希望工程义演2
“希望工程”义演演示文稿

1.通过对“希望工程”的了解,我们
要更加珍惜自己的学习时光,并尽力去帮助 那些贫困地区的失学儿童. 2.遇到较为复杂的实际问题时,我们 可以借助表格分析问题中的等量关系,借此列 出方程,并进行方程解的检验. 3. 同样的一个问题,设未知数的方法 不同,所列方程的复杂程度一般也不同,因此在 设未知数时要有所选择.
如果票价不变,那么售出 如果票价不变,那么售出1000张票 张票 票款可能是6930元吗?为什么? 元吗? 所得 票款可能是 元吗 为什么?
答:不可能
设售出的学生票为x张 则根据题意得: 解: 设售出的学生票为 张,则根据题意得: 8(1000-x)+5x=6930 ( ) 解得: 解得: X =1070/3 票的张数不可能是分数, 票的张数不可能是分数,所以不可能
资料来源:/view/6016.htm 资料来源:/view/6016.htm
图片来源/show/1/14/ca6168e7422306ba.html 图片来源/show/1/14/ca6168e7422306ba.html
习题5-9 习题 数学理解: 数学理解 问题解决: 问题解决
1题 题 2题 题
一些和希望工程有关的网站
中国青少年发展基金会 / 新中国档案——希望工程 新中国档案——希望工程 中国青年网——完美青年公益 中国青年网——完美青年公益 /xwgc/
40瓦的灯泡个数+60瓦的灯泡个数= 40瓦的灯泡个数+60瓦的灯泡个数=5个 ① 瓦的灯泡个数 瓦的灯泡个数 40瓦灯泡总瓦数+60瓦灯泡总瓦数=260瓦 40瓦灯泡总瓦数+60瓦灯泡总瓦数=260瓦 ② 瓦灯泡总瓦数 瓦灯泡总瓦数 设40瓦的灯泡瓦数为y瓦, 40瓦的灯泡瓦数为
【最新】北师大版数学七年级上册5.5《应用一元一次方程——“希望工程”义演》公开课课件.ppt

。2021年1月11日星期一2021/1/112021/1/112021/1/11
15、会当凌绝顶,一览众山小。2021年1月2021/1/112021/1/112021/1/111/11/2021
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/112021/1/11January 11, 2021
1.一个办公室有五盏灯,其中有40瓦和60瓦两种,
总的 瓦数是26量关系:
40瓦的灯泡个数+60瓦的灯泡个数=5个① 40瓦灯泡瓦数+60瓦灯泡瓦数=260瓦②
设40瓦的灯泡有x个,
个数(个) 瓦数(瓦)
填写下表:
40瓦灯泡
x
40x
60瓦灯泡
5-x 60×(5-x)
设40瓦的灯泡瓦数为y瓦,
40瓦灯泡 60瓦灯泡
个数(个) 瓦数(瓦)
y/40 y
(260(2y6)/06-0y)
根据等量关系2,可列出方程:
___y_/_4_0__+_(_2_6__0_-_y_)_/6__0_=__5__
解得y=___8_0__
因此,40瓦的灯泡有__2_____个,60瓦的灯泡 有___3___个.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
应用一元一次方程——希望工程义演教案

应用一元一次方程——希望工程义演教案应用一元一次方程"盼望工程'义演一、教材分析本课以"盼望工程'义演为例引入课题,以老师点拨为主的方式,关心同学借助列表的方法分析问题,从而抓住等量关系"部重量之和等于总量',呈现运用方程解决实际问题的一般过程.分析数量关系和等量关系,列出方程,解方程,检验解的合理性.二、教学目标1、学问与技能:用表格分析简单问题中的数量关系和等量关系,体会直接和间接设未知数的解题思路,从而建立方程解决实际问题, 并要求同学进一步明确必需检验方程的解是否符合题意.2、过程与方法:通过对实际问题的解决,体会方程模型的作用,进展同学分析问题、解决问题、敢于提出问题的力量.3、情感态度与价值观:培育同学具有数学学问,增加同学探究、推理数学的力量;培育同学的数学爱好,帮助同学进展规律思维的力量,并能应用数学解决日常生活中的问题.三、教学过程设计环节一、复习回顾引导同学复习回顾列一元一次方程解应用题的一般步骤:1.审通过审题找出等量关系;2.设设出合理的未知数(直接或间接),留意单位名称;3.列依据找到的等量关系,列出方程;4.解求出方程的解(对间接设的未知数切记连续求解);5.检检验求出的值是否为方程的解,并检验是否符合实际问题;6.答留意单位名称.环节二、探究新课例1:某文艺团体为"盼望工程'募捐义演,成人票8元,同学票5元.(1) 成人票卖出600张,同学票卖出300张,共得票款多少元?(2) 成人票款共得6400元,同学票款共得2500元,成人票和同学票共卖出多少张?(3) 假如本次义演共售出1000张票,筹得票款6950元,成人票与同学票各售出多少张?(1)分析:总票款=成人票款成人票价+同学票款同学票价.解:8600+5300=4800+1500=6300(元).答:共得票款6300元.(2)分析:票数=总票款票价.解: (元).答:成人票和同学票共卖出1300元.(3)分析:本题中存在2个等量关系:总票数=成人总票数+同学总票数; 总票款=成人总票款+同学总票款.方法1分析:列表同学成人票数(张) x 1000-x票款(元) 5x 8(1000-x)解(方法1):设同学票为x张,据题意得 5x+8(1000-x) =6950.解,得 x=350,此时,1000-x=1000-350=650(张).答:售出成人票650张,同学票350张.方法2分析:列表同学成人票数(张)票款(元) y 6950-y解(方法2):设同学票款为y张,据题意得 .解,得 y=1750.此时, (张), 1000-350=650(张).答:售出成人票650张,同学票350张.变式:假如票价不变,那么售出1000张票所得的票款可能是6930元吗?同学成人票数(张) x 1000-x票款(元) 5x 8(1000-x)分析:列表解题过程:解:设售出同学票为x张,据题意得 5x+8(1000-x) =6930.解,得 x= .答:由于x= 不符合题意,所以假如票价不变,售出1000张票所得票款不行能是6930元.环节三、归纳小结1. 两个未知量,两个等量关系,如何列方程;2. 学会用表格分析数量间的关系.四、教学反思关心同学借助表格去表达问题的信息,使同学真正感受到表格对分析问题所起的重要性.引导同学一题多解,用不同的方式设未知数,用不同的等量关系列方程,对提高同学的分析问题和解决问题的力量有很大关心,还应留意检验方程解的合理性.应用一元一次方程——盼望工程义演教案这篇文章到此就结束了,欢迎大家下载使用并分享给更多有需要的人,感谢阅读!。
北师大数学七年级上册第五章一元一次方程应用(二)“希望工程”义演与追赶小明(基础)

一元一次方程应用(二)----“希望工程”义演与追赶小明(基础)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.【典型例题】类型一、“希望工程”义演(分配问题)1.(2015春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x 人,则调至乙地段(29﹣x )人,则调配后甲地段有(28+x )人,乙地段有(15+29﹣x )人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x ),再解方程即可.【答案与解析】解:设应调至甲地段x 人,则调至乙地段(29﹣x )人,根据题意得:28+x=2(15+29﹣x ),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.举一反三:到市场去【答案】(1)设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=(2)利润: 10(2.6 1.6)30(3.3 1.8)55-+-=(元)答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元.【变式2】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x = 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)3.(2016•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【思路点拨】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x 的值即可.【答案与解析】解:40分钟=小时,设乙车速度为x 千米/时,甲车速度为(x+20)千米/时,根据题意,得(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【总结升华】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.举一反三:【变式】(2015•绥棱县期末)A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x 小时后两车相遇,根据题意得:60x+40(x ﹣)=300. 3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时5.(2015秋•宜兴市校级期中)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得( )A .B .C .5(x ﹣)=4xD .6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支.8.(2015•新宾县模拟)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列方程为________.9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有 人,书有 本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】B.【解析】根据从家到学校的路程相等可得方程为:5x=4×(x+).6.【答案】C【解析】200505050112.5 5070-⨯+=+二、填空题7.【答案】40,35【解析】设钢笔数量是x支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40.8.【答案】20x=15(x+4)﹣10 .9.【答案】42,270【解析】设这个班的同学有x人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y本,y-18y+24=67,解得y=270,y-18=642.10.【答案】25;200【解析】(1)相遇问题:4002579=+(秒);(2)追及问题:40020097=-(秒).11.【答案】6;【解析】解:设水池容积为1,同时开放甲、乙两管时需要xh水池水量达全池的,依题意得:(﹣)x=,解得x=6,∴同时开放甲、乙两管时需要6h水池水量达全池的.12.【答案】460【解析】设飞机无风时飞行速度为x千米/时,题意得:112×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x人,则这三个车间的人数依次为13x人4x人、7x人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14.【解析】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.15. 【解析】(1)解:设x小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米. (2)解:设乙出发x小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=163.答:乙出发163小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x小时,使甲、乙二人相遇于AB的中点.依题意,得1121621612221512x⨯⨯-=,解这个方程,得x=415.答:只要乙比甲先出发415小时,两人就能相遇于AB的中点.(4)解:设x小时后甲乙相遇,依题意,得15x+12x=216×3解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。
打折销售 “希望工程”义演

【基础知识精讲】熟练掌握列方程解应用题的方法.【重点难点解析】本两节的要点是进一步掌握从实际生活问题出发建立“数学模型——一元一次方程”,应用方程知识解决应用问题.A.重点、难点提示1.进一步经历运用方程解决实际问题的过程,总结运用方程解决实际问题的一般过程.(这是重点,也是难点,要掌握好)2.理解进价、标价、利润、利润率、售价、打折数的定义及其之间的关系.3.能根据利润=实际售价-进价等数量关系列一元一次方程求解.4.通过打折销售的学习,使学生认识到数学的应用价值,激发学生的学习兴趣.5.进一步经历运用方程解决实际问题的过程,掌握列方程解应用题的一般步骤; (这是重点.也是难点,要掌握好)6.借助列表的方法分斩复杂问题中的数量关系,从而建立方程解决实际问题; (这是分析复杂问题中的数量关系时常用的方法)7.培养分析问题、解决问题的能力.B.考点指要用一元一次方程解决实际问题的一般步骤是:商品利润=商品售价-商品进价;商品利润率=商品利润÷商品进价.【典型热点考题】例1 据2001年中国环境状况公报,我国由水蚀和风蚀造成的水土流失面积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里.问水蚀与风蚀造成的水土流失面积各多少万平方公里?解:设水蚀造成的水土流失面积为x万平方公里,则风蚀造成的水土流失面积为(x+26)万平方公里.依题意,得 x+(x+26)=356,解之,得 x=165,∴ x+26=191.答:水蚀和风蚀造成的水土流失面积分别为165万平方公里和191万平方公里.点拨:这是2002年北京西城区的一道中招试题.题目取材于“中国环境状况公报”.提醒考生注意周围环境状况.同时,也体现了解应用题的思路,即“问什么,设什么”,依条件来建立等式——即一元一次方程.例2 某市一中和二中有同样多的同学参加希望杯数学竞赛,学校用汽车把学生送往考场,一中用的汽车,每车坐15人;二中用的汽车,每车坐13人,这样二中比一中要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二中又要比一中多派一辆汽车,问最后两校共有多少人参加竞赛.解:设开始两校各有x 人参赛,根据题意,必定有下列情形第一次:一中派车a 辆二中派车a+1辆第二次:多一人,此时x+1人一中派车a+1辆二中派车a+1辆可得:a 辆车,每车15人刚好装x 人第三次:又多一人,此时x+2人一中派车a+1辆二中派车a+2辆可得a+1辆车,每车13人刚好装x+1人∵113115-+=x x ∴.90x =因而最后两校共有184人参赛.例3 一轮船从甲地顺流而下8小时到达乙地,原路返回需12小时才能达到甲地.已知水流速度是每小时3千米,求甲、乙两地的距离.点悟:此题有两个不变量,即甲、乙两地间的距离及船在静水中的速度,分别根据这两个“不变量”可以从两方面设未知数,列出方程.解法1:设甲、乙两地的距离为x 千米,根据题意,得31238+=-x x解这个方程,得x=144答:甲、乙两地相距144千米.解法2:设轮船在静水中的速度为x 千米/小时,根据题意,得8(x+3)=12(x-3)解这个方程,得x=15于是 8(x+3)=8×(15+3)=144.答:甲、乙两地相距144千米.例4 一个个位数是4的三位数,如果把这个数4换到最左边,所得的数比原来的3倍还多98,试求原数.点悟:一个三位数4,百位和十位上的数字均未知,怎么办?干脆设=x ,那么这个三位数如何表示?——应是10x+4,而不应是x+4(想一想,为什么?).解:设这个三位数去掉尾数4,剩下的二位数为x ,那么这个三位数应是10x+4,而把尾数4换到最左边得到的数应为400+x .根据题意,得400+x=3(10x+4)+98解这个方程,得x=10于是 10x+4=104.答:原数为104.点拨:一般来说,解数字问题的关键是要掌握表示数的方法.如果是三位数,则表示成c b a abc ++=10100,并注意求得的某数最高位数字不能是零,且每个数位上的数字都应该是一位数.例5 甲、乙两站的路程是708千米,一辆慢车从甲站开往乙站,慢车走了一个半小时之后,另有一辆快车从乙站开往甲站,已知慢车每小时走92千米,快车每小时走136千米.问两车各走多少小时后相遇?点悟:本题是行程问题中的相向而行相遇问题.若设快车走了x 小时后与慢车相遇,则慢车走了(211+x )小时,可用它们的路程和等于708千米建立方程. 解法1:设快车走了x 小时后与慢车相遇,则快车的路程为136x 千米,慢车的路程为92(211x +)千米.根据题意,得708)211x (92x 136=++解之,得212=x 于是 4211=+x . 答:快车走了212小时,慢车走了4小时后两车相遇. 上述解法是采用了直接设未知数的方法,下面我们采用间接设未知数的方法.解法2:设两车相遇时快车走的路程为x 千米,那么快车所用的时间为136x 小时,而慢车从211小时后到相遇时所用的时间为92570922392708x x -=-⨯-小时,由这两段路程相遇时所用时间相等,所以根据题意,得13692570x x =- 解这个方程,得x=340 ∴340÷136=212(小时)而 4212211=+(小时) 答:快车走了212小时,慢车走了4小时后两车相遇.例6 某市收取水费按以下规定:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过的部分每立方米按2元收费.如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么他这个月共用了多少立方米的水?点悟:首先应明白该用户用水已超过20立方米,可设超了x 立方米,则共用(20+x)立方米水.解:设该用户这个月超用了x 立方米的水,根据题意,得20×1.2+2x=1.5(20+x) 解这个方程,得x=12∴ 20+12=32.答:该用户这个月共用了32立方米的水.点拨:本例把数学与实际生活联系起来,在实际问题中考查应用数学知识的能力,颇具特色.它给我们的启示是:注重双基,注重应用,切不可陷入偏题和怪题的包围中.【考题误区警示】例 一车间人数比二车间人数的54少30人,如从二车间调10人到一车间去,那么一车间人数就是二车间人数的43,求原来每个车间人数? 点悟:找准等量关系,即(一车间原人数)+(调入10人)=43[(二车间原人数)-(调出10人)].解:设二车间原有x 人,则一车间原有(3054-x )人. 根据题意,得)10(4310)3054(-=+-x x 解这个方程,得x=250∴ 17030250543054=-⨯=-x . 答:一车间原有170人,二车间原有250人.常见错误:本例中一方调出10人到另一方,即调出人数=调入人数.在方程中表现为,一方减少,另一方则增加相同数.在解此类调配问题时,易出现只顾一方而忽略另一方的错误,要特别注意避免.【同步达纲练习一】1.甲、乙两车队共有汽车160辆,因工作需要从乙队调20辆车支援甲队,这时甲队的汽车正好是乙队汽车的3倍.问甲、乙两队原有汽车各几辆?2.用一个底面20×20cm 的长方体容器(已装满水)向一个长、宽、高分别是16cm 、10cm 、5cm 的长方体铁盒内倒水.当铁盒装满水时,长方体容器中水的高度下降多少?3.一个三位数,十位上的数比个位上的数大2,百位上的数比个位上的数小2,而这三个数位上的数字之和的17倍等于这个三位数,求这个三位数.4.一项工程,甲单独做需20天完成,乙单独做需30天完成,若先由甲单独做8天,再由乙单独做3天,剩下的由甲、乙二人合做,还需几天能完成?5.一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需2小时,逆水航行需3小时,求两个码头之间的航程.6.有两种不同浓度的盐水,甲种盐水浓度是30%,乙种盐水浓度是6%,现在要配成浓度为10%的盐水60克,问应取两种浓度的盐水各多少克?7.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产23套服装,就可超过订货任务20套.问这批服装的订货任务是多少套?原计划几天完成?8.某班学生共60人,外出参加植树活动,根据任务的不同,要分成三个小组,使甲、乙、丙三个小组人数之比为2:3:5,求各小组人数?9.如果某商品的进货价降低了8%,而售出价不变,那么利润可由现在的x%增加到(x+10)%,求x.10.某校现有校舍20000平方米,计划拆除部分旧校舍,建新校舍,且新建校舍的面积比拆除的面积的4倍多2000平方米.如果要使建设后校舍总面积比现有校舍面积增加40%,问拆除多少旧校舍?新建多少新校舍?11.下列的数阵是由50个偶数排成的.(1)图中框内的4个数有什么关系?(2)在数阵图中任意作一类似于(1)中的框,设其中的一个数为x,那么其他三个数怎样表示?(3)如果四个数的和是172,能否求出这4个数?(4)如果四个数的和是322,能否求出这4个数?12.有浓度为98%的硫酸溶液8千克,加入浓度为20%的硫酸溶液多少千克,可配制成浓度为60%的硫酸溶液.【同步达纲练习二】1.某商人以800元的价格售出一件商品,结果获利60%,则该商品的进价为每件___________元.2.某商人不了解市场行情,进了一批过时服装,定价比进价只高出20%,结果卖不出去,只好将定价降低20%出售,这样每件只卖96元,该商人每卖出一件服装( ) (怎么比较赚和亏?)A .不赔不赚B .赚8元C .赚4元D .赔4元3.某商品提价25%后,欲恢复原价,则应降价___________.4.某商店卖出一件上衣和一双皮鞋,共收款240元,其中上衣盈利20%,皮鞋亏本20%,那么该商店卖出这两件商品,共( )A .赚10元B .赔10元C .不赔不赚D .无法确定5.某商人购某一商品的进货价比计划便宜8%,而售价不变,那么他的利润(按进货价而定)可由计划的x %增加到(x+10)%,则x 等于( )A .20B .30C .28D .156.某体育比赛入场券30元一张,若降价观众增加一半,收入增加41,问每张入场券降价多少元?7.有一杯水,第一天蒸发掉10%,第二天又继续蒸发掉杯中剩余水的10%,此时如果向杯中加水38克,则杯中水与原来一样多.问杯中原有水多少克?8.某学校食堂第二季度一共节煤3700公斤,其中5月份比4月份多节约20%,6月份比5月份多节约25%,问该食堂6月份节约多少公斤煤?9.某商品的进价为170元,按标价的8.5折销售时,利润率为15%,问商品的标价为多少?10.某商品的进价为1050元,按进价的150%标价,商店允许营业员在利润率不低于20%的情况下打折销售,问营业员最低可以打几折销售此商品?参考答案【同步达纲练习一】1.甲、乙两队原有汽车各100辆,60辆.2.下降2cm(提示:设长方体容器中水的高度下降xcm ,根据题意,得510162020⨯⨯=⋅⋅x ).3.这个三位数是153(提示:应设个位上的数为x 较好).4.还需6天(提示:设甲、乙二人合作还需x 天完成,得方程1)301201(33018201=++⨯+⨯x ). 5.36千米.6.应取甲种10克,乙种50克(提示:设需甲种x 克,则需乙种(60-x)克,于是得方程30%x+60%(60-x)=10%×60,解之,得x=10,∴ 60-x=60-10=50).7.定货任务是900套,原计划40天完成(提示:设原计划x 天完成,得方程20x+100=23x-20,解之,得x=40,∴ 20x+100=900).8.设每一份为x ,则甲、乙、丙三组人数分别为2x 人,3x 人,5x 人.根据题意,得2x+3x+5x=60解之,得x=6故甲、乙、丙三组人数分别为12人、18人和30人.9.设此商品的进货价为P(P ≠0)根据题意,得P(1+x %)=0.92P[1+(x+10)%]两边同除以P ,得1+x %=0.92+0.92(x+10)%解之,得x=15.说明:这里未知数P 称为“辅助未知数”.10.设拆除x 平方米旧校舍,则新建(4x+2000)平方米新校舍.根据题意,得20000-x+(4x+2000)=20000(1+40%)解之,得x=2000,∴ 4x+2000=10000.故拆除2000平方米旧校舍,新建10000平方米新校舍.11.(1)见分析.(2)设左上角的数为x ,则其他三个数可表示为x+2,x+12,x+14(3)设左上角的数为x ,则x+(x+2)+(x+12)+(x+14)=172,4x+28=172,x=36.所以这四个数分别是36、38、48、50.(4)不存在这样的四个数.如(3)设左上角的数为x ,则其他三个数可表示为x+2,x+12,x+14.x+(x+2)+(x+12)+(x+14)=322,4294 x ,不合题意 12.设需加浓度为20%的硫酸溶液.x 千克,8×98%+20%·x=(x+8)·60%,x=7.6.答:需加入浓度为20%的硫酸溶液7.6千克.【同步达纲练习二】1.设该商品的进价为x 元,则由题得:800-x=x ×60%,解得x=500,所以该商品的进价为500元;2.由现在的价格可以计算得到定价,由定价可以计算得到进价,由此可以知道该商人每卖出一件服装赔4元,所以选D ;3.设原价为a ,应降价x %,所以125%a ×(1-x %)=a ,解得x=20,所以应降价20%;4.设上衣的销售价为x 元,则皮鞋的销售价为240-x 元,上衣的成本为x ÷1.2元,皮鞋的成本为(240-x)÷0.8,所以601258.0)240(2.1240-=÷--÷-x x x ,当x>144时赚60125-x ,当x<144时,则亏x 12560-,当x=144时,不赔不赚,所以选D ; 5.D ; 6.设降价x 元,原来的观众人数为a ,a a a a 30413023)30(⨯=-⨯-,解得x=5(元),所以降价5元;7.设杯中原有水x 克,则x ×90%×90%+38=x ,解得x=200(克),所以杯中原有水200克;8.该食堂4月份节约x 公斤煤,则由题得:x+x ×120%+x ×120%×125%=3700,解得x=1000(公斤),所以食堂6月份节约1000×120%×125%=1500公斤煤;9.设商品的标价为x 元,则由题得:x ×85%-170=170×15%,解得x=230(元),所以商品的标价为230元;10.营业员最低可以以成本的x %销售此商品,则由题得:1050×150×x %=1050×120%,解得x=80,所以营业员最低可以打8折销售此商品.。
北师大版七年级数学上册第5章 5.5 应用一元一次方程—“希望工程”义演 培优训练(含答案)

北师版七年级上册第五章一元一次方程5.5应用一元一次方程——“希望工程”义演培优训练卷一.选择题(共10小题,3*10=30)1.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( )A.54+x=80%×108B.54+x=80%(108-x)C.54-x=80%(108+x)D.108-x=80%(54+x)2.某公路收费站的收费标准如下:中型汽车为20元/辆,小型汽车为10元/辆.一天上午的某个时段内,该收费站共通过了50辆车,这些车共缴费700元,那么该时段内共通过小型汽车( )A.20辆B.25辆C.30辆D.10辆3. 某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D .2×22x =16(27-x)4.某车间有20名工人生产螺栓和螺母,每人每天能生产螺栓12个或螺母18个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =18(20-x)B .18x =12(20-x)C .2×18x =12(20-x)D .2×12x =18(20-x)5.某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( ) A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 6.在甲处工作的有272人,在乙处工作的有196人,如果要使乙处工作的人数是甲处工作人数的13,应从乙处调多少人到甲处?若设从乙处调x 人到甲处,则下列方程正确的是( ) A .272+x =13(196-x) B.13(272-x)=196-x C.13×272+x =196-x D.13(272+x)=196-x7.在一农场,鸡的只数与猪的头数的和是70,而鸡的脚数和猪的脚数的和是196,则鸡比猪多( )A.14只B.16只C.22只D.42只8.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额5个,问规定时间是多少.设规定的时间为x小时,则有( ) A.38x-15=42x+5B.38x+15=42x-5C.42x+38x=15+5D.42x-38x=15-59.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A.6名B.7名C.8名D.9名10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场二.填空题(共8小题,3*8=24)11.某服装厂有工人54人,每人每天可加工上衣8件或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为______人,根据题意,可列方程为________________,解得___________.12.根据图中提供的信息,可知一个杯子的价格是________.13.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为______________,解得________.14.一件工程,甲队单独做要8天完成,乙队单独做要9天完成,甲队做3天后,乙队来支援,两队合做x 天完成任务的34,则由此条件可列出的方程是_______________________. 15.甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为_________.16. 已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为________岁.17.打印一份材料,甲要16小时,乙要20小时,甲打印6小时,乙接着打印,乙还要_________小时完成.18.我市围绕“科学节粮减损,保障粮食安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小粮仓农户实际出资是___________.三.解答题(共7小题,46分)19. (6分) 某校为创建“书香校园”,现有图书5600册,计划创建大小图书角共30个.其中每个小图书角需图书160册,大图书角所需图书比小图书角的2倍少80册.问该校创建的大小图书角各多少个?20. (6分)) 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?21. (6分) 世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.22. (6分)某县中学生足球联赛共赛10轮(即每队需比赛10场),其中胜一场得3分,平一场得1分,输一场得0分,向明中学足球队在这次联赛中所负场数比踢平场数少3场,结果共得19分,向明中学足球队在这次联赛中胜了几场?23. (6分)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?24. (8分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?25. (8分) ) 公园门票价格规定如下表:某校七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)若两班联合起来,作为一个团体购票,可省多少钱?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案1-5BCDDD 6-10DABAC11. (54-x),8x =10(54-x),x =3012.8元13. (16+14)x =1,x =12514. x +38+x 9=3415.10天16. 1217. 12.518.80元19. 解:设创建小图书角x 个,则创建大图书角(30-x)个,根据题意可得160x +(30-x)×(2×160-80)=5600,解得x =20,则30-20=10,答:创建小图书角20个,则创建大图书角10个20. 解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x =1, 解这个方程,得x =115,115小时=2小时12分, 答:甲、乙一起做还需2小时12分才能完成工作21. 解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150-x)元, 依题意得50%x +60%(150-x)=80,解得x =100,150-100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元22. 解:设该足球队平x场,依题意得3[10-x-(x-3)]+x=19,解得x=4,所以[10-x-(x-3)]=5,答:向明中学足球队在这次联赛中胜5场23. 解:设应安排x天精加工,则有(15-x)天粗加工.依题意得6x+16(15-x)=140.所以x=10,15-x=15-10=5答:该公司应安排10天精加工,5天粗加工24. 解:(1)能履行合同.设甲、乙合做x天完成,则有(130+120)x=1,解得x=12<15,因此两人能履行合同(2)由(1)知,二人合作完成这项工程的75%需要的时间为12×75%=9(天),剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=1 24,因为130<124<120,故调走甲更合适25. 解:(1)设七(1)班有x人,则13x+11(104-x)=1240或13x+9(104-x)=1240,初中数学解得x=48或x=76(不合题意,舍去).答:七(1)班48人,七(2)班56人(2)1240-104×9=304(元).答:可省304元钱(3)要想享受优惠,由(1)可知七(1)班48人,只需多买3张,51×11=561,48×13=624>561,所以48人买51人的票可以更省钱11/ 11。
陈芹5.5希望工程义演教案

第五章一元一次方程§5.5应用一元一次方程---“希望工程”义演授课人:薛城区周营镇中心中学陈芹课型:新授课授课时间: 2012年12月5日,星期三,第三节课教学目标:1.借助表格学会分析复杂问题中的数量关系和等量关系,建立方程模型解决实际问题,发展分析问题,解决问题的能力.2.通过解决实际问题,体会直接间接设未知数的解题思路,建立方程解决实际问题,使学生明确必须检验方程的解是否符合题意.教学重点:1.用图表分析问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.2.设恰当的未知数,列方程求解.教学难点:选择比较恰当的设求知数的方法.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一.创设情境,引入新课.多媒体展示一组贫困地区儿童上学的图片,与我们学生对比,建立“希望工程”的情境,导入新课.师: 希望工程是由中国青少年发展基金会于1989年10月发起并组织实施的一项社会公益事业.它的宗旨:根据政府关于多渠道筹集教育经费的方针,从社会集资,建立希望工程基金,以民间救助方式,资助贫困地区失学儿童,继续学业,改善贫困地区的办学条件.师:有谁知道希望工程的目标是什么?生:希望工程的目标是:改善办学条件,消除失学现象,配合政府完成普及九年制义务教育任务.师:对﹗自1989年推出希望工程至今,10年来希望工程共救助失学儿童230万名,援建希望小学8000所,接受海内外捐款18亿元,影响遍及海内外,成为当今中国最著名.最具影响力的公益事业.生: 观看图片,发表对“希望工程”的认识和想法.设计意图:通过创设教学情境,激发学生的学习兴趣,让学生在一个比较熟悉的氛围中接触学习主题,有利于他们启动思维.通过这一情境的引入,让学生感受到自己的幸福,要更加珍惜自己的学习时光,并尽力去帮助那些贫困地区的失学儿童.极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 为了能让更多的失学儿童回到课堂,社会各界人士都在为“希望工程”而努力,现在有一文艺团体就为“希望工程”募捐组织了一场义演.这节课我们学习§5.5应用一元一次方程---“希望工程”义演.(板书课题)二.自主探索,合作交流.探究一:教师播放课件,给出例题:1.某文艺团体为“希望工程”募捐组织了一次义演,售出1000张票,筹得票款6950元.成人票和学生票各售出多少张?师:请两位同学就自己对教材中问题的理解,一人为售票员,一人为学生买票,把这个场景模拟表演一下.生:两人表演.设计意图:题目以短剧的形式出现,使学生更进一步理解了题意.让学生将应用题中的场景,模拟到现实生活中来,培养学生解决实际问题的能力.感悟数学与生活的紧密联系,了解用数学知识解决生活中的实际问题的必要性.师:让学生分析题目中的每一句话所包含的含义.数量关系.等量关系,以及在这个问题中,售出1000张票的意义是什么?怎样理解票款6950元?生:自主探究.合作交流,小组讨论.师:从上面的问题中,你能得出哪些等量关系?生:成人票数+学生票数=1000张(1)生:成人票款+学生票款=6950元(2)设计意图:通过自主学习,培养学生自立,自信的精神,与组内同学交流,培养合作.互助精神,提高学生分析问题.解决问题的能力.师:一般当问题中的未知量只有一个时,求什么就设什么为x,采用直接设未知数法.当问题中所求的未知数不止一个,而问题中的等量关系也不止一个,我们可以采取一种新的分析应用题的方法------列表分析法.(1)设售出的学生票为x张,则可得:生:自主探究学习,然后进行组内合作,交流各自设未知数解决问题的办法.教师要引导学生学会读图.审题,引导学生探讨例题的解决方法,融入到学生的讨论中去.通过讨论师生共同得出结论:设售出的学生票为x 张,则可得:根据等量关系(2),可列出方程: 解得:x =350因此,成人票650张,学生票350张.设计意图:让学生了解找等量关系的方法,设元的方法,以及加强学生在用一元一次方程解决实际问题的过程中,进一步明确必须检验方程的解是否符合实际.师:通过交流大家发现本题含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程.那么,看看刚才我们利用等量关系1设未知数,用等量关系2列方程,还有其他的解题方法吗?生:小组讨论,合作探究,得出结论:可以设售出的成人票款为y 元. (2)设售出的成人票款为y 元,则可得:生:自主探究学习,然后进行组内合作,交流各自设未知数解决问题的办法.教师要引导学生学会读图.审题,引导学生探讨例题的解决方法,融入到学生的讨论中去.通过讨论师生共同得出结论: 设售出的成人票款为y 元,则可得:5810006950x x +-=()根据等量关系(1),可列出方程: 解得:y =1750 1750÷5=350(张) 1000-350=650(张)因此,成人票650张,学生票350张.师:比较两种解题方法,你从中学到了什么? 生:第一种方法比较简单. 师:还可以怎么设?生:小组讨论,合作交流,回答问题. 生1:还可以设成人票数为x 张. 生2:还可以设学生票款为y 元.设计意图:当问题中所求的未知数不止一个,而问题中的等量关系也不止一个,让学生真正感到,列表分析法对于解题的重要性,从而接受这样一种新的分析应用题的方法,在这个过程中,主要让学生体会间接设未知数解方程的思路,体会方程模型的作用.师点拨:含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程是如何实施的;解法一的求解过程比较简单;不论选择哪种方法,在解题前,首先要明确数量关系,而在这里运用列表法是一种比较有效的工具. 探究二:如果票价不变,那么售出1000张票所得票款可能是6930元?学生票.成人票各是多少张呢?为什么?生: (先独立思考,再小组内交流后回答问题.) 生: (通过实物投影展示答案.)解:不能.设售出的学生票为x 张,则 8(1000-x )+5x = 6930解得:x =35623因为票数只能为整数,不能为小树或分数. 所以x 不能等于35623,要舍去.师点拨:在实际问题中,方程的解是有实际意义的,因此应将解带入原方程看是否符合题意.小组讨论:用一元一次方程解决实际问题的一般步骤是什么?想一想,说一说!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)6950100058y y-+=设计意图:教师引导学生根据以往的经验总结出用方程解决实际问题的一般步骤,加深学生对每一步的理解.让学生能从实际问题中抽象出数学问题,然后分析问题中的等量关系,并列出方程求出解,然后验证解的合理性,让学生学会建立方程模型解决实际问题,发展学生分析问题,解决问题的能力.三.巩固训练,夯实基础师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:小明用172元钱买了两种书,共10本,单价分别为18元.10元,每种书小明各买了多少本?生:(独立完成后回答,如有疑难可在小组内交流.讨论.)生:实物投影展示答案.解:设单价为18元的书x本,则买了单价为10元的书(10-x)本,根据题意得18x+10(10-x)=172解得x = 9 ,因此,单价为18元的书有9本,单价为10元的书有1本.师:通过前面的练习,同学们想一想,说一说:列一元一次方程解决问题应该分为哪几步?生: 以小组为单位,进行组内交流,讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:先找等量关系.生2:设未知数.生3:根据等量关系列方程.生4:还要检验解的合理性.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的方程.求出的解符合要求吗?生:自我检查,同位之间互查.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.设计意图:让学生从实际问题中抽象出数学问题,学会找出等量关系,根据等量关系列出方程并求出解,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性.积极性;规定解方程的书写要求并用多媒体展示,目的在于让学生体会数学的规范性,严密性,给学生提供进一步巩固对建立方程模型的基本过程和方法的熟悉机会.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生体会到设未知数解方程的思路,体会方程模型的作用.掌握了设未知数解方程的思路――先设未知数,再列方程,使课堂气氛显得格外轻松.同时即增强了思维的灵活性,又降低了学习的难度,调动了学生学习的积极性.四.拓展延伸,能力提高(2002年江西省中考试题)有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达通道口时发现由于拥挤,每分钟只能3人通过,此时自己前面还有36人等待通过(假定先到的先过,王老师过道口的时间忽略不计)通过道口后,还需7分钟到学校.(1)此时,若绕道而行,要15分钟到达学校以节省时间考虑,王老师应选择绕道去学校还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维护秩序期间,每分钟仍有人通过道口),结果王老师比拥挤的情况提前了6分钟通过道口,问维持秩序的时间是多少?生:( 以小组为单位,进行组内交流.讨论后回答问题.)设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会找等量关系列方程,进一步学生体会到设未知数解方程的思路,体会方程模型的作用.五.课堂小结,收获共享师:请同学们谈一谈,通过本节课的学习,你有哪些收获?学生畅谈收获:生1.通过对“希望工程”的了解,让我首先珍惜自己的学习时光,并力所能及的去帮助那些贫困地区的学生们,让他们也能读上书,与我们共同为建设我们的国家努力.生2.同时我们也学习到遇到较为复杂的实际问题时,我们可以借助表格分析问题中的数量关系,并找出若干个较直接的等量关系,借此列出方程.并进行方程解的检验.生3.同样的一个问题,设的未知数不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择.(生1.生2.生3自发站起来谈学习收获,教师作出点评.补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六.当堂检测:1.今有雉兔同笼,上35头,下94足,问今有雉兔几何?2..一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元巧克力每块3元,问班主任分别买了多少果冻和巧克力?3.我区某学校原计划向内蒙古察右后旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%.问:初中学生和高中学生原计划捐赠图书多少册?设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于检测学生是否学会找等量关系列方程,是否能够会设未知数解方程.七.布置作业:P149 习题5.8板书设计:教学反思:列方程解应用题是一个难点,在本节课的设计中,通过丰富多彩的活动以求解一个实际问题为切入点,有梯度性地引导学生进行探索,去突破难点,使不同层面的同学有不同程度的收获.本节课让学生把抽象的问题转化为实际的数学问题并经历建立方程模型的活动,展现运用方程解决实际问题的一般过程.首先,教师让学生自己去理解问题情境,把实际问题抽象成数学问题.然后,教师指导学生借助表格去表达问题的信息,寻找其中的等量关系,列出方程解决实际问题.最后,教师引导学生一题多解,尽量用不同形式列出方程,并加以比较研究,对提高学生的分析问题和解决问题的能力有很大帮助,这也是本节课较成功的地方.我认为本节课的不足是:由于学生活动,小组讨论耽误了一些时间,所以当堂检测题只是出示完答案,没来得及讲解,时间安排还不太合理.。
北师大版七年级数学上册:第五章 5.5应用一元一次方程——希望工程”义演 导学案(含答案)

七年级数学(上)5.5应用一元一次方程——希望工程”义演导
学案
一、学习目标
1.明确有关分配问题中两个未知量之间的关系,初步认识合理选元的重要性.
2.会列一元一次方程解有关分配问题的应用题.
3.能借助图表分析复杂问题的数量关系,建立方程解决实际问题,并进一步体会数学与现实生活的紧密联系,培养学习数学的兴趣。
二、温故知新
总价、单价、数量的关系:总价= ×
1、一支钢笔10元,一支铅笔2元,买5支钢笔和3支铅笔共用元。
2、一支钢笔10元,一支铅笔2元,小明用56元钱买了4支钢笔和若干支铅笔,则小明买了支铅笔。
3、一支钢笔10元,一支铅笔2元,小明用56元钱共买了12支钢笔和铅笔,求小明买了钢笔和铅笔各多少支。
4、解下列方程:
(1)6950
)
1000
(8
5=
-
+x
x(2)
6950
1000 58
y y
-
+=
三、自主探究:阅读课本147-148,完成下列问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:某文艺团体为“希望工程”募捐组织了一次义 演,售出1000张票,筹得票款6950元。学生 票5元/张,成人票8元/张。问:售出成人和 学生票各多少张? 问题一:上面的问题中包含哪些等量关系? 成人票数+学生票数=1000张 成人票款+学生票款=6950元 学生 x 5x 成人 1000-x 8(1000-x) (1) (2)
设所得学生票款为y元,填写下表: 票款/元 票数/张 学生 y 成人 6950-y
Y/5
(6950-y)/8
根据相等关系成人票数+学生票数=1000张 , 列方程得: Y/5+ (6950-y)/8=1000 解方程 8y+5(6950-y)=40000 8y+34750-5y=40000 3y=5250 y=1750 1750/5=350 1000-350=650 因此,售出学生票350张,成人票650张
例:今有雉兔同笼,上35头,下94足,问今有 雉兔几何? 分析: 鸡头+兔头=35个 (1) 鸡足+兔足=94只 (2)
解:设鸡有x只,则兔有(35-x)只,由题意得:
2x+4(35-x)=94 2x+140-4x=94
-2x=-50 x=25 答:有鸡23只,兔12只。
解:设有鸡足y只,则有兔足有(94-y)只, 由题意得: Y/2+(94-y)/4=35 解方程: 2y+94-y=140 y=46 46/2=23 94-23=71
作业:1.
P171 1.
2. 3
2.(2002年江西省中考试题)有一个只允许 单向通过的窄道口,通常情况下,每分钟 可以通过9人。一天,王老师到达通道口时 发现由于拥挤,每分钟只能3人通过,此时 自己前面还有36人等待通过(假定先到的 先过,王老师过道口的时间忽略不计) 通过道口后,还需7分钟到学校。 (1)此时,若绕道而行,要15分钟到达学校 以节省时间考虑,王老师应选择绕道去学校 还是选择通过拥挤的道口去学校 ? (2)若在王老师等人的维持下,几分钟后, 秩序恢复正常(维护秩序期间,每分钟仍有 人通过道口),结果王老师比拥挤的情况提 前了6分钟通过道口,问维持秩序的时间是
+高中学生实捐赠册数=4125册
解:设初中学生原计划捐书x册,则高中学生原 计划捐书(3500-x)册,由题意得: 120%x+115% (3500-x)=4125 x=2000 3500-2000=1500(元) 答:初中学生原计划捐赠2000册图书,
高中学生原计划捐赠1500册图书.
小结:1.通过对“希望工程”的了解,让我 首先珍惜自己的学习时光,并力 所能及的去帮助那些贫困地区的 学生们,让他们也能读上书,与 我们共同为建设我们的国家努力。 2.同时我们也学习到遇到较为复杂 的实际问题时,我们可以借助表格 分析问题中的数量关系,并找出若 干个较直接的等量关系,借此列出 方程.并进行方程解的检验。 3. 同样的一个问题,设的未知数不同, 所列方程的复杂程度一般也不同, 因此在设未知数时要有所选择.
想一想:如果票价不变,那么售出1000张票所得 票款可能是6930元吗?为什么? 答 案:不能 设售出的学生票为x张,则由题意得: 8(1000-x)+5x=6930 解得: X =1070/3 票不可能出现分数,所以不可能 结论:在实际问题中,方程的解是有实际意义的, 因此应将解带入原方程看是否符合题意。
“希望工程”义演
希望工程是由中国青少年发展基金会于1989年10 月发起并组织实施的一项社会公益事业。 它的宗 旨:根据政府关于多渠道筹集教育经费的方针, 从社会集资,建立希望工程基金,以民间救助方 式,资助贫困地区失学儿童,继续学业,改善贫 困地区的办学条件,促进贫困地区基础教育事业 的发展。 希望工程的实施范围是:我国农村贫困 地区,重点是国家、省级贫困县。目前希望工程 工作的重点是我国的西部地区。 希望工程的目标 是:改善办学条件,消除失学现象,配合政府完 成普及九年制义务教育任务。自1989年推出希望 工程至今,10年来希望工程共救助失学儿童230万 名,援建希望小学8000所,接受海内外捐款18亿 元,影响遍及海内外,成为当今中国最著名、最 具影响力的公益事业。
问题二:设售出的学生票为x张,填写下表
票数/张 票款/元
问题三:列方程解应用题,并考虑还有没有另外 的解题方法?
解:设售出学生票为x张,则成人票为(1000-x)张, 由题意得: 5x+8(1000-x)=6950 5x+8000-8x=6950 5x-8x=6950-8000 -3x=-1050 x=350 1000-350=650(张) 答:售出学生票350张,成人票650张
2.我区某学校原计划向内蒙古察右后旗地区的学生 捐赠 3500册图书,实际共捐赠了4125册,其中初 中学生捐赠了原计划的120%,高中学生捐赠了原计 划的115%. 问:初中学生和高中学生原计划捐赠图 书多少册? 分析: 相等关系:初中学生原计划捐赠册数
+高中学生原计划捐赠 册数=3500册
初中学生实捐赠册数
答:有鸡23只,兔12只。
练习:
1.一班有40位同学,新年时开晚会,班主任到超市花了
115元买果冻与巧克力共40个,若果冻每2个5元 巧
克力每 块3元,问班主任分别买了多少果冻和巧克力 分析: 果冻个数+巧克力=40个 果冻的钱+买巧克力的钱=115元 解: 设买了x个果冻,则买了(40-x)块巧克力, 由题意得: X/2×5+(40-x) ×3=115 解得: x = 10 40-10=30(块) 答:他买了10个果冻,30块巧克力.