(4)代数式的值 学案

合集下载

【学案一】3.2代数式的值

【学案一】3.2代数式的值

3.2 代数式的值学习目标:1、明确代数式的值的含义,学会求代数式的值;2、感受用字母表示数的好处;课标目标:会求代数式的值学习重点:代数式的值的含义及求代数式的值;学习难点:代入时的运算顺序及整体处理;教学过程:一、学前准备:(试一试)有四个同学在做一个传数游戏.第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若第一个同学报给第二个同学的数是5,而第四个同学报出的答案是35.你说结果对吗?你能用字母表示出他的运算程序吗?二、自学指导(阅读教科书94~95页,完成下列问题)一般地,用______________________,按照_______________________得出的结果,叫做代数式的值(value of algebraic expression).例1 当a =2,b =-1,c =-3时,求下列各代数式的值:(1)ac b 42-;(2)ac bc ab c b a 222222+++++;(3)()2c b a ++.解 (1)(2)(3)观察(2)、(3)两题的结果,你有何想法?讨论一下吧!※(1)注意书写格式(2)代数式的值由代数式中的字母所取的值来决定的。

字母取值不同,一般所求代数式的值也不同。

例2 某企业去年的年产值为a亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请你预测一下,该企业明年的年产值将能达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?解由题意可得,今年的年产值为___________亿元,于是明年的年产值为若去年的年产值为2亿元,则明年的年产值为答:四、课堂练习1.填表:2. 按右边图示的程序计算,若开始输入的n 值为2,则最后输出的结果是_________.3. 根据下列各组x 、y 的值,分别求出代数式222y xy x ++与222y xy x +-的值:(1)x =2,y =3; (2)x =-2,y =-4.4. 若梯形的上底为a ,下底为b ,高为h ,则梯形面积为____________;当a =2cm ,b =4cm ,h =3cm 时,梯形的面积为__________. 5、已知a+b=3,求3a+3b-1的值(提示:一般代数式的值是要先确定字母的值 ,但有时特殊情形下不一定要确定每个字母的值)四、学习体会:1.理解代数式值的概念及会求代数式的值;2.求代数式的值时注意整体思想的运用;(第2题)五、堂清:当a =21,b =2时,求下列代数式的值:(1)()()22b a b a --+; (2)222b ab a ++六、课后作业:1. 华氏温度(°F )与摄氏温度(℃)之间的转换关系为: 华氏温度=摄氏温度×59+32.即:当摄氏温度为x ℃时,华氏温度为___________°F .若摄氏温度为20℃,则华氏温度为___________°F .2. A 、B 两地相距s 千米,甲、乙两人分别以a 千米/时、b 千米/时(a >b )的速度从A 到B .如果甲先走1小时,试用代数式表示甲比乙早到的时间.再求:当s =120,a =15,b =12时,这一代数式的值,并说明这个值表示的实际意义。

七年级上:第3章《代数式》全章教学案(含答案解析)

七年级上:第3章《代数式》全章教学案(含答案解析)

第三章代数式1.让学生经历用字母表示以前学过的运算律和计算公式,并体会用字母表示数的意义,形成初步的符号感.2.理解代数式的意义,能解释一些简单代数式的实际背景,并能体会代数式是反映数量之间关系的数学模型.3.会求代数式的值,能够根据特定的问题查阅资料,找到所需要的公式,并会代入字母的具体值进行计算.1.用代数式表示实际问题中的数量关系,要求学生逐步掌握一些分析数量关系的一般方法.2.学会“观察—归纳”的思维方法.3.将文字语言描述的数量或数量关系,用符号语言表示,使学生感悟其中“分析—综合”方法的应用.1.培养学生准确运算的能力,并适当地渗透特殊与一般的辩证关系的思想.2.培养学生养成认真做题的良好习惯,体会数学与现实的联系.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.本章内容包括用字母表示数、代数式、代数式的值.数的运算伴随着数的扩充与发展不断丰富,用字母表示数后,再用加、减、乘、除、乘方和开方等运算符号连接数和字母形成代数式,从而可以用方程刻画现实问题中的等量关系,用不等式表示数量间的不等关系,用函数研究数量间的变化以及对应关系.所以代数式是学习方程、不等式、函数的基础,它对整个第三学段代数知识的学习具有奠基作用.教材采用“大家谈谈”“一起研究”“做一做”等模块,以生动鲜活的例子引入课题,加强讨论与交流,实验与探究,以及动手操作活动的开展,进一步培养学生运用符号解决问题的能力和进行判断和推理的能力,以及培养学生的探索精神.【重点】1.列代数式,求代数式的值.2.培养学生对知识的抽象和概括能力.【难点】由实际问题列代数式及规律探究题的解法.1.教学中重点渗透具体数字到字母的抽象概括思维方式,并注意归纳、类比、转化等思想方法的应用.2.让学生经历观察、探究、思考交流,分析问题中的数量关系,来发展数学思维.3.用代数式表示实际问题的数量关系,要求学生逐步掌握一些分析数量关系的一般方法,对有些实际问题,可以借助表格或图形分析数量关系,使得思路更加清晰.4.在代数式求值的教学过程中,让学生体会到从运算的角度看,代数式是一个计算过程.可以借助图框教学来显示计算过程.对含一个字母的代数式,有意识地取字母的不同值,代入并进行计算,来感受代数式的值是随着字母取值的变化而变化的,渗透函数思想.在解决实际问题的过程中,采用“由特殊到一般再到特殊”的教学过程.5.代数式中字母的取值,要根据具体问题确定其范围,必须要保证代数式和其在实际问题中有意义.3.1用字母表示数1.在观察、思考的过程中形成用字母表示数的一般概念.2.体会用字母表示数的特点和意义.3.通过用字母表示一些具体的数学量,初步培养抽象思维的能力和符号逻辑.在实践的过程中,体会到用一个一般的量来表示具体数值的必要性.通过自主式学习和研究式学习,在教师的帮助下形成代数的思维方式.1.通过实践、观察、思考、归纳等环节,总结规律,培养自主学习的能力.2.体会简单的数学思想是如何运用到具体情况中的.3.在与其他同学的交流和讨论中,培养既合作又竞争的意识.【重点】1.通过实践总结规律,并使用字母表示规律.2.能够自觉地使用字母表示简单的数学关系.【难点】1.认识用字母表示数具有不唯一性.2.能根据实际情况列出合理的代数式.【教师准备】多媒体课件.【学生准备】预习教材P96~97.导入一:出示教材章前图情境问题:【课件】代数式在现实生活中的应用非常广泛.如存款问题:爷爷在银行按1年定期存了a元钱,存款时的1年定期存款年利率是3.50%.到期后,爷爷取出本息共为p元.怎样写出用a表示p的式子?[设计意图]教材中的章前图和内容具有生活情境性,可以帮助学生初步感知用字母表示数的必要.导入二:周末,小明帮妈妈打扫卫生,做完后心里美滋滋的,想着自己喜欢的玩具,忽然他计上心来……妈妈下班后看到桌上有一纸条,内容是拖地3元,叠被1元,抹窗5元,丢垃圾袋1元,共计10元.妈妈看了之后,一言不发,提笔在纸上加上了吃饭x元,穿衣y元,带去看病z元,关心a 元,…,共计b元.写完后就去厨房做饭了,小明看后心里很不是滋味,心生惭愧,赶忙收起纸条.小明懂得了x与y等字母的含义,同学们,你们懂吗?[设计意图]用伟大的母爱,引出本节课的内容,让学生学会感恩.活动1运算律中的字母师:科学家爱因斯坦上小学时,在一次数学课中,发现了下列等式:1+2=2+1,3.5+5.6=5.6+3.5,.大家能用示例再验证下这个规律吗?生随意举例.师:如果仅靠具体的示例,还不能把这个规律完整地表达出来.你能把这个规律用简明的方法表示出来吗?活动方式:师生对话、交流.[设计意图]利用教材情境,让学生明白字母能简明表示一些规律,与此同时培养学生善于观察和勤于积累的能力.[处理方式]展示学生的成果:爱因斯坦发现的这个规律就是加法交换律,用字母表示为a+b=b+a(a,b表示任意数).(过渡语)师:还有没有其他的已学过的运算律?预设生1:加法结合律:a+b+c=a+(b+c)=(a+b)+c.生2:乘法交换律:ab=ba.生3:乘法结合律:abc=a(bc)=(ab)c.(a,b,c分别为任意数)……(过渡语)师:同学们回答得太好了,那么除了用字母表示运算律之外,用字母还可以表示公式.【课件展示】1.长方形的面积计算公式S=ab,S表示面积,a,b分别表示长方形的长与宽.2.圆的面积计算公式S=πr2,S表示面积,r表示圆的半径.3.长方体的体积计算公式V=abc,V表示体积,a,b,c分别表示长方体的长、宽、高.4.圆柱的体积计算公式V=πr2h,V表示体积,r表示底面半径,h表示圆柱的高.[设计意图]过渡到用字母表示以前学过的运算律、公式、法则,不仅复习了旧知识,而且巩固了新知识,把已学知识重新规划,让学生有一个重新认识的过程.运算律的展示使学生进一步体会用字母表示数可以使数量关系简明和一般化,初步体验和确认了用字母可以表示任意数这一点.活动2用字母表示数量关系(1)请你算出他们每人100米短跑的速度,并将计算结果填入表中.(2)写出计算速度时所用的公式.(3)这个公式能用来计算汽车、轮船、飞机在某段匀速行驶过程中的速度吗?若用s表示路程,t表示所用时间,v表示速度,则这个公式就是v=.思路一[处理方式]独立思考,写出结果,小组内交流.体会用字母表示数的优越性.展示交流结果:(1)100米表示路程,16秒表示时间,小帆的速度=100÷16=(m/s),同理,大林的速度=100÷14.5=(m/s),小明的速度=100÷15.2=(m/s).(算错的同学要订正错误)(2)v=.(其中v表示速度,s表示路程,t表示时间)(3)由于v表示速度,s表示路程,t表示时间,所以v=可以用来求汽车、轮船、飞机在某段匀速行驶过程中的速度.[设计意图]此过程可以使学生经历运用数学符号描述数量关系的过程,发展符号感和抽象思维.通过与同伴交流,学生将体验获得解决问题策略的方法,学会合理清晰地阐述自己的观点.学生必将获得良好的数学活动经验.思路二(1)速度、路程和时间三个量的关系是什么?请动手写一写:.并利用这个关系,分别求出小帆、大林和小明的速度.(2)如果用v表示速度,s表示路程,t表示时间,那么它们的关系可以用字母写成什么?表示为:.(3)能否利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度?[处理方式]独立思考,写在练习本上,同桌交流,展示成果.(1)路程=速度×时间,速度=路程÷时间,时间=路程÷速度.(2)s=vt,v=,t=.(其中v表示速度,s表示路程,t表示时间)(3)可以利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度.师总结:用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.活动3按照要求和条件表示数出示教材第97页的内容:观察自然数0,1,2,3,4,5,6,7,8,9,10,11,12,….(1)请用字母表示偶数和奇数.(2)两个偶数之和是什么数?提出猜想,并用字母表示数的方法说明这个猜想是正确的.[处理方式]同桌互相提问,复习已有知识,交流体会方法.提出引导问题:偶数、奇数的概念是什么?它们有什么特征?(1)能被2整除的数是偶数,不能被2整除的数是奇数.偶数用字母表示为2m(m为自然数),奇数用字母表示为2m+1(m为自然数).(2)提出猜想:两个偶数的和是偶数.验证1:2+4=6,102+134=236……验证2:(相邻两个偶数)一个偶数为2m(m为自然数),另一个为2m+2,其和为2m+2m+2=2(2m+1).验证3:一个偶数为2m(m为自然数),另一个为2n(n为自然数),两个偶数的和为2(m+n).活动4做一做——能力提升用字母表示数,说明:(1)任意两个奇数之和是偶数.(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数.问题引导:(1)一个奇数怎么表示?(2)两个相邻的奇数怎么表示?(3)任意两个奇数怎么表示?(4)与m相邻的两个自然数怎么表示?问题提示:(1)2m+1.(2)2m+1和2m - 1.(3)2m+1和2n+1.(4)m+1和m - 1.(m,n为自然数)问题说明:(1)任意两个奇数之和是偶数:2m+1+2n+1=2(m+n+1).(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数:m+1+m - 1=2m.[知识拓展]用字母表示数,同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示.用字母表示实际问题中的某一数量时,字母的取值需使这个问题有意义,并且符合实际.用字母表示数可简明表达问题中的数量关系、公式、法则、规律等.用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.1.填空.(1) - 6 ℃下降2 ℃后是℃;温度由t℃下降2 ℃后是℃;(2)今年李华m岁,去年李华岁,五年后李华岁;(3)三个连续偶数中间一个为2n,则其余两个为,;(4)某商店上月收入a元,本月收入比上月的2倍多10元,本月收入元;(5)城市市区人口a万人,市区绿化面积m万m2,则平均每个人拥有绿地m2;(6)某城市5年前人均年收入为n元,预计今年人均年收入是5年前的2倍多500元,那么今年人均年收入将达元.答案:(1) - 8(t - 2)(2)(m - 1)(m+5)(3)2n - 22n+2(4)(2a+10)(5)(6)(2n+500)2.选择.(1)用字母表示乘法对加法的分配律是()A.a(b+c)B.ab+acC.a(b+c)=ab+acD.ab=ba(2)昨天的最高气温是27 ℃,今天的最高气温比昨天的下降t℃,今天的最高气温是()A.27+tB.27 - tC.(27+t)℃D.(27 - t)℃(3)(2015·吉林中考)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元解析:(1)乘法分配律是一个数乘两个数的和,等于这个数分别乘这两个加数,然后把乘得的积相加,据此写成字母表达式为a(b+c)=ab+ac;(2)用昨天的最高气温减去下降的气温即为今天的最高气温.今天的最高气温是(27 - t)℃;(3)购买1个单价为a元的面包所需费用为a元,3瓶单价为b元的饮料所需费用为3b元,则共需费用为(a+3b)元.答案:(1)C(2)D(3)D3.填空.(1)长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成的,则能射进阳光部分的面积是;(2)(2015·安顺中考)如图所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形的个数为(用含n的式子表示).解析:(1)能射进阳光部分的面积=长方形的面积- 半径为b的半圆的面积.即能射进阳光部分的面积=2ab - πb2;(2)认真观察图形,确定图形变化规律:第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,以后每个图案都比前一个图案多3个基础图形,所以第n(n是正整数)个图案中的基础图形的个数为3n+1.答案:(1)2ab - πb2(2)3n+13.1用字母表示数活动1运算律中的字母活动2用字母表示数量关系活动3按照要求和条件表示数活动4做一做——能力提升一、教材作业【必做题】教材第98页习题A组第1,2题.【选做题】教材第98页习题B组第1,2题.二、课后作业【基础巩固】1.如果甲数是x,甲数是乙数的2倍,那么乙数是()A.xB.2xC.x+2D.x+2.n为整数,则2n - 1一定是()A.偶数B.奇数C.2的倍数D.正整数3.一个长方形的周长为28,其中长为x,则此长方形的面积为()A.14xB.x(x - 14)C.x(14+x)D.x(14 - x)4.若一个正方形的边长为a,则这个正方形的周长是.5.若每箱有36个苹果,则n箱共有个苹果.6.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款元.(用含有a的式子表示)7.某商品的进价为x元,售价为120元,则该商品的利润率可表示为.8.一棵树刚栽时高2 m,以后每年长高0.2 m,n年后的树高为多少米?9.一桶油,连桶重x kg,桶本身重1 kg,用去油的后,桶内还有多少油?【能力提升】10.x是两位数,y是一位数,如果把x置于y的左边,那么所成的三位数应表示为()A.xyB.x+yC.100x+yD.10x+y11.(2015·海南中考)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1 - 10%)(1+15%)x万元B.(1 - 10%+15%)x万元C.(x - 10%)(x+15%)万元D.(1+10% - 15%)x万元12.有一块长为x m,宽为y m的长方形草坪,在草坪中间有一条宽为z m的人行道,形状如图所示,请你计算这块草坪的实际绿化面积.【拓展探究】13.怎样的两个数,它们的和等于它们的积呢?观察下面几个式子:2+2=2×2;3+=3×;4+=4×;5+=5×……(1)你还能发现一些这样的两个数吗?(2)你能从中发现什么规律吗?把这个规律用字母n表示出来.【答案与解析】1.A(解析:甲数是乙数的2倍,那么乙数就是甲数的.)2.B(解析:因为n为整数,所以代数式2n - 1一定是奇数.故选B.)3.D(解析:长方形的宽为×28 - x=14 - x,面积为x(14 - x).)4.4a(解析:正方形的边长为a,正方形的周长为4×正方形的边长,所以正方形的周长为4a.)5.36n(解析:每箱苹果数与箱数的积即为所求.)6.(3200 - 5a)(解析:学生捐款数=捐款总数- 教师捐款总数.所以学生捐款数为(3200 - 5a)元.)7.(解析:利润为(120 - x)元,所以该商品的利润率可表示为.)8.解:原来树高为2 m,n年增长0.2n m,所以n年后的树高为2+0.2n(m).9.解:桶中有油(x - 1)kg,用去油的后,还剩油的1 - ,所以桶内还有油(x - 1)kg.10.D(解析:根据题意可知把x置于y的左边,相当于把x扩大为原来的10倍,y不变.即所得的数是10x+y.故选D.)11.A(解析:1月份的产值是x万元,则2月份的产值是(1 - 10%)x万元,3月份的产值是(1+15%)(1 - 10%)x万元.)12.解:草坪的实际绿化面积应是长方形面积与平行四边形面积之差,长方形的面积为xy m2,平行四边形的面积为yz m2.所以实际绿化面积为(xy - yz)m2.13.解:(1)答案不唯一,如6+=6×等.(2)(n+1)+=(n+1)×.本节课运用贴近学生生活实际的材料,再次引导学生经历由具体的数到“抽象的数”,由具体的算式到含有字母的式子的学习过程,让学生经历从具体的情境中抽象出数量关系和变化规律的过程,从而体会用字母表示数的意义,形成初步的符号感,初步体会“特殊—一般—特殊”“数形结合”等数学思想方法.对课堂节奏的把握不够紧凑,最后学生完成练习的时间不够充分.在用字母表示数的过程中对学生的探究发现没有进行方法指导.课堂创设要丰富多彩,供学生观察、猜想、讨论和验证,要充分调动学生的积极性,让每个学生都有发言的机会,教学面向全体学生.在猜想和说明问题时,提醒学生采取提出问题、特例验证、一般推理的方式进行思考.练习(教材第97页)(1)15a(2)4a+2a(3)(a+b)习题(教材第98页)A组1.(1)( - 6+t)(2)8a(3)10a+b(4)25 - a(5)(29+a)(26+a)2.解:ab - cd.3.解:ab+ac或a(b+c).B组1.解:设原来四位数的后三位数为a,则原来四位数为7000+a,新四位数为10a+7.2.解:设连续两个奇数为2n+1和2n - 1(n为整数),则(2n+1)+(2n - 1)=4n,所以任意两个连续奇数之和都是4的倍数.清朝末年,文学家俞曲园写了一首咏杭州风景点“九溪十八涧”的诗:重重叠叠山,曲曲环环路,丁丁东东泉,高高下下树.当代数学家淡祥柏把每句诗都表示成算式:以上共有4个算式,每个汉字表示一个数字,在每一个算式中,重叠的汉字代表相同的数字,不同的汉字代表不同的数字,你能写出这4个算式的数字形式吗?解:3.2代数式1.进一步理解用字母表示数的意义.2.掌握书写代数式的注意事项并会正确书写代数式.1.会把代数式反映的数量关系用文字语言表述出来,会把文字语言表述的数量关系用代数式表示出来.2.能分析简单问题中的数量关系,并用代数式表示出来.通过将实际问题中的数量关系用代数式表示,提高数学应用意识.【重点】列代数式;用代数式表示实际问题中的数量关系;代数式表示的实际意义.【难点】代数式的意义;用代数式表示实际问题中的数量关系;规律探索.第课时1.在具体情境中,进一步理解用字母表示数的意义.2.能解释一些简单代数式的几何意义.3.在具体情境中,能列出代数式,并解释其实际意义.1.经历应用数学符号的过程,进一步提高学生的符号感.2.初步学会从数学的角度提出问题和理解问题,充分体会解决问题的策略的多样性.培养学生热爱数学,会用数学思想解决生活中的问题的能力.【重点】列代数式.【难点】用数学语言表达代数式的意义.【教师准备】多媒体课件.【学生准备】搜集以前学过的数学公式.导入一:填空.1.m的3倍与5的和可以表示为.2.小华用a元买了b本练习本,每本练习本元.3.边长为x cm的正方形的周长是cm;面积是cm2.教师活动:(1)组织学生交流;(2)引导学生观察所列代数式,给出代数式的概念;(3)交流所列代数式的意义.学生活动:(1)独立思考完成填空;(2)交流结果;(3)说说代数式在此问题中所代表的实际意义.[设计意图]用填空的方式来列简单的代数式,学生能够独立完成.为下面代数式概念的引出作铺垫.师板书:三角形的面积公式S=ah,路程问题中的s=vt,5>b等等.教师活动:(1)板书;(2)讲解.学生活动:(1)回答问题;(2)讨论交流.[设计意图]引导学生找出代数式与等式、不等式的不同.活动1代数式的概念1.代数式的概念.思路一教师活动:(1)组织学生阅读教材第99页;(2)引导学生举出代数式的例子.学生活动:(1)阅读课文;(2)举例交流,畅所欲言.[设计意图]让学生先直观感受什么叫代数式,只要学生知道什么是代数式即可,要求学生能举出一些实际例子.追问:单独的一个字母或一个数是代数式吗?(是.)[设计意图]这个问题的价值在于强调单独的一个数或一个字母也是代数式,强化易错点,使学生知道字母可以表示具体的数,也可以表示具体的数量关系,同一字母或表达式在不同的场合有不同的意义,强化学生的符号感;其次,通过交流,拓宽学生的思维,发展学生的联想、类比等思维能力.思路二请同学们观察并思考:a+b,m - n,25m,,6a2,a3……这些式子有哪些共同点?预设生:都含有数字或字母.师:除了数字和字母外,还有什么?预设生:还有运算符号(+、- 、×、÷、乘方).师:运算符号在数字和字母之间起到了什么样的作用?预设生:把数或字母连接起来了.师:回答得很好!同学们,这就是代数式!现在你能用自己的语言叙述一下什么是代数式吗?学生交流2分钟后,找不同学生语言叙述,互相补充,教师加以引导.然后用多媒体课件展示代数式的定义.概括:用运算符号连接数和字母组成的式子,都叫做代数式.单独的一个数或字母也是代数式.2.例题讲解.指出下列各代数式的意义:(1)2a+5;(2)2(a+5);(3)a2+b2;(4)(a+b)2.〔解析〕根据代数式的意义,必须把代数式作为一个整体去看待.运算符号和字母、数字的组合,是代数式的重要特点.解:(1)2a+5表示是a的2倍与5的和.(2)2(a+5)表示a与5的和的2倍.(3)a2+b2表示a的平方与b的平方的和.(4)(a+b)2表示a与b的和的平方.活动2用代数式表示数量关系用代数式表示“a,8两数之和与b,c两数之差的积”.可按下面的步骤列代数式:[处理方式]四人为一小组,把“做一做”试着做下来.做完之后,小组长把自己组做的答案呈现出来.[设计意图]让学生仿照图示的方法列代数式,体会数量之间的和、差、倍、分的关系与加、减、乘、除的运算的对应.用代数式表示:(1)a与b的差与c的平方的和.(2)百位数字是a,十位数字是b,个位数字是c的三位数.(3)三个连续的整数(用同一个字母表示),以及它们的和.〔解析〕(1)a与b的差也就是a - b,所求即为(a - b)与c的平方的和.列代数式的关键是一定要注意运算顺序;(2)用不同的字母表示一个整数各数位上的数字,记为abc=100a+10b+c;(3)中间的这个数是m,则连续的三个整数就是m - 1,m,m+1.解:(1)(a - b)+c2.(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).(3)设m是整数,三个连续整数可表示为m - 1,m,m+1.它们的和为(m - 1)+m+(m+1).强调:在代数式中,字母与数或字母与字母相乘时,通常把乘号写作“·”或省略不写,如2×a 写作2·a或2a,a×b写作a·b或ab.除法运算一般以分数的形式表示.如s÷t写作(t≠0).[设计意图]本部分内容是学生学习了代数式之后紧跟的练习,目的是强化学生对代数式概念的理解与掌握,会根据具体要求列代数式,训练学生思维的严密性.[知识拓展](1)对于一个代数式,它的意义没有统一的规定,以简明而不致引起误解为出发点,同一个代数式可用不同形式的文字语言表述它的意义.(2)如果式子中含有“=”“<”“>”“≤”“≥”等符号,它们不是运算符号,那么这样的式子不是代数式.(3)数与字母、字母与字母相乘,乘号可以省略,也可写成“·”;数字与数字相乘,乘号不能省略;数字要写在字母前面.(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.(5)带分数一定要写成假分数.1.用运算符号把数和字母连接起来的式子叫做代数式.2.单独的一个数或字母也是代数式.1.下列式子是代数式的是.①,②a2b,③x=1,④a2+ab - 1,⑤3>2,⑥o,⑦y=x - 1.解析:等式与不等式都不是代数式,排除③⑤⑦.故填①②④⑥.2.写出代数式a2 - b2表示的意义.解:a的平方与b的平方的差.3.用代数式表示.(1)x的2倍与y的差;(2)m与5的差的3倍;(3)a的11倍再加上2;(4)x,y两个数和的平方;(5)甲数为a,比甲数的平方大3的数.解:(1)2x - y.(2)3(m - 5).(3)11a+2.(4)(x+y)2.(5)a2+3.第1课时活动1代数式的概念用运算符号连接数和字母组成的式子,都叫做代数式.注意:单独的一个数或字母也是代数式.活动2用代数式表示数量关系正确表达代数式的实际意义.一、教材作业【必做题】教材第100页练习第1,2题.【选做题】教材第101页习题A组第1,2,3,4题.二、课后作业【基础巩固】1.下列属于代数式的是()A.4+6=10B.2a - 6b>0C.0D.v=2.买一个足球需要a元,买一个篮球需要b元,则买4个足球、7个篮球共需要()A.(4a+7b)元B.4a元C.7b元D.11元3.2(a+b)的几何意义是.4.设乙数为x,甲数比乙数的2倍大1,则甲数为.【能力提升】5.某厂一月份产值为a万元,从二月份起每月增产15%,三月份的产值可以表示为()A.(1+15%)2×a万元B.(1+15%)3×a万元C.(1+a)2×15%万元D.(2+15%)2×a万元6.一个两位数,十位上是a,个位上是b,用代数式表示这个两位数为()A.abB.baC.10a+bD.10b+a7.用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m - n)2B.3(m - n)2C.3m - n2D.(m - 3n)28.甲、乙二人按5∶2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年盈利14000元,那么甲、乙二人分别应分得()A.2000元和5000元B.4000元和10000元C.5000元和2000元D.10000元和4000元【拓展探究】9.通讯市场竞争日益激烈,某通讯公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准是每分钟多少元?【答案与解析】1.C(解析:一个字母或一个数字也是代数式.)。

初中七年级数学学案代数式的值

初中七年级数学学案代数式的值

3.3 代数式地值学习目的:1.会求代数式地值;(重点,难点)2.掌握代数式求值地实际应用.(重点)学习重点:会求代数式地值.学习难点:会求代数式地值.一、知识链接 1.用代数式表示下列数量关系:(1)边长为a 地正方形地周长是 ,面积是 2cm .(2)小华,小明地速度分别为x 米/分钟,y 米/分钟,6分钟后它们一共走了米.(3)温度由15℃下降t ℃后是 .(4)小亮t 秒走了s 米,它地速度为 米/秒.(5)小莹拿166元钱去为班级买钢笔,买了单价为5元地钢笔n 支,则剩下地钱为 元.二、新知预习做一做请四个同学来做一个传数游戏游戏规则:第一个同学任意报一个数给第二个同学;第二个同学把这个数加1传给第三个同学;第三个同学再把听到地数平方后传给第四个同学;第四个同学把听到地数减去1报出答案.想一想据报纸记载,一位医生研究得出由父母身高预测子女成年后身高地公式是:儿子地身高是父母身高地与地一半,再乘以1.08,;女儿地身高是父亲身高地0.923倍加上母亲身高地与再除以2. 自主学习5x(1)已知父亲地身高为a 米,母亲地身高地身高为b 米,试用代数式表示儿子与女儿地身高;(2)五年级女生小红地父亲身高是1.75米,母亲地身高是1.62米;六年级男生小明地父亲身高是1.70米,母亲地身高是1.62米,试预测成年后小明与小红地身高.(3)同学们,妳们可以预测一下自己成年后地身高吗?自主归纳1.用数值代替代数式中地字母,按照代数式中给出地运算计算出地结果,叫做代数式地值.这个过程叫做求代数式地值.2.1.求代数式地值地步骤:(1)写出条件:当……时;(2)抄写代数式;(3)代入数值;(4)计算;三、自学自测1.x 地相反数与3地与,用代数式表示为 ;当x =2时,这个代数式地值为 .2.当a =2,b =-3时,代数式222()()a b a b +-+地值为 ;代数式222()()a b a b +-- 地值为 .3. 求下列代数式地值:(1)3,23=+x x 其中; (2)5,322=+-x x x 其中.四,我地疑惑____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________一、要点探究 探究点1:直接代入法求代数式地值例1:当a =12,b =3时,求代数式2a 2+6b -3ab 地值.归纳总结2.求代数式地值时,应注意:(1)要“对号入座”,避免代错字母,其它符号不变;(2)代数式中,代入数值以后原来省略地乘号一定要还原;(3)若字母地值是负数或分数,将字母地值代入代数式时,应加上括号,原来地数字与运算符号都不能改变.针对训练根据下列所给字母b a ,地值,分别求代数式b a 432-地值:(1)3,2-==b a (2)31,21=-=b a探究点2:整体代入法求代数式地值例2:已知x -2y =3,则代数式6-2x +4y 地值为( )A.0B.-1C.-3D.3归纳总结整体代入法是数学中地重要思想方法,当已知条件中未知或不易求出每个字母地值时,可考虑利用这些字母之间地关系整体代入,从而求出代数式地值.针对训练合作探究21 C.156 D.231程序运算题是计算机运算程序地一个缩影.解答此类题,看懂程序框图地意义C.12D.92利用代数式地值解决实际问题)请妳用代数式表示水渠地横断面面积;水渠地横断面面积.归纳总结利用代数式地值解决实际问题时,可先根据实际问题列出代数式,然后根据已知字母地值求代数式地值,从而达到解决实际问题地目地.针对训练某企业去年地年产值为a 亿元,今年比去年增长了10%。

代数式的值学案导学

代数式的值学案导学

代数式的值一、主要内容:1.代数式的值的概念:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。

注:1)字母的取值不能使代数式本身失去意义,如分母不能为零;2)不能使它所表示的实际问题失去意义,如求路程公式S=vt中,v,t不能取负数。

2.求代数式的值的方法:先代入后计算:注:1)代入时,只将相应的字母换成相应的数,其它符号不变。

2)代数式中原来省略的乘号代入数值以后一定要还原。

3)对于已知一个比较复杂的代数式的值,求另一个代数式的常用的方法有整体代入法,代换法。

4)根据代数式所表示的运算顺序,按有关运算法则,计算出结果。

二、主要数学思想:代数式的值是由字母所取的值确定的,当代数式中的字母每取一个值时,代数式就表示一个确定的(数)值。

因此,求代数式的值是由一般(式)到特殊(数)的问题,通过求代数式的值,可进一步理解代数式的意义和作用。

三、例题讲解:例1 求下列代数式的值:(1) a2-+2 其中a=4, b=12,(2) 其中a=, b=.解:(1)当a=4, b=12时,a2-+2=42-+2=16-3+2=15(2)当a=,b=时,===。

点评:(1)求代数式的值的解题步骤是:①指出代数式中的字母所取的值;②抄写原代数式;③把字母的值代入代数式中;④按规定的运算顺序进行计算。

(2)代数式的值是由代数式里字母所取的数的大小来确定的,代数式里的字母可取不同的值,但这些值必须使代数式和它所表示的实际数量有意义。

(1)题中的a不能取0,因为当a取0时,的分母为零,代数式无意义。

(2)题中a+b不能为0。

例2当a=-1,b=2,c=3时,求下列各代数式的值。

(1)(2)(a2+b2-c2)2(3)分析:求代数式在a=-1,b=2,c=3时的值,就是把代数式中的字a、b、c,分别用-1,2,3代替,按原来的运算顺序进行运算即可。

解:(1)(2)(a2+b2-c2)2=[(-1)2+22-32]2=[-4]2=16(3)例3已知a-=2,求代数(a-)2-+6+a的值。

苏科版七年级数学上册:i学案《代数式》代数式的值常考题型归纳

苏科版七年级数学上册:i学案《代数式》代数式的值常考题型归纳

3.3代数式的值一.代数式的值知识点:1.代数式的值概念:代数式的值是指用数值代替代数式里的字母,按照代数式中的运算关关计算出结果。

2.求代数式的值的步骤:第一步:用数值代替代数式里的字母,简称为“代入”;第二步:按照代数式指明的运算关系计算出结果,简称为“计算”注意:①代入时,代数式中的运算符号和具体数字都不能改变;字母在代数式中所处的位置必须搞清楚;②代数式中原来省略的乘号,代入数字后出现数字与数字相乘时,必须添上乘号,③求代数式的值时,在代入前,要写出“当……时”,求出在这种情况下代数式的值;④如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号⑤求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行。

3. “代入”的主要方法:单独代入、整体代入和按指定的程序代入。

说明:①代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律;代数式的值是这个规律下的特殊情形;②代数式中的字母取值必须使要求的代数式有意义;③当代数式表示实际问题的数量关系时,字母的取值还要保证具有实际意义,如若a表示学生人数,则a只能取非负整数。

二.代数式值常考题型:(一).单独代入法:1.直接代入:Eg1:当m=-1时,-2m2-[-4m2+(-m2)]值为Eg2:当a =1时,a -2a +3a -4a +…+99a -100a 的值为Eg3:求下列代数式的值:(1)当0.5x =-,122y =时,求代数式2()x x y -的值; (2)当21-x =时,求代数式2211x x x x++-+的值; (3)当3-x =,12y =时,求代数式22244x xy y -+的值;(4)当3x =,2y =-时,求代数式2242x xy xy y+-的值;(5)当1x =,2y =,1z =-时,求代数式222236x y xz y z ++的值.Eg3:已知|x+1|+(2x-y )2=0,求3xy-15y 2+5x 2-6xy+15x 2-2y 2的值.Eg4:当m =2,n =1时,(1)求代数式(m +n)2和m 2+2mn +n 2的值;(2)写出这两个代数式值的关系;(3)当m =5,n =-2时,上述的结论是否仍成立?(4)根据(1)、(2),你能用简便方法算出,当m =0.125,n =0.875时,m 2+2mn +n 2的值吗?2.先求参数值,再代入:Eg1:①己知|x|=2,|y|=5,且xy >0,则x+y 的值为 ;②若2x =,3y =,且20x y<,则x y += ;③若|m|=3,|n|=7,且m-n >0,则m+n 的值是 ;④若|a|=2,|b|=3,且a >b ,则|a-b|的值为 ;Eg2:若|a|+|b|=1,且a ,b 都是整数,则|a+b|的值为 ;Eg3:若3m -+(n +2)2=0,则m +2n 的值为Eg4:若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则20212019c b 2020a++ 的值为(二).整体代入法:1.直接整体代入法:Eg1:若220x x +-=,则221x x x x +-=+ ;Eg2:已知a-b=-1,ab=4,则代数式233ab b a +-的值为 ;Eg3:已知a 2+2a+1=0,则2a 2+4a-3的值为 ;Eg4:若2a -b =2,则6+8a -4b =________;Eg5:已知x -3y =-3,则5-x +3y 的值是 ;Eg6:若a +b=2,a b=-1,则3a +a b +3b = ;Eg7:如果a+b=-3,ab=-4,则代数式的1)(31++-+ab b a b a 值为 ;Eg8:.已知ab =3,a +b =4,则3ab -[2a -(2ab -2b )+3]的值为 ;Eg9:已知a 2+ab=2,b 2+ab=3,则a 2-b 2= , a 2+2ab+b 2= , a 2-3ab-4b 2= ;Eg10:若a 、b 互为相反数,x 、y 互为倒数,则17()42a b xy ++的值是 ;Eg11:若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,则2234a bm cd m ++-的值是 ;Eg12:已知x ,y 互为相反数,a ,b 互为倒数,t 的绝对值为2,则代数式 x+y)2011+(-ab)2012+t 2的值为 ;Eg13:已知a =()211m --(m 为整数),且a 、b 互为相反数,b 、c 互为倒数,则ab +b m -(b -c)100的值为 ;2.奇偶性整体代入法:Eg1:当x =1时,代数式px 3+qx +1的值为2011,则当x =-1时,代数式px 3+qx -1的值为 ;Eg2:已知当x =-1时935+++cx bx ax 的值为17,则该多项式当x =1时的值是 ;Eg3:已知,当x =2时,37ax bx ++的值是9,当x =﹣2时,311ax bx ++的值是 ;Eg4:当1x =时,代数式31342ax bx -+的值是7,则当x =﹣1时,这个代数式的值是 ;Eg5:当x 分别等于2或-2时,代数式x 4-7x 2+1的两个值为 ;Eg6:当x 分别等于3和-3时,多项式6x 2+5x 4-x 6+3的值 ( )A .互为相反数B .互为倒数C .相等D .异号3. 先直接单量代入,化简后,再整体代入: Eg1:当2m π=时,多项式31am bm ++的值是0,则多项式345a b ππ++= ;Eg2:若x =1时,2ax 2+b x =3,则当x=2时,ax 2+b x = ;Eg3:当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于________.(三).特殊值代入法Eg1:已知a+b+c=0,则代数式(a+b )(b+c )(c+a )+abc 的值为 ; Eg2:若23a b b -=,则a b= ;Eg3:对于代数式213a a -+的值,下列说法错误的是( )A .当12a =时,其值为0 B .当3a =-时,其值不存在C .当3a ≠-时,其值存在D .当5a =时,其值为5(四).多字母整体思想:Eg1:设(2x -1)5=ax 5+bx 4+cx 3+dx 2+ex +f .求:(1)f 的值;(2)a +b +c +d +e +f 的值;(3)a +c +e 的值.Eg2:若当x=1时,多项式a+bx+cx 2+dx 3+ex 4+fx 5的值是32,且当x=-1该多项式值为0,则a+c+e 的值是()A .8B .16C .32D .无法确定Eg3:已知代数式533ax bx x c +++,当0x =时,该代数式的值为﹣1.(1)求c 的值;(2)已知当x =1时,该代数式的值为﹣1,试求a +b +c 的值;(3)已知当x=3时,该代数式的值为﹣10,试求当x=﹣3时该代数式的值;(4)在第(3)小题的已知条件下,若有5a=3b成立,试比较a+b与c的大小.(五).先列代数式,再求值:Eg1:商店分别以相同的价格n元卖出两件不同品牌的衬衣,其中一件盈利20%,另一件亏本20%,该商店在这次买卖中() A.不亏不赚 B.亏了 C.赚了 D.不能确定Eg2:有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:Eg3:如图,已知梯形的下底长为a,高为r,半圆的半径为r.(1)求阴影部分的面积(用含a,r的式子表示);(2)当r=4,a=12时,求阴影部分的面积(结果用π表示).Eg4:某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽x米,回答下列问题:(1)修建的十字路面积是多少平方米?(2)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?Eg5:李强读一本共m页的书,第一天读了该书的13,第二天读了剩下的15.(1)用代数式表示李强还剩多少页没读.(2)求当m=120时,还剩多少页没读.Eg6:一个三角形的一边长为a+b,另一边长比这条边长b,第三边长比这条边短a-b.(1) 求这个三角形的周长;(2) 若a=5,b=3,求三角形的周长.Eg7:某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,若月用水量不超过15吨,则按每吨1.8元收费;若月用水量超过15吨,则超过部分按每吨2.5元收费.设某户居民月用水量为x吨,列代数式表示:(1)当0<x≤15时,该户居民应交水费多少元?(2)当x>15时,该户居民应交水费多少元?Eg8:某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?Eg9:已知:我市出租车收费标准如下:乘车路程不超过3km的一律收费7元;超过3km的部分按每千米加1.8元收费.(1)如果有人乘计程车行驶了m千米(m>3),那么他应付多少车费?(列代数式)(2)游客甲乘出租车行驶了4km,他应付车费多少元?(3)某游客乘出租车从西区大润发到文昌楼,付了车费10.6元,试估算从西区大润发到文昌楼大约有多少公里?Eg10:某农户承包果树若干亩,今年投资13800元,收货水果总产量为18000千克.此水果在市场上每千克售a元,在果园直接销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天200元.(1)分别用含a,b的代数式表示两种方式出售水果的收入;(2)若a=4.5元,b=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好;(3)该农户加强果园管理,力争到明年纯收入达到72000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入-总支出).Eg11:长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.Eg12:新学期,两摞规格相同的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题。

第9讲:代数式的认识-学案

第9讲:代数式的认识-学案

知识讲解:1、通过回顾小学数学的加法及乘法运算律的字母表示得出,字母可以表示任何数.2、字母表示数的书写规律:①数字和字母相乘或字母和字母相乘时,乘号“×”可以用“”表示,或者省略,例如:“a b ⨯”可以表示为“a b ”或ab .②数字和字母相乘时,数字在字母前。

例如:“3a ⨯”表示为”3a ”. ③字母前不能是带分数.④字母和数字相除时,通常写成分数形式.⑤若代数式是字母和数字之间的加减并且后边带有单位时,该代数式要加括号.例如:()105.m +元 3、像()()()214+31,1,1,3,210,,,61s x x x x m v a a an t-+++-+-等式子,它们都是运算符号把数和字母连接而成的,像这样的式子叫做代数式(algebraic expression).单独一个数或一个字母也是代数式. 4、用具体数值代替代数式中的字母,就可以求出代数式的值. 5、列代数式,并求值. 例:(1)某公园的门票价格是:成人票每张10元,学生票每张5元.一个旅游团有成人x 人、学生y 人,那么旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费? 解答:(1)该旅游团应付的门票费是()105x y +元.(2)把=37=15x y ,代入代数式105x y +,得 1037515445.⨯+⨯= 因此,他们应付445元门票费.考点一:代数式的定义 【例题】1、下列代数式中,符合书写规则的是( )A .112x B .x ÷y C .m ×2 D .3mn 2、在式子m+5、ab 、a+b <1、x 、﹣ah 、s=ab 中代数式的个数有( ) A .6个 B .5个 C .4个 D .3个 3、代数式3a+2b 的叙述正确的是( )A .a 的3倍与b 的和的2倍 B.a 与b 的和的3倍和2倍 C. a 的3倍与b 的2倍 的积 D. a 的3倍与b 的2倍 的和【练习】1.给出下列数与式子:①2x-y+1,②11a b,③2x+1=3, ④ 3>2, ⑤ a, ⑥ 0.其中是代数式的有( ) A.2个 B.3个 C.4个 D.6个 2、下列代数式的书写格式正确的是( )A .42ba B. abc 312 C. a ×b ÷c D.xyz33、代数式2yx -的意义是( ) A.x 与y 的一半的差 B. x 的一半与y 的差 C. x 与y 的差的一半 D.以上答案均不对 4、写出7(a-3)的意义5、说明(1-8%)a 的实际意义(举一个实例即可): .6、下列各式中,哪些是代数式,哪些不是代数式?(1)52;(2)a ;(3)26+38;(4)s=vt ;(5)a ²+2ab+b ²;(6)y x +1;(7)2+3=5;(8)3a >4b ;(9)5n+2;(10)2(x-y )+3考点二:用代数式表示数量关系 【例题】1、用代数式表示“m 的3倍与n 的差的平方”,正确的是A. 2)3(n m - B. 2)(3n m - C.23n m - D. 2)3(n m - 2、设甲数为a ,乙数为b ,则:(1)甲、乙两数的平方和为 (2)甲、乙两数和的平方为 (3)甲、乙两数差的平方为 (4)甲、乙两数的平方差为(5)甲、乙两数和的平方与甲、乙两数差的平方的和为 3、三个连续偶数,最小的是2n ,则另两个数分别为4、一个两位数的个位数字是,十位数字是,那么这个两位数可以表示为( ) A .ba B . 10a+b C .a+10b D .10(a+b )【练习】1、a 平方的2倍与3的差,用代数式表示为________2、“a 的3倍与b 的差的平方”用代数式表示为___________,当a =-2,b =-1时,它的值为3、a 的2倍与b 的31的差的平方,用代数式表示应为 .4、若 x 表示一个一位数, y 表示一个两位数,小明把 x 放在 y 的右边..来组成一个三位数,你认为下列表达式中能表示这个数的是( )A . yxB .x + yC .10x + yD .10y + x5、一个三位数,它的百位上的数、十位上的数和个位上的数分别为a 、b 、5,则这个三位数为 .6、一个两位数,个位上的数字是x ,十位上的数字是y ,这个两位数为 ;如果把个位上的数字与十位上数字对调,所得的新两位数为7、一个五位数,万位数字是8,如果把这个数字移到个位,就得到一个新的五位数,如果用x 表示除8以外的四位数,请分别用含x 的代数式把这两个五位数表示出来。

苏科版七年级数学上册:i学案《代数式》代数式的值常考题型归纳

苏科版七年级数学上册:i学案《代数式》代数式的值常考题型归纳

3.3代数式的值一.代数式的值知识点:1.代数式的值概念:代数式的值是指用数值代替代数式里的字母,按照代数式中的运算关关计算出结果。

2.求代数式的值的步骤:第一步:用数值代替代数式里的字母,简称为“代入”;第二步:按照代数式指明的运算关系计算出结果,简称为“计算”注意:①代入时,代数式中的运算符号和具体数字都不能改变;字母在代数式中所处的位置必须搞清楚;②代数式中原来省略的乘号,代入数字后出现数字与数字相乘时,必须添上乘号,③求代数式的值时,在代入前,要写出“当……时”,求出在这种情况下代数式的值;④如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号⑤求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行。

3. “代入”的主要方法:单独代入、整体代入和按指定的程序代入。

说明:①代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律;代数式的值是这个规律下的特殊情形;②代数式中的字母取值必须使要求的代数式有意义;③当代数式表示实际问题的数量关系时,字母的取值还要保证具有实际意义,如若a表示学生人数,则a只能取非负整数。

二.代数式值常考题型:(一).单独代入法:1.直接代入:Eg1:当m=-1时,-2m2-[-4m2+(-m2)]值为Eg2:当a =1时,a -2a +3a -4a +…+99a -100a 的值为Eg3:求下列代数式的值:(1)当0.5x =-,122y =时,求代数式2()x x y -的值; (2)当21-x =时,求代数式2211x x x x++-+的值; (3)当3-x =,12y =时,求代数式22244x xy y -+的值;(4)当3x =,2y =-时,求代数式2242x xy xy y +-的值;(5)当1x =,2y =,1z =-时,求代数式222236x y xz y z ++的值.Eg3:已知|x+1|+(2x-y )2=0,求3xy-15y 2+5x 2-6xy+15x 2-2y 2的值.Eg4:当m =2,n =1时,(1)求代数式(m +n)2和m 2+2mn +n 2的值;(2)写出这两个代数式值的关系;(3)当m =5,n =-2时,上述的结论是否仍成立?(4)根据(1)、(2),你能用简便方法算出,当m =0.125,n =0.875时,m 2+2mn +n 2的值吗?2.先求参数值,再代入:Eg1:①己知|x|=2,|y|=5,且xy >0,则x+y 的值为 ;②若2x =,3y =,且20x y<,则x y += ;③若|m|=3,|n|=7,且m-n >0,则m+n 的值是 ;④若|a|=2,|b|=3,且a >b ,则|a-b|的值为 ;Eg2:若|a|+|b|=1,且a ,b 都是整数,则|a+b|的值为 ;Eg3:若3m -+(n +2)2=0,则m +2n 的值为Eg4:若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则20212019c b 2020a++ 的值为(二).整体代入法:1.直接整体代入法:Eg1:若220x x +-=,则221x x x x +-=+ ;Eg2:已知a-b=-1,ab=4,则代数式233ab b a +-的值为 ;Eg3:已知a 2+2a+1=0,则2a 2+4a-3的值为 ;Eg4:若2a -b =2,则6+8a -4b =________;Eg5:已知x -3y =-3,则5-x +3y 的值是 ;Eg6:若a +b=2,a b=-1,则3a +a b +3b = ;Eg7:如果a+b=-3,ab=-4,则代数式的1)(31++-+ab b a b a 值为 ;Eg8:.已知ab =3,a +b =4,则3ab -[2a -(2ab -2b )+3]的值为 ;Eg9:已知a 2+ab=2,b 2+ab=3,则a 2-b 2= , a 2+2ab+b 2= , a 2-3ab-4b 2= ;Eg10:若a 、b 互为相反数,x 、y 互为倒数,则17()42a b xy ++的值是 ;Eg11:若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,则2234a bm cd m ++-的值是 ;Eg12:已知x ,y 互为相反数,a ,b 互为倒数,t 的绝对值为2,则代数式 x+y)2011+(-ab)2012+t 2的值为 ;Eg13:已知a =()211m --(m 为整数),且a 、b 互为相反数,b 、c 互为倒数,则ab +b m -(b -c)100的值为 ;2.奇偶性整体代入法:Eg1:当x =1时,代数式px 3+qx +1的值为2011,则当x =-1时,代数式px 3+qx -1的值为 ;Eg2:已知当x =-1时935+++cx bx ax 的值为17,则该多项式当x =1时的值是 ;Eg3:已知,当x =2时,37ax bx ++的值是9,当x =﹣2时,311ax bx ++的值是 ;Eg4:当1x =时,代数式31342ax bx -+的值是7,则当x =﹣1时,这个代数式的值是 ;Eg5:当x 分别等于2或-2时,代数式x 4-7x 2+1的两个值为 ;Eg6:当x 分别等于3和-3时,多项式6x 2+5x 4-x 6+3的值 ( )A .互为相反数B .互为倒数C .相等D .异号3. 先直接单量代入,化简后,再整体代入: Eg1:当2m π=时,多项式31am bm ++的值是0,则多项式345a b ππ++= ;Eg2:若x =1时,2ax 2+b x =3,则当x=2时,ax 2+b x = ;Eg3:当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于________.(三).特殊值代入法Eg1:已知a+b+c=0,则代数式(a+b )(b+c )(c+a )+abc 的值为 ;Eg2:若23a bb -=,则ab = ;Eg3:对于代数式213a a -+的值,下列说法错误的是( )A .当12a =时,其值为0 B .当3a =-时,其值不存在C .当3a ≠-时,其值存在D .当5a =时,其值为5(四).多字母整体思想:Eg1:设(2x -1)5=ax 5+bx 4+cx 3+dx 2+ex +f .求:(1)f 的值;(2)a +b +c +d +e +f 的值;(3)a +c +e 的值.Eg2:若当x=1时,多项式a+bx+cx 2+dx 3+ex 4+fx 5的值是32,且当x=-1该多项式值为0,则a+c+e 的值是()A .8B .16C .32D .无法确定Eg3:已知代数式533ax bx x c +++,当0x =时,该代数式的值为﹣1.(1)求c的值;(2)已知当x=1时,该代数式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该代数式的值为﹣10,试求当x=﹣3时该代数式的值;(4)在第(3)小题的已知条件下,若有5a=3b成立,试比较a+b与c的大小.(五).先列代数式,再求值:Eg1:商店分别以相同的价格n元卖出两件不同品牌的衬衣,其中一件盈利20%,另一件亏本20%,该商店在这次买卖中() A.不亏不赚 B.亏了 C.赚了 D.不能确定Eg2:有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:Eg3:如图,已知梯形的下底长为a,高为r,半圆的半径为r.(1)求阴影部分的面积(用含a,r的式子表示);(2)当r=4,a=12时,求阴影部分的面积(结果用π表示).Eg4:某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽x米,回答下列问题:(1)修建的十字路面积是多少平方米?(2)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?Eg5:李强读一本共m页的书,第一天读了该书的13,第二天读了剩下的15.(1)用代数式表示李强还剩多少页没读.(2)求当m=120时,还剩多少页没读.Eg6:一个三角形的一边长为a+b,另一边长比这条边长b,第三边长比这条边短a-b.(1) 求这个三角形的周长;(2) 若a=5,b=3,求三角形的周长.Eg7:某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,若月用水量不超过15吨,则按每吨1.8元收费;若月用水量超过15吨,则超过部分按每吨2.5元收费.设某户居民月用水量为x吨,列代数式表示:(1)当0<x≤15时,该户居民应交水费多少元?(2)当x>15时,该户居民应交水费多少元?Eg8:某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?Eg9:已知:我市出租车收费标准如下:乘车路程不超过3km的一律收费7元;超过3km的部分按每千米加1.8元收费.(1)如果有人乘计程车行驶了m千米(m>3),那么他应付多少车费?(列代数式)(2)游客甲乘出租车行驶了4km,他应付车费多少元?(3)某游客乘出租车从西区大润发到文昌楼,付了车费10.6元,试估算从西区大润发到文昌楼大约有多少公里?Eg10:某农户承包果树若干亩,今年投资13800元,收货水果总产量为18000千克.此水果在市场上每千克售a元,在果园直接销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天200元.(1)分别用含a,b的代数式表示两种方式出售水果的收入;(2)若a=4.5元,b=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好;(3)该农户加强果园管理,力争到明年纯收入达到72000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入-总支出).Eg11:长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.Eg12:新学期,两摞规格相同的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题。

人教版(2024)七年级数学上册学案:3.2 代数式的值

人教版(2024)七年级数学上册学案:3.2 代数式的值

3.2 代数式的值一、学习要求1、学习目标○1理解代数式的值的概念,用具体数值代替代数式中的字母,并计算代数式的值。

○2掌握求代数式值的步骤和方法,以及从一般到特殊的思维方法。

○3通过实际问题的求解,认识到代数式的实用性和数学的应用价值。

○4预习本小节并独立完成本导学案。

2、学习重点和难点(1)重点代数式的值的概念及求代数式值的方法。

(2)难点在代入数值时,正确处理乘号、括号及运算顺序。

3、自主回顾(1)判断以下式子是不是代数式○13y−3是否是代数式?○2x<1是否是代数式?○3x3=8是否是代数式?二、学习内容1、代数式的值解决具体问题的过程中,在列出代数式后,往往还要根据实际需求得到所求的值。

而将x=5代入2x+2中得到的“12”则为代数式的值。

在实际应用问题中,我们还可以根据不同的情况赋予2x+2不同的意义。

例如,某小明原本有2块钱,每天小明的妈妈会给小明2元的零花钱,那么一周后小明拥有多少钱?○1根据题意可得小明的钱数为:____________元。

○2一周为7天,所以x=______。

○3将x=______代入_________中,可得_______________。

○4所以一周后小明拥有_________元。

上述的过程即为求代数式的值。

练习例题:x−1+2y的值。

例题1:根据下列x,y的值,分别求代数式15(1)x=5,y=12(2)x=3,y=12、代数式的值与实际应用(1)实际应用的做题步骤通常可以归纳为以下几个关键步骤○1理解问题背景;○2建立代数式;○3代入已知条件进行计算;○4得到答案并作答。

示例:如图所示,∆ABC为直角三角形,其中AB的长度为x(cm),BC的长度为y(cm),则该三角形的面积是多少?若AB的长度为3(cm),BC的长度为4(cm),则该三角形的面积是多少?若AB的长度为6(cm),BC的长度为8(cm),则该三角形的面积是多少?练习例题(根据上述步骤做以下习题):例题2:如图所示的圆,圆的半径为r米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§ 3.2 代数式的值导学案
学习目标:
1、了解代数式的值的概念,会求代数式的值,会解释代数式的值的实际意义。

2、经历求代数式的值的过程,进一步理解字母表示数的意义,感受代数式求值的转化思想。

3、体会特殊到一般可相互转化的辩证关系,增强数学概括能力,培养辩证唯物主义观点。

学习过程:
一、温故孕新,感知问题
1、用字母表示数量关系
(1)边长为a cm的正方形的周长是 cm,面积是2
cm.
(2)小华、小明的速度分别为x米/分钟,y米/分钟,6分钟后它们一共走了
米.
(3)温度由15℃下降t℃后是 .
(4)小亮t秒走了s米,他的速度为米/秒.
(5)小莹拿166元钱去为班级买钢笔,买了单价为5元的钢笔n支,则剩下的钱为元,他最多能买这种钢笔支.
2、请四个同学在做一个传数游戏.
第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第
三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听
到的数减去1报出答案.
若第一个同学报给第二个同学的数是5,而第四个同学报出的答案是35.你
说结果对吗?
请你给出其他数字来试一试!
二、自主学习,探求新知
第16届亚运会于2010年11月12日至27日在中国广州举行,学校举办迎亚运会智力竞赛,竞赛的计分方法是:开始前,每位参赛者都有100分作为底分,竞赛中每答对一道题加10分,答错或不答得0分。

小亮代表七年级一班参加竞赛,共答对了x个问题,他的最后得分是多少?
根据计分方法,他的最后得分是分。

如果小亮答对2个问题,即x=2,那么他的最后得分是多少?
计算:当x=2时,原式= (分)
这里,120是代数式100+10x当x=2时的值。

1. 当a = -2,b = 3时,试比较下列各式的值的大小:(1)a2b ab2;
(2)a3b ab3
2.x的相反数与3的和,用代数式表示为;当x = 2时,这个代数式的值为。

3.当a = 2,b = -3时,代数式(a + b)2-(a2 + b2)的值为;代数式(a + b)2-(a -b)2 的值为。

4.代数式的值是由谁的取值确定的?
一般地,用代替代数式里的,按照的运算,计算得出的,叫做代数式的值。

5.求代数式的值的步骤:(1),(2)。

三、合作交流,运用新知
注:书写格式要规范,代入数值要准确,计算结果要正确
例1 当a=2,b=-1,c=-3时,求下列各代数式的值:
(1)ac
b4
2-;(2)ac
bc
ab
c
b
a2
2
2
2
2
2+
+
+
+
+;(3)()2c
b
a+
+.
解:(1)当时(2)
b2 - 4ac= = = (3)
例2:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值
解:
例3:某企业去年的年产值为a亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请
你预测一下,该企业明年的年产值将能达到多少亿元?如果去年的年产值是2亿元,那么预计明年
的年产值是多少亿元?
解由题意可得,今年的年产值为亿元,于是明年的年产值为:
(亿元).
若去年的年产值为2亿元,则明年的年产值为:
亿元
答:该企业明年的年产值将能达到亿元.由去年的年产值是2亿元,可以预计明年的年产值是亿元.
四、精讲点拨,巩固提升
1.根据下列所给字母b a ,的值,分别求代数式b a 432
-的值: (1)3,2-==b a (2)3
1,21=-=b a
2.为了保护黄河流域的生态环境,减少水土流失,共青团中央等部门共同发起了“保护母亲河行动”, 要在沿河流域大力植树,号召青少年积极捐赠。

某地的捐赠办法是:捐款10元可种植3棵柳树,捐款5元可种植1棵杨树。

某中学八年级有 x 名同学,每人捐款10元种植柳树;七年级有y 名同学,每人捐款5元种植杨树。

(1)该校七、八年级同学共捐款多少元?这些钱能种植树木多少棵? (2)如果x =98,y =102,那么这个学校七、八年级同学共捐款多少元?能种植树木多少棵? 解:(1)八年级同学共捐款 元,可种植柳树 棵;七年级同学共捐款 元,可种植杨树 棵;该校七八年级同学共捐款 元;这些钱可种植树木 棵.
(2)当x=98,y=102时,
3.若a+b=-1,求代数式 (1)a+b+2; (2)3a+3b 的值.
4.若 的值为7,求代数式 的值。

五、课堂小结,提升自我
同学们,学习了这节课,你有何收获?你能用精炼的语言表达出来吗?总结一下,与同学交流。

六、课后作业
1.当x=5,y= -2时,求下列代数式的值:
(1) (x+y) 2 =_______ (2) x 2 -y 2
=_______
2.如果三角形的底边为a ,底边上的高为h ,三角形的面积为s ,则三角形的面积公式是
______________,当a =4,h =3.5时,s =________。

3.当a =
2
1
,b =2时,求下列代数式的值: (1)()()2
2
b a b a --+;
(2)2
22b ab a ++.
4.当x+y=5,xy=4时,代数式80(x+y) 2
+3xy -11的值。

5. 按右边图示的程序计算,若开始输入的n 值为2,则最后输出的结果是_________.
6. 根据下列各组x 、y 的值,分别求出代数式x 2+2xy +y 2与
x 2-2xy +y 2
的值:
(1)x =2,y =3; (2)x =-2,y =-4. 7. 若梯形的上底为a ,下底为b ,高为h ,则梯形面积为____________;当a =2cm ,b =4cm ,h =3cm 时,梯形的面积为__________.
8.已知a 为3
的倒数,b 为最大的负整数,求代数式(3a-b ) 2
-9ab+3的值。

9.有一根空心钢管,内圆半径为r ,外圆半径为R ,高为h ,设空心钢管的体积为v ,写出空心钢管的体积公式________________ ,当R=4,r =2,h =100,取π=3.14时,v =___________。

10.当x=223-,112y =时,代数式x 2+y 2
和代数式-2xy 的值分别为M 、N ,则M 、N 之间的关系为
( ) A .M <N B .M=N C .M >N D .以上三种情况均有可能
11. A 、B 两地相距s 千米,甲、乙两人分别以a 千米/时、b 千米/时(a >b )的速度从A 到B .如
果甲先走1小时,试用代数式表示甲比乙早到的时间.再求:当s =120,a =15,b =12时,这一代数式的值.
522
++y x 4632++y x。

相关文档
最新文档