05_二阶线性常微分方程的级数解法解析

合集下载

二阶线性常微分方程的级数解法

二阶线性常微分方程的级数解法

由 Frobenius & Fuchs 定理,微分方程的两个解可写成 :
y1(x) = xρ1a0 + a1 x + a2 x2 + …, y2(x) = xρ2a0′ + a1′ x + a2′ x2 + …,
因为 ρ2 - ρ1 是非整数 ,故 y2(x) / y1(x) 不可能等于常数 ,y2(x) 和 y1(x) 线性无关 ,其线性组合构成微分方程的通解 。
代入微分方程 (1. 13) 式,将得到以下形如 ck xk = 0 的幂级数形式 ,
k

(k + ρ) (k + ρ - 1) + (k + ρ) g0 + g1 x + g2 x2 + … + h0 + h1 x + h2 x2 + … ak xk+ρ = 0
k=0
因为是解析函数的展开,由唯一性定理,各幂次的系数 ck = 0。 看最低幂次 xρ 项的系数(对应于上式的 k = 0 项):[ρ(ρ - 1) + ρ g0 + h0] a0 = 0 由 Frobenius & Fuchs 定理,形式解的系数 a0 ≠ 0,故可得到一个关于指标的一元二次方程:
x2 y″ + x g(x) y′ + h(x) y = 0, 其中:g(x) 和 h(x) 在 x = 0 点解析
据 Frobenius & Fuchs 定理,该微分方程必定存在一个如下形式的解:

y = xρ ak xk, 其中 a0 ≠ 0 (若为常点 ,则对应于 ρ = 0)
k=0
对级数形式的 y(x) 求导,

大学物理-二阶线性常微分方程的一般性质

大学物理-二阶线性常微分方程的一般性质

设方程 (7-1-6) 的正则解为:
(7-1-7)
(7-1-8)
将 (7-1-7)、(7-1-8) 代入 (7-1-6) 式中,得到
消去因子 z ,有
(7-1-9)
要使上式在 |z| < R 的区域内成立,左边 z 的各次幂的 系数必须等于零。
由 z 的最低次幂的系数为零,得到
(a0,b0为已知)
(7-1-11) 一般可以得到两组系数。
(7-1-1)
(7-1-2)

(7-1-3)
其中:
是常数
可以看到,在 z0 是方程的奇点的情形下,如果 1 或 者 2 不是整数,或者 g ≠ 0,方程都有多值函数解。
显然,把解 (7-1-1), (7-1-2) 或 (7-1-3) 代入方程中去确
定 1, 2 , g, Ck , Dk 时会发现所得到的是一组无穷多个未
性、单值性等) 由方程的系数 p(z) 和 q(z) 的解析性确定。
设 p(z) 和 q(z) 在一定的区域中,除若干个孤立奇点外, 是 z 的单值解析函数。区域中的点可分为两类:
1. 方程的常点:如果 p(z) 和 q(z) 都在点 z0 的邻域解析, 则 z0 称为方程的常点。
2. 常点邻域的级数解
以 z2 乘方程
(7-1-5)
得到
(7-1-6)
其中
p1(z) zp(z) q1(z) ห้องสมุดไป่ตู้2q(z)
(7-1-6)
由条件 (7-1-4) 可知:p1(z) , q1(z) 在 z = 0 点及其邻域内是解 析的,将它们分别作泰勒展开,有
q1(z) bs zs s0
p1(z) as zs s0
(z – z0) p(z) 和 (z – z0)2 q(z) 在 0 < |z – z0| < R 中解析。(7-1-4)

微分方程的级数解法

微分方程的级数解法

微分方程的级数解法微分方程是数学中的一门重要分支,广泛应用于物理学、工程学、经济学等领域。

在微分方程的解法中,级数解法是一种常见且有效的方法。

本文将介绍微分方程的级数解法,并通过具体的例子来说明其应用。

一、级数解法的基本思想级数解法是通过将微分方程的解表示为级数形式,然后利用级数的性质来求解微分方程。

其基本思想是将未知函数表示为幂级数的形式,然后将其代入微分方程中,通过比较系数的方法确定级数的各项。

二、级数解法的步骤级数解法的步骤可以概括为以下几个方面:1. 假设未知函数的级数解形式,通常选择幂级数形式,如y(x)=∑(n=0)^(∞)a_n(x-x_0)^n。

2. 将级数解代入微分方程中,得到方程的各项。

3. 比较方程两边各项的系数,得到递推关系式。

4. 解递推关系式,确定级数解中的各项系数。

5. 根据级数解的收敛性,确定级数解的有效区间。

三、例子:求解二阶常系数线性齐次微分方程考虑一个二阶常系数线性齐次微分方程:y''(x)+ay'(x)+by(x)=0,其中a、b为常数。

假设未知函数的级数解形式为y(x)=∑(n=0)^(∞) a_nx^n。

将级数解代入微分方程中,得到:∑(n=0)^(∞) a_n(n(n-1)x^(n-2)+anx^(n-1)+bx^n)=0。

比较方程两边各项的系数,得到递推关系式:a_0=0,a_1=0,(n(n-1)a_n+a(n+1)a_(n+1)+ba_n)=0。

解递推关系式,确定级数解中的各项系数:由a_0=0可知,a_n=0(n≥0)。

根据递推关系式,可得:a_2=-ba_0/(2(2-1))=-b/2,a_3=-ba_1/(3(3-1))=0,a_4=-ba_2/(4(4-1))=b^2/(2*4),...根据级数解的收敛性,确定级数解的有效区间:根据级数解的收敛性定理,级数解的有效区间至少包含级数展开点x=0。

因此,级数解的有效区间为整个实数集。

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。

因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程''0y xy -=的通解解:设2012n n y a a x a x a x =+++++……为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到x -∞<<∞2210a ⋅=,30320,a a ⋅-= 41430,a a ⋅-= 52540,a a ⋅-=或一般的可推得32356(31)3k a a k k =⋅⋅⋅⋅⋅-⋅,13134673(31)k a a k k +=⋅⋅⋅⋅⋅⋅+,其中1a ,2a 是任意的,因而代入设的解中可得:这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。

解 设级数2012n n y a a x a x a x =+++++……为方程的解。

首先,利用初值条件,可以得到00a =, 11a =,因而将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 因而 最后得21111(1)!!k a k k k +=⋅=- , 20k a =, 对一切正整数k 成立。

将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。

是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的形式怎样?其收敛区间又如何?这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。

二阶常微分方程解法

二阶常微分方程解法

二阶常微分方程解法二阶常微分方程是数学中常见的方程形式,可以通过不同的方法来求解。

本文将介绍二阶常微分方程的解法,并通过例题来说明具体步骤。

一、齐次二阶常微分方程的解法齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = 0齐次二阶常微分方程的解法步骤如下:1. 首先,设y=e^(λx)为方程的解,其中λ为待定常数。

2. 求解特征方程λ^2 + P(x)λ + Q(x) = 0的根。

设该方程的根为λ1和λ2。

3. 根据特征根λ1和λ2的值,分别列出对应的解y1=e^(λ1x)和y2=e^(λ2x)。

4. 则原方程的通解为y=C1y1 + C2y2,其中C1和C2为任意常数。

例题1:求解二阶常微分方程y'' - 4y' + 4y = 0。

解题步骤:1. 特征方程为λ^2 - 4λ + 4 = 0,解得λ=2。

2. 因此,对应的特解为y1=e^(2x)。

3. 原方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。

二、非齐次二阶常微分方程的解法非齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = f(x)非齐次二阶常微分方程的解法步骤如下:1. 首先,求解对应的齐次方程y'' + P(x)y' + Q(x)y = 0的通解,假设为y=C1y1 + C2y2。

2. 再根据待定系数法,设非齐次方程的特解为y*,代入原方程得到特解的形式。

3. 求解特解形式中的待定系数,并将特解形式代入原方程进行验证。

4. 特解形式正确且验证通过后,非齐次方程的通解为y=C1y1 +C2y2 + y*。

例题2:求解二阶常微分方程y'' - 4y' + 4y = x^2 + 3x + 2。

解题步骤:1. 对应的齐次方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。

二阶线性常微分方程求解

二阶线性常微分方程求解

二阶线性常微分方程求解
二阶线性常微分方程是一种重要的微分方程,它是一个双重阶的微分方程,包含一个高阶导数和一个一阶导数,可以用来描述物理过程中特定变量之间的变化。

它可以用来描述复杂系统的行为,从而为我们提供一种有效的解决方法。

二阶线性常微分方程的一般形式为:y''+P(x)y'+Q(x)y=f(x),其中y是一个未知函数,P(x)和Q(x)是确定的函数,f(x)是给
定的函数。

二阶线性常微分方程的解法有多种,但是最常用的是牛顿迭代法。

牛顿迭代法是一种迭代法,它可以解决二阶线性常微分方程。

牛顿迭代法的基本思想是:将二阶线性常微分方程分解为两个一阶线性常微分方程,然后采用牛顿迭代法迭代求解。

牛顿迭代法的步骤如下:(1)确定初值,即设定y(x0)和
y'(x0)的初始值;(2)求解y'(x0)的值,即求解一阶线性常微
分方程;(3)求解y(x0)的值,即求解二阶线性常微分方程;(4)将求得的y(x0)和y'(x0)作为下一次迭代的初始值,重复
步骤(2)和(3),直到满足给定精度要求为止。

二阶线性常微分方程在工程学和物理学中都有着广泛的应用,例如,可以用它来模拟物理系统的运动,从而获得精确的解决方案;也可以用它来解决水利工程中的洪水问题,从而获得最优的解决方案。

总之,二阶线性常微分方程可以用来模拟各种复杂物理过程,牛顿迭代法是一种有效的解决方法,它可以帮助我们获得更准确的解决方案。

二阶线性常微分方程

二阶线性常微分方程

二阶线性常微分方程二阶线性常微分方程(Second-order linear ordinary differential equation)是微积分中常见的一类数学方程。

它具有以下标准形式:y'' + p(x)y' + q(x)y = f(x)其中,y是未知函数,x是自变量,y''表示y对x的二阶导数,y'表示y对x的一阶导数。

而p(x),q(x),f(x)是给定的函数。

解二阶线性常微分方程需要求出其一般解或特解。

下面我们将介绍两种常见的解法方法。

1. 特征方程法对于二阶线性常微分方程而言,我们可以首先考虑其对应的特征方程。

将方程转化为特征方程后,解出特征方程的根,再根据不同情况求解方程。

特征方程形式如下:r^2 + p(x)r + q(x) = 0在解特征方程时,可能会出现以下三种情况:情况1:特征方程有两个相异实根r1和r2。

此时,原方程的通解可以表示为:y(x) = C1e^(r1x) + C2e^(r2x)其中C1和C2为待定常数。

情况2:特征方程有两个相等实根r。

此时,原方程的通解可以表示为:y(x) = (C1 + C2x)e^(rx)其中C1和C2为待定常数。

情况3:特征方程有两个共轭虚根α+βi和α-βi。

此时,原方程的通解可以表示为:y(x) = e^(αx)(C1cos(βx) + C2sin(βx))其中C1和C2为待定常数。

通过求解特征方程并根据不同情况求解方程,我们可以得到原方程的一般解。

2. 常数变易法除了特征方程法之外,我们还可以通过常数变易法来解决二阶线性常微分方程。

常数变易法的基本思路是,首先猜测通解形式,然后将通解带入原方程,求解待定常数。

例如,对于形如y'' + p(x)y' + q(x)y = f(x)的方程,我们可以猜测通解形式为y = u(x)y1(x),其中y1(x)是该方程对应的齐次线性方程的一个特解,u(x)是待定函数。

二阶线性常微分方程的级数解法和广义傅里叶级数

二阶线性常微分方程的级数解法和广义傅里叶级数
本章首先在柱坐标和球坐标系对二维和三维泛定方程分离变 量,导出著名的变系数常微分方程:贝塞尔方程和勒让德方程。
接着对常见的变系数线性微分方程进行分类,介绍了如何用 幂级数解法和弗罗贝尼乌斯级数解法求解正则奇点的二阶常微分 方程。
最后对常见的施图姆-刘维尔型微分方程的特征值和特征函 数的性质作了系统的介绍。
sin 9 ))| = sin 2 9 - 2 cos9 = (1 - x2 ) - 2x
这样式(5.1-20)可以写成
(1- x2 ) - 2x + n(n + 1)-
y = 0 (5.1-21)
式(5.1-21)是常见的勒让德方程的一般形式, 称为连带勒让德方程。
17
5.1.2
令m = 0 ,得到
(2) 若p(x)和q(x)中至少有一个不满足(x _ x0 )p(x), (x _ x0 )2 q(x)在
x0点解析, 则x0称为方程(5.3-1)的本性奇点。在本性奇点附近, 方
x 程至少有一解在x0 有本性奇点,
而另一解可能是y =
w
an
(x
_
)n+p
x0

n=0
但它往往是发散的, 这种情况在数理方程中不多见, 这里不讨论它。
上式代入式(5.1-7),得到
(5.1-8)
p p + R,, 2
R,+ 入p2
= - = O,, 山
RR
O
式中山为常数。上式是两个常微分方程,分别是
p2 + p + (入p2 - 山)R = 0
(5.1-9)
O,,+ 山O = 0
8
5.1.1
由于V(p,9)是单值函数,所以内(9)应满足周期性边界条件,因而有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程系数的重要性: 1.方程的解和完全由方程的系数来决定 2.方程的解的解析性完全是由方程的系数的解析性决定
定义1
若系数p( z )和q( z )都在点z0及其邻域内解析 则称z0为方程的常点
定义2
若p ( z )和q z 中至少有一个在点z0不解析 则称z0为方程的奇点,若( z z0 ) p ( z )和 ( z z0 ) 2 q ( z )都在方程的奇点z0解析,则称 z0为方程的正则奇点,否则称z0为方程的 非正则奇点.
2k k 0 k 0
Legendre方程 通解形式
其中 y0 ( x ) 1
k 1
(2k 2 l )(2k 4 l )
(2 l )( l )(l 1) (2k )!
(l 2k 1) x 2 k 1
x2k
(2k 1 l )(2k 3 l ) (1 l )(l 2) y1 ( z ) x (2k 1)! k 1
k
将以上俩式综合起来为 (2 l 2k )! Pl ( x) (1) l xl 2 k 2 k !(l k )!(l 2k )! k 0
例2
Bessel (贝赛尔)方程
d 2 w 1 dw 2 (1 2 ) w ,且z0 0 是方程的正则奇点.
5.2 方程常点邻域内的解
1.常点邻域内的级数解定理
若p ( z )和q ( z )在圆形域 | z z0 | R内单值解析,则常微分初值问题 d 2w dw q( z ) w 0 2 p( z ) dz dz w( z ) a , w( z ) a 0 0 0 1 在圆形域 | z z0 | R内存在唯一的解析解w( z ),其中a0,a1为任意 给定的复常数.
由于上式恒等,所以x的各次幂系数都等于零,即 ( k 1)( k 2) ak 2 [ k ( k 1) l (l 1)]ak 0 于是,得到系数之间递推关系 k (k 1) l (l 1) (k l )(k l 1) ak 2 ak ak (k 1)(k 2) (k 1)(k 2) 从而可写出所有的系数,可得方程解为 y ( x) a2 k x a2 k 1 x 2 k 1 a0 y0 ( x) a1 y1 ( x)
Legendre方程在自然边界条件下的解:
系数的一般表达式为 al 2 k (2 l 2k )! (1) l 2 k !(l k )!(l 2k )!
k
2k l
当l为偶数时,Legendre方程满足自然边界的解为 a0 y0 ( x) al 2 k x
k 0 l 2 l 2k
(l 2 k )
Legendre方程通解在 | x | 1总收敛,在 | x | 1收敛与否不考虑, 在 | x | 1时级数解的收敛性为:当l不是整数时,y0 ( x)和y1 ( x) 在x0 1均发散;当l为偶数时y1 ( x)在x0 1发散;当l为奇数 时,y0 ( x)在x0 1发散.
(2 l 2k )! (1) l xl 2 k 2 k !(l k )!(l 2k )! k 0
l 2 k
当l为奇数时,Legendre方程解为 y1 ( x)
( l 1) 2 k 0
a
l 2k
x
l 2 k

( l 1) 2

k 0
(2 l 2k )! (1) l xl 2 k 2 k !(l k )!(l 2k )!
k 0
定理1,此方程有如下形式解
于是
y( x) kak x k 1
k 0
y( x) k (k 1)ak x k 2
k 0
将以上三式代入Legendre方程,得
(k 1)(k 2)a
k 0

k [ k ( k 1) l ( l 1)] a x 0 k 2 k
此种方法称为级数解法
Legendre方程的级数解
在x0 0的邻域内求解Legendre方程
2 d y dy 2 (1 x ) 2 2 x l (l 1) y 0 dx dx 其中l为已知参数.
由于Legend方程的系数p ( x)
2x l (l 1) 和 q ( x ) 在x0 0 2 2 1 x 1 x 及其邻域内解析,所以x0 0是Legendre方程的常点,根据 y ( x ) ak x k
根据Taylor展开定理,圆形域 | z z0 | R内解析的解 w( z )可展为Taylor级数w( z ) ak ( z z0 ) k ,其中
k 0
( z z0 )0 和( z z0 )1的系数正好和初值条件一致,把级 数解代入微分方程并比较两端系数,就可求出所有 的系数ak,从而得到方程的解.
第五章 二阶线性常微分方程的级数解法
本章主要限于讨论方程常点和 奇点邻域内的级数解法。
本章结构

5.1 二阶线性常微分方程的常点与奇点 5.2 方程常点邻域内的解 5.3 方程正则奇点邻域内的解
5.1 二阶线性常微分方程的常点与奇点
二阶线性齐次常微分方程的一般形式为
d 2w dw p( z ) q( z ) w 0 2 dz dz 其中p( z )和q( z )称为方程的系数
例1
Legend (勒让德)方程
2 d w dw 2 (1 z ) 2 2 z l (l 1)w 0 dz dz
2z l (l 1) 解:方程的系数为p( z ) ,q( z ) 2 1 z 1 z2
p( z )和q( z )在复平面上有两个奇点z0 1,所以 z0 1是Legendre方程的奇点外,有限远处的其 他点都是方程的常点.
相关文档
最新文档