大学物理化学-01章_气体 ppt课件

合集下载

物理化学 第一章 绪论气体

物理化学  第一章 绪论气体
6. 界面与胶体科学:界面与高分散系统的热力学规 律
物理化学讲课的内容
第一章 气体的pVT关系 第二章 热力学第一定律 第三章 热力学第二定律 第四章 多组分热力学 第五章 相平衡
3-10周 讲课 40 h
第六章 化学平衡 第七章 电化学 第八章 化学动力学 第九章 界面现象与
描述真实气体的 pVT 关系的方法: 1)引入压缩因子Z,修正理想气体状态方程 2)引入 p、V 修正项,修正理想气体状态方程 3)使用经验公式,如维里方程,描述压缩因子Z 它们的共同特点是在低压下均可还原为理想气体状态方程
1. 真实气体的 pVm - p 图及波义尔温度
T > TB
pVm - p曲线都有左图所示三种
c
T4
说明Vm(g) 与Vm(l)之差减小。
l2 l1
l
g2 g1
T3
Tc
TT12gg´´12 g
T = Tc时, l – g 线变为拐点c c:临界点 ;Tc 临界温度; pc 临界压力; Vm,c 临界体积
Vm
临界点处气、液两相摩尔体积及其它性质完全相同,界
面消失气态、液态无法区分,此时:
V p m Tc 0 ,
类型。
pVm
T = TB T < TB
(1) pVm 随 p增加而上升; (2) pVm 随 p增加,开始不变, 然后增加
p 图1.4.1 气体在不同温度下的 pVm-p 图
(3) pVm 随 p增加,先降后升。
T > TB T = TB
对任何气体都有一个特殊温度 -
波义尔温度 TB ,在该温度下,压
(密闭容器)

乙醇

t / ºC 20 40 60 80 100 120

物理化学第五版_01章_气体

物理化学第五版_01章_气体
Maxwell速率分布定律 *Maxwell速率分布函数的推导 分子速率的三个统计平均值——最概然速率、数
学平均速率与根均方速率
Maxwell 速率分布定律 设容器内有N个分子,速率在 v v dv 范围内的分子数为 d N v

d Nv Ndv

d Nv Nf (v)dv
f (v) 称为分子分布函数,
力却是一个定值,并且是一个宏观可测的物理量。
对于一定量的气体,当温度和体积一定时, 压力具有稳定的数值。 压力p是大量分子集合所产生的总效应,是 统计平均的结果。
压力和温度的统计概念
aa' , bb' 是两个半透膜
aa ' 只允许A分子出入
bb ' 只允许B分子出入
在中间交换能量,直至
双方分子的平均平动能相等
是摩尔气体常数,等于
是热力学温度,单位为 K
T (t /℃ 273.15)K
气体分子动理论的基本公式 气体分子的微观模型 (1)气体是大量分子的集合体 (2)气体分子不停地运动,呈均匀分布状态 (3)气体分子的碰撞是完全弹性的 设在体积为V的容器内,分子总数为N,单位体 积内的分子数为n(n = N/V),每个分子的质量为m。 令:在单位体积中各群的分子数分别是 n1 ,n2 , … 等。则
n1 n2 ni ni n
i
气体分子动理论的基本公式 设其中第
i
群分子的速度为
u i ,它在 x, y, z
轴方向上的分速度为
2 ui 2 ui , x
ui, x , ui, y , ui, z ,则
2 ui , z
2 ui , y
在单位时间内,

《物理化学第4版》第一章-8 节流过程ppt课件

《物理化学第4版》第一章-8 节流过程ppt课件
则:W1= - p1(- V1)= p1V1
W2= - p2(V2) 在压缩和膨胀时体系净功的变化应该是
两个功的代数和。 W=p1V1- p2 V2
W=W1+W2=p1V1-p2V2
即 U2 U1 p1V1 p2V2
移项 U2 p2V2 U1 p1V1
H2=H1
节流过程是等焓过程。 T变而H不变:实际气体的H 不只是T 的函数。
实际气体的焓不仅是温度的函数,还是 压力p的函数,即 H= f(T,p)。
实际气体分子间有相互作用力,使得分子间 的势能对热力学能有贡献,即U=f(T,V)。
等温过程,实际气体的dU、dH不等于零。
3.焦-汤系数
JT
def
dT dp
H
JT 称为焦-汤系数(Joule-
Thomson coefficient),它表示经节流
过程后,气体温度随压力的变化率。
因为节流过程的dp<0 , 所以:
若 J-T<0,则节流后 温度升高?降低?不变? J-T>0, 节流后 温度升高?降低?不变? J-T=0, 节流后 温度升高?降低?不变?
用于制冷设备的实际气体,其J-T>0,例如氨气。
低压低温气体
p ,则T
节流过程(管内有
填充物)















高压高温气体

电冰箱工作原理示意图
T1
Q T2
由环境付出电功
§1-8 实际气体的焓和热力学能
实际气体的热力学能 U=f (T, V)
实际气体的焓
H=f (T, p)

物理化学 第一章 气 体

物理化学   第一章   气 体


pV nRT

(1-1) (1-2)
pV
m RT M
其中的R称为摩尔气体常数,其值等于8.314J.K-1.mol-1,与气体种类无关。 理想气体状态方程只有理想气体完全遵守。 理想气体也可以定义为在任何温度、压强下都严格遵守理想气体状态方程的 气体。

实际气体处在温度较高、压力较低即气体十分稀薄时,能较好地符合这个关 系式。
图1.2 混合气体的分体积与总体积示意图

在压力很低的条件下,可得V=VA+VB,即混合气体的总体积等于所
有组分的分体积之和,称为阿马格分体积定律。通式为

V V i
式中 VB——组分B的分体积。 根据理想气体状态方程有
nB VB RT p
(1-5)
n总 V总 RT p
(1-
pV ZnRT
(1-16)
在压力较高或温度较低时,真实气体与理想气体的偏差较 大。定义“压缩因子(Z)”来衡量偏差的大小。
pV Z nRT

Z →
V V nRT / p V理想

等于同温、同压下,相同物质量的真实气体与理想气体的体
积之比。

理想气体的 pV=nRT , Z =1。
对于真实气体,若Z>1,则V> V(理想),即真实气体的体积 大于理想气体的体积,说明真实气体比理想气体难于压缩;
(1-13)
称为截项维里方程,有较大的实用价值。 当压力达到几MPa时(5MPa左右),第三维里系数渐显重要,其近 似截断式为:
Z

pV B C 1 2 RT V V
(1-14)
第四节 对应态原理及普遍化压缩因子图 一.对应态原理 二.压缩因子法 三.普遍化压缩因子图

物理化学课件(天大第五版)-真实气体

物理化学课件(天大第五版)-真实气体
。2023PART 06
真实气体在相变过程中的 特性
REPORTING
相变过程的概念
相变过程
物质从一种相态转变为另一种相 态的过程,如气态转变为液态或 固态,液态转变为固态或气态,
固态转变为液态或气态。
相变点
物质发生相变的温度和压力点, 如水的冰点为0°C和1个大气压。
相平衡
在一定的温度和压力下,物质的 不同相态可以共存,形成一个平
REPORTING
真实气体的内能
总结词
真实气体的内能是指气体内部所有分子动能和势能的 总和,与温度、体积和物质的量有关。
详细描述
真实气体的内能是气体热力学状态的重要参数之一,它 反映了气体内部微观粒子所具有的能量。根据热力学的 知识,真实气体的内能与温度、体积和物质的量有关。 当温度升高时,气体分子的平均动能增大,导致内能增 加;而当体积增大时,分子间的平均距离增大,势能增 大,也会导致内能增加。物质的量越大,气体的内能也 越大。因此,在等温、等压条件下,真实气体的内能随 物质的量增加而增加。
反应速率
物质在相变过程中反应速率的快 慢,表示物质化学反应速度的变 化。
2023
REPORTING
THANKS
感谢观看
衡状态。
相变过程中的热力学性质
热容
在相变过程中,物质吸收或释放热量时温度的变 化,表示物质热稳定性的变化。

物质在相变过程中熵的变化,表示物质内部无序 度的变化。

物质在相变过程中焓的变化,表示物质能量的变 化。
相变过程中的动力学性质
扩散系数
物质在相变过程中扩散系数的变 化,表示物质传递速度的变化。
无序程度增加,因此气体的熵也随物质的量增加而增加。

《物理化学1气体》课件

《物理化学1气体》课件

04 气体反应动力学 与速率方程
气体反应速率的概念
反应速率
单位时间内反应物浓度减 少或产物浓度增加的量。
反应速率常数
反应速率与反应物浓度的 乘积,表示反应速率与浓 度的关系。
活化能
反应速率与温度的关系, 表示反应所需的最低能量 。
速率方程的建立与求解
质量作用定律
反应速率与反应物浓度的幂次方 成正比。
《物理化学1气体》ppt课 件
目 录
• 气体的基本性质 • 气体定律与热力学基础 • 气体混合物与分压定律 • 气体反应动力学与速率方程 • 气体化学反应平衡常数与计算
01 气体的基本性质
气体的定义与分类
总结词
气体的定义、分类及特性
详细描述
气体是物质的一种聚集状态,具有无固定形状和体积、流动性强等特性。根据气 体分子间相互作用力的不同,气体可分为理想气体和实际气体。理想气体忽略了 气体分子间的相互作用力,而实际气体则考虑了这种相互作用力。
理想气体定律
理想气体假设
理想气体状态方程,即PV=nRT,其 中P表示压强,V表示体积,n表示摩 尔数,R表示气体常数,T表示温度。
理想气体是一种假设的气体模型,其 分子之间没有相互作用力,分子本身 的体积可以忽略不计。
理想气体状态方程的应用
用于计算气体的压力、体积、温度等 物理量之间的关系,以及气体的热力 学性质。
热力学第一定律
热力学第一定律
01不
能消失,只能从一种形式转化为另一种形式。
内能和热量
02
内能是系统内部能量的总和,热量是系统与外界交换能量的量
度。
热力学第一定律的应用
03
用于计算系统的内能、热量、功等物理量之间的关系,以及系

物理化学 -气体

物理化学 -气体
因为物理量 n 中已包含单位 mol,T 中已包含单位 K了。
正确的表述应为:“物质的量为n”, “ 热力学温度为T ”
。2.对于复杂运算,一般不列出每一个物理量的 单位,而直接给出最后单位。
Vm
RT p
8.315 (273 .15 25) 100 10 3
m3 mol 1 24.79dm3 mol 1
1.2074 0.03575
- 0.03564
2021/1/24
§0.4 物理量的表示及运算
1. 物理量的表示
y [y]
y
2021/1/24
x /[ x]
•示意图 x
§0.4 物理量的表示及运算
2.对数中的物理量
• ln x、ex中的 x 为无量纲的纯数
•因为 x 原为有量纲的物理量 → dx/x 无量纲 →dx/x = dlnx 无量纲→d(x /[x] d ln( x /[x]
2021/1/24
§0.4 物理量的表示及运算
注意
3.在图中表示函数关系均是数值关系,运算时即 使用数值方程。
[例如]
应用
ln
p
vap H m R
1 T
C
作 ln
P [P]
T
1 /[T ]
图,
由直线求 vapH m 时,即应用数值方程:
ln p vapH m / J mol 1 1 C
欢 迎 走 进《 物 理 化 学 》
2021/1/24
绪论
何谓物理化学(Physical chemistry)?
物理化学 是从物质的物理现象与化学现象的联系入手,
探求化学变化基本规律的一门学科。 “用物理的理论、物理的实验手段”,探求化 学变化基本规律的一门学科。

物理化学01气体

物理化学01气体

,
§1-1 理想气体的状态方程
气体理论的三位奠基者:
• 玻义尔 (1627 — 1691) Born in Ireland
00-7-22
•盖· 吕萨克 (1778 — 1850) Frenchman
• 阿伏加德罗 (1776 —1856) an Italian
3
1. 理想气体状态方程
波义尔定律 pV = 常数 (n, T 恒定)
pV (实际) nRT
Z def pV pVm (实) Vm (实) nRT RT Vm (理)
压缩因子Z:
Z 的大小描述了实际气体的关系偏离理想行为的情况:
Z 1, 理想气体; Z 1, Vm (实) Vm (理), 易压缩实际气体;
00-7-22
Z 1, Vm (实) Vm (理), 难压缩实际气体.
13
0.0323 y( Ar) 0.0094 3.452 2.694 y( N 2 ) 0.7804 3.452
00-7-22
(2)各组分气体的分压为
p( N 2 ) y( N 2 ) p 0.7804101.3 79.05kPa
p(O2 ) y(O2 ) p 0.2099101.3 21.26kPa
VB / V nB / n yB
而对非理想气体, 此二式不能成立. 应注意分压力和分体积的定义上的不同.
00-7-22 12
例:若有一空气样品,组成(质量%)如下:N275.47%,O223.19%, Ar1.29%,CO20.05%。(1)试用体积分数表示此空气的组成;(2) 计算25℃及101.325kPa下,此空气各组分气体的分压。设空气可看成理 想气体的混合物。 解:(1)体积分数即各气体的摩尔分数。设有100g空气,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一内容 下一内容 回主态原理
临界压缩因子(critical compression factor )
zc
pcVm,c RTc
物质 He Ar
N2 O2 CO CO2 CH4
zc 0.299 0.291 0.289 0.294 0.288 0.274 0.289
对于大多数物质,用上式计算的zc的值约在0.26~0.29 。
大学物理化学-01章_气体 ppt课件
上一内容 下一内容 回主目录
返回
1-1 理想气体状态方程
1. 理想气体状态方程
pV nRT
上一内容 下一内容 回主目录
返回
2020/12/7
理想气体模型
该方程的另外两种表达方式为: pV=(m/M)RT
M为摩尔质量; m为气体的质量。 2. 理想气体模型 (1)分子之间无相互作用力 (2)分子本身不占有体积
上一内容 下一内容 回主目录
返回
2020/12/7
对应状态原理
2.对应状态原理
Define : Tr= T/Tc reduced temperature pr= p/pc reduced pressure Vr= V/Vc reduced volume
任何气体只要两个对比参数相同,则第三个对比参 数也必然相同,这就是对应状态原理。此时称它们 处于相同的对比状态。
z pVm RT
zc
prVr Tr
这样可以将Z表示为两个对比参数的函数。即 Z=f(pr,Tr)
2. 范德华方程(van der Waals equation) (1)方程的形式
(pVam2)V (mb)RT
a和b称为范德华常数。a/V2m为压力修正项;b
为体积修正项。
上一内容 下一内容 回主目录
返回
2020/12/7
维利方程
(2)范德华常数与临界参数的关系 a=27R2Tc2/64pc; b=RTc/8pc
混合物的摩尔质量定义为: Mmix=∑yBMB=∑mB/∑nB
3.道尔顿定律 Define: 在气体混合物中
上一内容 下一内容 回主目录
返回
2020/12/7
道尔顿定律
pBpyB
pB : 气体B的分压 p: 混合气体的总压 yB: 气体B在混合气中的摩尔分数
此定义既适用于理想气体 也可适用于低压下的实际气体
(3)范德华方程的应用 2. 维利方程Virial equation (纯经验方程)
pVm RT
(1 B2 Vm
VBm32
)
pVm RT
(1B2'
pB3'
p2
)
上一内容 下一内容 回主目录
返回
2020/12/7
其它重要方程举例
R - K equation (Redlich and Kwong)
p
a
pVm T>TB
T=TB
T<TB
p
上一内容 下一内容 回主目录
返回
2020/12/7
真实气体状态方程
波义尔温度的定义:
Lim[(pVm)/p]TB=0 p0 波义尔温度一般是气体临界温度的2~2.5倍。不 同的气体具有不同的波义尔温度。
上一内容 下一内容 回主目录
返回
2020/12/7
范德华方程
(V m b )V m T 1 /2
(V m b )RT
B-W-R方程 Berthelot方程
上一内容 下一内容 回主目录
返回
2020/12/7
1-5对应状态原理及普遍化压缩因子
1 压缩因子
z pVm Vm(实际气体) RT Vm(理想气体)
对于理想气体,任何温度和压力下,z恒等于1。 对于真实气体,z<1真实气体比理想气体容易压缩;z>1 难以压缩;可见z反映了实际气体压缩的难易程度。
p pB及pBnBRT/V
B
上一内容 下一内容 回主目录
返回
2020/12/7
阿马加定律
定义:V=∑V*B
理想气体混合物的总体积为各组分分体积之和。 式中V*B=nBRT/p
进一步中得:
yB= V*B /V
即理想气体混合物中某一组分B的分体积与总体 积之比等于该组分的摩尔分数yB。
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2020/12/7
对应状态原理
处于相同对比状态下的气体具有相近的热力学 性质
Van der Waals 对比方程:
(pr V3r2)V (r 13)83Tr
上一内容 下一内容 回主目录
返回
2020/12/7
普遍化压缩因子图
把对比状态参数的表达式引入到压缩因子的定义 式,可以得到:
上一内容 下一内容 回主目录
返回
2020/12/7
摩尔气体常数
3.摩尔气体常数 R为摩尔气体常数,其值为8.314510J mol-1 K-1

它是通过实验方法测定的pVT数据,然后通过外推 法获得。
作pV~p图,见P.10图1.1.2。
R=lim(pVm)T/T= 8.3145 J/mol/K
上一内容 下一内容 回主目录
返回
2020/12/7
1-3气体的液化及临界参数
1 液体的饱和蒸汽压
气液平衡时,饱和蒸气的压力。是温度的函数。
2 临界参数
(1)临界温度Tc:气体加压液化的最高允许温 度。
(2)临界压力Pc:临界温度时的饱和蒸汽压力
(3)临界体积Vc:在临界温度和临界压力下, 物质的摩尔体积。
上一内容 下一内容 回主目录
返回
2020/12/7
1-2 理想气体混合物
1-2 理想气体混合物 1 混合物的组成 (1)摩尔分数x或y
xB(或yB)=nB/∑nA (2)质量分数
wB=mB/∑mA
(3)体积分数
B=xB V*m,B/(∑ xA V*m,A)
上一内容 下一内容 回主目录
返回
2020/12/7
道尔顿定律
2.理想气体方程对理想气体混合物的应用 pV=nRT=(m/Mmix)RT
(3)T>Tc
温度和压力略高于临界点的状态,称为超临界流体。 超临界流体密度很大,具有溶解性能。在恒温变压或 恒压变温时,体积变化很大,改变了溶解性能,故可 用于提取某些物质,这种技术称为超临界萃取。
上一内容 下一内容 回主目录
返回
2020/12/7
1-4真实气体状态方程
1 真实气体的pVm-p图及波义尔温度
返回
2020/12/7
气体的液化及临界参数
3 真实气体的p-Vm图及气体的液化
p
pc
c
T3
p2
Tc
p1
T2
T1
上一内容 下一内容 回主目录
返回
Vm
2020/12/7
气体的液化及临界参数
等温线有三种类型:
(1)T<Tc
(2)T=Tc,C点称为临界点。几何意义为:压力对体积 的一阶和二阶偏导数等于零。
相关文档
最新文档