,任意两个相邻项之间的差都相等的数列。
这个公差可以是正数、负数或零。
用字母d表示等差数列的公差,其定义为:每个项与它前面的项之差都等于d。
例如,{2, 4, 6, 8, 10}是一个等差数列,公差为2,因为任意两个相邻项之间的差都是2。
三、求等差数列的和在解决等差数列题目时,我们经常需要求等差数列的和。
对于一个等差数列,其和的求解公式为Sn = (a1 + an) * n / 2,其中Sn表示等差数列的和,a1表示等差数列的首项,an表示等差数列的末项,n表示等差数列的项数。
例如,求解等差数列{2, 4, 6, 8, 10}的和。
首先确定各项的值,a1 = 2, an = 10,项数n = 5。
代入求和公式,Sn = (2 + 10) * 5 / 2 = 60。
因此,等差数列{2, 4, 6, 8, 10}的和为60。
四、实例分析为了更好地理解等差数列的求解过程,我们来看一个具体的实例。
某班级一年级的学生进行了一次数学测验,题目如下:1、3、5、7、9、……、99,这个数列中的数依次是什么?解答过程如下:这是一个等差数列,首项a1 = 1,公差d = 2。
根据公式an = a1 +(n-1)d,其中n表示项数,可以求得每一项的值。
当n=1时,an = 1 + (1-1) * 2 = 1;当n=2时,an = 1 + (2-1) * 2 = 3;当n=3时,an = 1 + (3-1) * 2 = 5;以此类推,当n=50时,an = 1 + (50-1) * 2 = 99。
新版数列公式总结-新版

数列公式总结一、数列的概念与简单的表示法数列前 n 项和:对于任何一个数列,它的前 n 项和Sn 与通项 an 都有这样的关系:二、等差数列1.等差数列的概念台(1)等差中项:若三数 a 、A 、b 成等差数列(2)通项公式:an =a +(n-1)d=am+(n-m)d(3).前n 项和公式:2等差数列的.常用性质(1)若m+n=p+q(m,n,P,q ∈N+), 则am+an=ag+ag自n}的公差为d,则:(2)单调性:i) d >0 ⇔白,}为递增数列;ii) d <0 ⇔A,} 为递减数列;ii) d =0 台白,}为常数列;(3)若等差数列(白,)的前n项和S,,则S、Sa-S、Sm-S…是等差数列。
三、等比数列1.等比数列的概念(3).前n 项和公式:2.等比数列的常用性质(1)若m+n=p+q(m,n,p,q ∈N+), 则am an=ap 码(2)单调性:a₁>0,q>1 或a<0,0<q<1={an} 为递增数列;a₁>0,0<q<1 或a<0,q>1={a}为递减数列;q =1={an}为常数列;q<0={an}为摆动数列;(3)若等比数列(a,)的前n项和S₁,则S、S₂-S₁、S-S…是等比数列.四、非等差、等比数列前n项和公式的求法(1)错位相减法(2)裂项相消法常见的拆项公式有:①②(3){分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组(4)倒序相加法一、等差数列公式及其变形题型分析:1. 设S 是等差数列{an}的前n 项和,若,则A. B C. D.2. 在等差数列{an}中,若a10o3+a1004+a1os+a106=18, 则该数列的前2008项的和为( ).A. 18072B.3012C. 9036D.120483. 已知等差数列{an}中,az+ag=16,a4=1, 则a12的值是( ).A.15B. 30C. 31D. 644. 在等差数列{an}中,3(a₂+a₆)+2(a₅+ao+as)=24, 则此数列前 13项之和为()A. 26B.13C.52D. 1565. 等差数列{an}中,ai+az+ag=-24,a18+ ag+a2o=78,则此数列前20项和等于( ).A. 160B.180C.200D.220二、等比数列公式及其变形题型分析:1. 已知{an}是等比数列,a2=2, , 则a ia₂+aza₃+ …+ anan+1=( ).A.16(1-4"B. 16( 1 — 2C. D.2. 已知等比数列{an}的前10项和为32,前20项和为56,则它的前30项和为3.在等比数列{an}中,若a₁+a₂+a₃=8,a₄+as+a₆=-4, 则a₁3+a₁4+a₁5=该数列的前15项的和S15=4.等比数列a,中,a₂=9,as=243,则(a,}的前4项和为()A.81B.120C.168D.1925. √②+1与√②-1,两数的等比中项是( )A.1B.-1C.±1D.6. 已知一等比数列的前三项依次为 x,2x+2,3x+3,那么是此数列的第( ) 项A.2B. 4C. 6D. 87.在等比数列{a,}中,若a₃=3,ag=75,则a₁三、数列求和及正负项的解题思路1. 两个等差数列则2求和:(a-1)+(a²-2)+ …+(a”-n),(a≠0)3.求和:1+2x+3x²+…+nx′14.已知数列{an}的通项公式an=-2n+11,如果b₁=an(n∈N)求数列6,}的前n项和。
等差数列的概念与性质

等差数列的概念与性质在数学的广阔天地中,等差数列就像是一座稳固而有序的建筑,有着其独特的结构和规律。
让我们一同走进等差数列的世界,去揭开它神秘的面纱,深入理解其概念与性质。
首先,什么是等差数列呢?简单来说,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,通常用字母“d”表示。
比如说,数列 2,4,6,8,10 就是一个等差数列,因为每一项与前一项的差都是 2,这里的公差 d 就是 2。
再比如数列 10,7,4,1,-2 也是等差数列,公差 d 为-3 。
那么,等差数列有哪些重要的性质呢?其一,若等差数列的首项为\(a_1\),公差为\(d\),则其通项公式为\(a_n = a_1 +(n 1)d\)。
这个公式就像是一把钥匙,能够让我们轻松地求出等差数列中的任意一项。
比如说,对于数列 3,5,7,9首项\(a_1 = 3\),公差\(d = 2\),那么第 10 项\(a_{10} = 3 +(10 1)×2 = 21\)。
其二,在等差数列中,若\(m\),\(n\),\(p\),\(q\)为正整数,且\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。
这一性质在解决很多与等差数列求和相关的问题时非常有用。
例如,在等差数列 1,3,5,7,9 中,因为\(1 + 5 = 3 + 3\),所以\(a_1 + a_5 = a_3 + a_3\),即\(1 + 9 = 3 + 7 = 10\)。
其三,等差数列的前\(n\)项和公式有两个。
一个是\(S_n =\frac{n(a_1 + a_n)}{2}\),另一个是\(S_n = na_1 +\frac{n(n 1)d}{2}\)。
前一个公式在已知首项和末项时使用较为方便,后一个公式在已知首项和公差时更加适用。
比如说,要求等差数列 2,4,6,8,10 的前 5 项和。
等差数列知识点总结

等差数列知识点总结等差数列是一种形式简单、规律明显的数列,研究等差数列有利于培养学生发现数学问题、观察数学规律、提高问题解决能力的能力。
在学习等差数列的过程中,我们需要掌握以下几个关键知识点。
一、等差数列的概念等差数列是指一个数列中,从第二项开始,每一项与前一项之差都相等的数列。
这个差值被称为等差数列的公差。
二、等差数列各项的计算公式等差数列的计算公式是指通过已知条件计算等差数列中的某一项的表达式。
对于等差数列来说,知道首项a1、公差d和项数n,就可以根据计算公式求出第n项的值。
三、等差数列的通项公式通项公式是指能够表示等差数列中第n项的公式。
对于等差数列来说,通项公式可以根据已知条件(首项a1和公差d)推导而来。
通项公式的一般形式为an=a1+(n-1)d。
四、等差数列首项、末项和项数的关系等差数列的首项、末项和项数之间存在一定的关系。
首项a1、末项an和项数n之间的关系可以用通项公式和求和公式来表示。
五、等差数列的和等差数列的和是指将等差数列中的所有项相加的结果。
对于等差数列的和,我们可以通过求和公式来计算,也可以通过找出等差数列的首项、末项和项数之间的关系来计算。
六、等差数列的应用等差数列在实际生活和科学研究中有着广泛的应用。
例如,在数学中,等差数列可以用来求解一元二次方程、计算抛物线的顶点坐标等;在物理学中,等差数列可以用来描述物体的运动轨迹等。
七、等差数列的性质等差数列具有一些特殊的性质,包括:1.等差数列中任意三项的和是一定的;2.等差数列中相等的差值对应相同的差分;3.等差数列的和等于首项和末项的平均值乘以项数。
八、等差数列的应用题等差数列的应用题是指将等差数列的概念、公式和性质应用到实际问题中解决相关的数学问题。
这类题目可以帮助学生将抽象的数学知识与实际问题相结合,提高解决实际问题的能力。
综上所述,等差数列是一种基础、重要的数学概念,它有着丰富的性质和广泛的应用。
在学习等差数列的过程中,我们需要掌握等差数列的概念、公式和性质,并能够应用这些知识解决相关的数学问题。
等差数列及其前n项和(讲义及答案)

n n mn k k +m k +2m等差数列及其前 n 项和(讲义)知识点睛一、数列的概念与简单表示方法 1. 数列的概念按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列的一般形式可以写成a 1 ,a 2 ,a 3 ,…,a n ,…,简记为{a n }. 2. 数列的表示方法(1) 列表法 (2) 图象法 (3) 公式法①通项公式 ②递推公式 3. 数列的性质(1) 递增数列 (2) 递减数列 (3) 常数列 (4) 摆动数列二、 等差数列 1. 等差数列的概念如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示.(1) 等差中项(2) 等差数列的通项公式: a n = a 1 + (n -1)d .2. 等差数列的性质(1) 通项公式的推广: a = a + (n - m )d (m ,n ∈ N *) . (2) 若{a }是等差数列,且k +l = m + n (k ,l ,m ,n ∈ N *) , 则a k +a l = a m + a n .(3) 若{a }是等差数列,则a , a , a ,… (k ,m ∈ N *) 组成公差为 md 的等差数列.(4) 若{a n }是等差数列,则{λa n + c }也是等差数列.1n n n(5) 若{a },{b }是等差数列,则{p a + qb } (n ∈ N * ) 也是等 nnnn差数列. 三、 等差数列的前 n 项和1. 我们称a 1 + a 2 + a 3 +… + a n 为数列{a n }的前 n 项和,用 S n 表示,即S n = a 1 + a 2 + a 3 +… + a n .等差数列{a n }的前 n 项和公式(1) 已知a , a ,n 时, S = n (a 1 + a n ) .1 n n2(2) 已知a 1 , n ,d 时, S n 推导过程:倒序相加法 2. 等差数列各项和的性质= na 1 + n (n -1) d .2(1) S m , S 2m , S 3m 分别是{a n } 的前 m 项,前 2m 项,前 3m 项的和,则S m , S 2m - S m , S 3m - S 2m 成等差数列.(2) 两个等差数列{a n },{b n }的前 n 项和 S n , T n 之间的关系 为 a n b n = S2n -1 . T 2n -1(3) 数列{a }的前 n 项和S = An 2 + Bn ( A ,B ∈ R ) 是{a }为等差数列的等价条件.(4) 等差数列{a n }前 n 项和的最值:当d > 0 时,{a n }为递增数列,且当a 1 < 0 时,前 n 项和S n 有最小值;当d < 0 时,{a n }为递减数列,且当a 1 > 0 时,前 n 项和S n 有最 大值.2n +1 n n n -1n +1 n n n -1精讲精练1. 下面六个结论中:①数列若用图象表示,从图象看是一系列孤立的点; ②数列的项数是无限的; ③数列的通项公式是唯一的; ④数列不一定有通项公式;⑤数列 1,2,3,…不一定是递增的;⑥数列看作函数,其定义域为正整数集或它的有限子集{1,2,…,n } .其中正确的是( )A .①②④⑥ C .①③④⑤B .①④⑤⑥ D .①②⑥2. 数列-1,7,-13,19,…的通项公式a n = ()A . 2n -1 C . (-1)n 6n - 5B . -6n + 5 D . (-1)n (6n - 5)3. 数列 1,3,6,10,15,…的递推公式是()A. a = a + n ,n ∈ N *B. a = a + n ,n ∈ N *,n ≥ 2C. a = a + n -1,n ∈ N * D. a = a + n -1,n ∈ N *4. 在等差数列{a n } 中, a 1 + a 5 = 10 , a 4 = 7 ,则数列{a n } 的公差是( )A .1B .2C .3D .435. 已知等差数列{a n } 满足a 1 + a 2 + a 3 +…+ a 101 = 0 ,则有()A . a 1 + a 101 > 0 C . a 3 + a 99 = 0B . a 2 + a 100 < 0 D . a 51 = 516.在等差数列{a n } 中,S n 是其前 n 项和,且a 4 = 9 ,a 9 = -6 ,则 S n 取最大值时 n 的值为( ) A .6 或 7B .7 或 8C .5 或 6D .8 或 97.已知等差数列{a n } 的前 n 项和为 S n ,若 2a 6 = a 8 + 6 ,则 S 7 = ( )A .49B .42C .35D .2448.已知一个等差数列共有 10 项,其偶数项之和是 15,奇数项之和是 12.5,则它的首项与公差分别是( ) A .0.5,0.5B .0.5,1C .0.5,2D .1,0.59.设等差数列{a n } 的前 n 项和为 S n ,若 S 3 = 12 , S 6 = 42 ,则 a 10 + a 11 + a 12 =( )A .156B .102C .66D .4810. 设数列{a n } ,{b n } 都是等差数列,若a 1 + b 1 = 7 , a 3 + b 3 = 21,则a 5 + b 5 = .5n n +1 11. 已知正项数列{a n }满足:a 1=1,a 2=2, 2a 2 = a 2 2n -1 (n ∈ N * ,n ≥ 2) ,则通项公式a n = .12. 两个等差数列{a n } 和{b n } 的前 n 项和分别是S n 和T n ,若 S n = 2n + 3 ,则 a 9 = .T n 3n -1 b 9回顾与思考6+ a【参考答案】1.B 2.D 3.B 4.B 5.C 6.A 7.B 8.A9.C 10.35 1112.37507。
等差数列的计算公式

等差数列的计算公式等差数列是数学中一个很重要的概念。
在学习数学的过程中,我们不可避免的要经常接触到等差数列相关的问题。
而想要正确的解决这些问题,我们首先要了解等差数列的计算公式。
一、等差数列的定义及性质等差数列是指数列中任何两个相邻的项之间的差相等。
这个相等的差值被称为数列的公差。
例如,1, 3, 5, 7, 9就是一个公差为2的等差数列。
等差数列常常具有一些简单的性质。
其中最重要的是,对于任意的等差数列,数列中的任意一项,都可以用数列的第一项和公差来表示。
这个性质在等差数列中的计算中经常会用到。
另外,对于一个有限的等差数列,我们可以通过将数列的第一项和最后一项相加,然后乘以项数的一半来计算数列的总和。
这个公式在等差数列求和中被广泛地应用。
二、求等差数列的公式由于等差数列具有一定的性质,因此我们可以根据这些性质来得到等差数列的计算公式。
下面我们分别介绍等差数列的通项公式、前n项和公式和通项公式与前n项和公式的推导方法。
1. 通项公式的求法对于一个等差数列而言,我们可以用数列的第一项a1和公差d来表示数列中任意一项的值。
如果我们知道了数列中第n项的值an,那么我们可以根据公差和项数之间的关系来计算出数列的第一项。
具体来说,我们有:an = a1 + (n - 1)d根据这个公式,我们可以将a1表示为:a1 = an - (n - 1)d这样,我们就得到了等差数列的通项公式:an = a1 + (n - 1)d2. 前n项和公式的求法对于一个有限的等差数列,我们可以根据数列的第一项a1、公差d和项数n来计算数列的前n项和Sn。
具体的计算公式如下:Sn = ((a1 + an) × n) ÷ 2根据等差数列的通项公式,我们可以将这个公式改写为Sn = [n(a1 + an)] ÷ 2将等差数列的通项公式代入其中,我们得到了另一种计算等差数列前n项和的公式:Sn = [n(2a1 + (n - 1)d)] ÷ 2三、通项公式和前n项和公式的推导在学习等差数列的计算公式时,我们不仅要知道这些公式的形式,还需要了解它们的推导方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 等差数列第1课时等差数列的概念与简单表示1.理解等差数列的概念.(难点)2.掌握等差数列的通项公式及应用.(重点、难点)3.掌握等差数列的判定方法.(重点)[基础·初探]教材整理1等差数列的含义阅读教材P36~P37思考上面倒数第二自然段,完成下列问题.1.等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.(2)符号语言:a n+1-a n=d(d为常数,n∈N*).2.等差中项(1)条件:如果a,A,b成等差数列.(2)结论:那么A叫做a与b的等差中项.(3)满足的关系式是a+b=2A.判断(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)如果一个无穷数列{a n}的前4项分别是1,2,3,4,则它一定是等差数列.()(3)当公差d=0时,数列不是等差数列.()(4)若三个数a,b,c满足2b=a+c,则a,b,c一定是等差数列.()(5)方程x2+6x+1=0的两根的等差中项为-3.()【解析】(1)×.因为若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)×.因为一个无穷数列前四项构成公差为1的等差数列,往后各项与前一项的差未必是同一个常数1.(3)×.因为该数列满足等差数列的定义,所以该数列为等差数列,事实上它是一类特殊的数列——常数列.(4)√.因a,b,c满足2b=a+c,即b-a=c-b,故a,b,c为等差数列.(5)√.设方程x2+6x+1=0的两根分别为x1,x2,则x1+x2=-6,所以x1,x2的等差中项为A=x1+x22=-3.故该说法正确.【答案】(1)×(2)×(3)×(4)√(5)√教材整理2等差数列的通项公式阅读教材P37思考上面倒数第2行~P38,完成下列问题.1.等差数列的通项公式以a1为首项,d为公差的等差数列{a n}的通项公式a n=a1+(n-1)d.2.从函数角度认识等差数列{a n}若数列{a n}是等差数列,首项为a1,公差为d,则a n=f(n)=a1+(n-1)d=nd+(a1-d).(1)点(n,a n)落在直线y=dx+(a1-d)上;(2)这些点的横坐标每增加1,函数值增加d个单位.1.已知等差数列{a n}中,首项a1=4,公差d=-2,则通项公式a n=________.【解析】∵a1=4,d=-2,∴a n=4+(n-1)×(-2)=6-2n.【答案】6-2n2.等差数列1,-1,-3,…,-89的项数是________.【解析】由等差数列的通项公式a n=a1+(n-1)d,可知-89=1+(n-1)·(-2),所以n=46.【答案】 46[小组合作型]n n p ,q 为常数). (1)当p 和q 满足什么条件时,数列{a n }是等差数列? (2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.【精彩点拨】 利用等差数列定义判断或证明a n +1-a n 为一个常数即可. 【自主解答】 (1)欲使{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q 应是一个与n 无关的常数,所以只有2p =0,即p =0时,数列{a n }是等差数列. (2)证明:因为a n +1-a n =2pn +p +q , 所以a n +2-a n +1=2p (n +1)+p +q .而(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数, 所以{a n +1-a n }是等差数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列; (3)通项公式法:a n =an +b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法. [再练一题]1.已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式.【解】 (1)证明:b n +1-b n =1a n +1-2-1a n -2=1⎝ ⎛⎭⎪⎫4-4a n -2-1a n -2 =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.又b 1=1a 1-2=12,∴数列{b n }是首项为12,公差为12的等差数列. (2)由(1)知b n =12+(n -1)×12=12n . ∵b n =1a n -2,∴a n =1b n+2=2n +2.∴数列{a n }的通项公式为a n =2n +2,n 1n N *,p ,q 为常数),且x 1,x 4,x 5成等差数列,求p ,q 的值.【精彩点拨】 将x 1,x 4,x 5用p ,q 表示出来,由x 1,x 4,x 5成等差数列,即2x 4=x 1+x 5列出关于p ,q 的方程组求解.【自主解答】 由x 1=3,得2p +q =3,① 又x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得 3+25p +5q =25p +8q ,② 由①②得q =1,p =1.三数a,b,c成等差数列的条件是b=a+c2(或2b=a+c),可用来解决等差数列的判定或有关等差中项的计算问题.如若证{a n}为等差数列,可证2a n+1=a n+a n+2(n∈N*).[再练一题]2.若m和2n的等差中项为4,2m和n的等差中项为5,则m与n的等差中项是________.【解析】由m和2n的等差中项为4,则m+2n=8,又由2m和n的等差中项为5,则2m+n=10.两式相加,得m+n=6,∴m与n的等差中项为m+n2=62=3.【答案】 3[探究共研型]探究1安装第一盏后,往后每隔50米安装一盏,试问安装第5盏路灯时距离第一盏路灯有多少米?你能用第一盏灯为起点和两灯间隔距离表示第n盏灯的距离吗?【提示】设第一盏路灯到第一盏路灯的距离记为a1,第2盏路灯到第一盏路灯的距离记为a2,第n盏路灯到第一盏路灯的距离记为a n,则a1,a2,…,a n,…构成一个以a1=0为首项,以d=50为公差的一个等差数列.所以有a1=0,a2=a1+d=0+50=50,a3=a2+d=a1+2d=0+2×50=100,a4=a3+d=a1+3d=0+3×50=150,a5=a4+d=a1+4d=0+4×50=200,…a n=a1+(n-1)d=50n-50,所以,第5盏路灯距离第一盏路灯200米, 第n 盏路灯距离第一盏路灯(50n -50)米.探究2 第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算,你能算出2016年8月在巴西里约热内卢举行的奥运会是第几届吗?若已知届数,你能确定相应的年份吗?【提示】 设第一届的年份为a 1,第二届的年份为a 2,…,第n 届的年份为a n ,则a 1,a 2,…,a n ,…构成一个以a 1=1 896为首项,以d =4为公差的等差数列,其通项公式为a n =a 1+(n -1)d =1 896+4(n -1)=4n +1 892,即a n =4n +1 892,由a n =2 016,知4n +1 892=2 016,所以n =31.故2016年举行的奥运会为第31届.已知举办的届数也能求出相应的年份,因为在等差数列的通项公式a n =a 1+(n -1)d 中,知道其中任何三个量,均可求得第四个量.探究3 在等差数列{a n }中,能用a 1,d 两个基本量表示a n ,那么能否用{a n }中任意一项a m 和d 表示a n?【提示】 由a n =a 1+(n -1)d ,① a m =a 1+(m -1)d ,②两式相减可得:a n -a m =(n -m )d , 则a n =a m +(n -m )d .(1)在等差数列{a n }中,已知a 4=7,a 10=25,求通项公式a n ; (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,求a 15的值.【精彩点拨】 设出基本量a 1,d ,利用方程组的思想求解,当然也可以利用等差数列的一般形式a n =a m +(n -m )d 求解.【自主解答】 (1)∵a 4=7,a 10=25, 则⎩⎨⎧ a 1+3d =7,a 1+9d =25,得⎩⎨⎧a 1=-2,d =3,∴a n =-2+(n -1)×3=3n -5, ∴通项公式a n =3n -5(n ∈N *).(2)法一:由⎩⎪⎨⎪⎧a 3=54,a 7=-74,得⎩⎪⎨⎪⎧a 1+2d =54,a 1+6d =-74,解得a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝ ⎛⎭⎪⎫-34=-314.法二:由a 7=a 3+(7-3)d , 即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝ ⎛⎭⎪⎫-34=-314.1.应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎨⎧a 1+(m -1)d =a ,a 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式. 2.若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷.[再练一题]3.-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项? 【解】 由a 1=-5,d =-9-(-5)=-4, 得这个数列的通项公式为 a n =-5-4(n -1)=-4n -1. 由题意知,-401=-4n -1, 得n =100,即-401是这个数列的第100项.1.数列{a n}的通项公式a n=2n+5,则此数列()A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n的等差数列【解析】∵a n-a n=2(n+1)+5-(2n+5)=2,+1∴{a n}是公差为2的等差数列.【答案】 A2.等差数列的前3项依次是x-1,x+1,2x+3,则其通项公式为() A.a n=2n-5 B.a n=2n-3C.a n=2n-1 D.a n=2n+1【解析】∵x-1,x+1,2x+3是等差数列的前3项,∴2(x+1)=x-1+2x+3,解得x=0,∴a1=x-1=-1,a2=1,a3=3,∴d=2,∴a n=-1+2(n-1)=2n-3,故选B.【答案】 B3.等差数列的第3项是7,第11项是-1,则它的第7项是________.【解析】设首项为a1,公差为d,由a3=7,a11=-1,得a1+2d=7,a1+10d=-1,所以a1=9,d=-1,则a 7=3. 【答案】 34.已知1,x ,y,10构成等差数列,则x ,y 的值分别为________. 【解析】 由已知,x 是1和y 的等差中项,即2x =1+y ,① y 是x 和10的等差中项,即2y =x +10,② 由①②解得x =4,y =7. 【答案】 4,75.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. 【解】 (1)由题意,知 ⎩⎨⎧a 1+(5-1)d =-1,a 1+(8-1)d =2, 解得⎩⎨⎧a 1=-5,d =1.(2)由题意,知⎩⎨⎧a 1+a 1+(6-1)d =12,a 1+(4-1)d =7,解得⎩⎨⎧a 1=1,d =2,∴a n =1+2(n -1)=2n -1, ∴a 9=2×9-1=17.。