食品酶学期末复习提纲
《食品酶学》复习总结

食品酶学复习总结1、酶的特性及其对食品科学的重要性。
酶的特性:酶的催化效率高;具有高度的专一性。
对食品科学的重要性主要体现在:1)内源酶对食品质量包括:颜色、质地、风味、营养质量的影响2)外源酶制剂在食品工业中的应用,可以高效地提高食品品质和产量3)酶在食品分析中的应用,可以快速、专一、高灵敏度和高精确度检测进行分析2、酶、胞外酶、胞内酶、同工酶、酶活力单位、比活力、酶原概念。
酶是一类具有专一性生物催化功能的生物大分子。
根据酶分子化学组成可分为蛋白类酶和核酸类酶。
酶在生活细胞中产生,但有些酶被分泌到细胞外发挥作用。
如人和动物消化管中以及某些细菌所分泌的水解淀粉,脂肪和蛋白质的酶,这类酶称胞外酶。
其他大部分酶在细胞内起催化作用,称为胞内酶。
同工酶是指在生物体内或组织中催化相同反应而具有不同分子形式(包括不同的氨基酸序列、空间结构等)的酶.酶活力单位:酶活力高低用酶活力单位表示,国际酶学委员会规定:在特定条件下(最适pH,25℃,最适底物浓度,最适缓冲液离子强度),1min内能转化1umol底物或催化1umol产物形成所需要的酶量为一个国际单位(IU)。
比活力:每毫克酶蛋白所具有的酶活力单位数。
酶原:某些酶在细胞内合成或初分泌时没有活性,这些没有活性的酶的前体称为酶原。
3、酶的发酵生产对培养基的要求?培养基的营养成分是微生物发酵产酶的原料,主要是(1)碳源: 尽量选用具有诱导作用的碳源,不用或少用有分解代谢物阻遏作用的碳源。
(2)氮源: 动物细胞要求有机氮,植物细胞主要要求无机氮。
多数情况下将有机氮源和无机氮源配合使用才能取得较好的效果.(3)无机盐:需要有磷酸盐及硫、钾、钠、钙、镁等元素存在(4)生长因子: 包括某些氨基酸、维生素、嘌呤或嘧啶(5)产酶促进剂: 显著提高酶的产率。
酶的发酵生产根据细胞培养方式不同对培养基的要求不同,例如:发酵温度、pH、溶氧量等的要求以及培养基固液态,应根据实际生产要求设计不同的培养基。
食品酶学导论复习知识点

食品酶学导论考试重点、名词解释1、酶定义:是生物细胞合成的具有高浓度专一性和催化效率的生物大分子。
2、酶活力:指酶催化反应的能力,它表示样品中酶的含量。
3、比活力:单位蛋白质(毫克蛋白质或毫克蛋白氮)所含有的酶活力(单位/毫克蛋白)。
比活力是酶纯度指标,比活力愈高表示酶愈纯,即表示单位蛋白质中酶催化反应的能力愈大。
4、酶活性中心:是酶蛋白的催化结构域中与底物结合并发挥催化作用的部位。
5、别构部位:指酶的结构中不仅存在着酶的活力部位,而且存在调节部位,结合别构配体(效应剂)的部位。
6、酶原:酶是在活细胞中合成的,但不是所有新合成的酶都具有催化活力,这种新合成的无催化活力的酶前体称之为酶原。
7、同工酶:来自同一生物体同一生活细胞,能催化同一反应,但由于结构基因不同,因而酶的一级结构、物理化学性质以及其他性质有所差别的一组酶。
8、Km 值:就代表着反应速度达到最大反应速度一半时的底物浓度。
Vmax:是酶完全被底物饱和时的反应速度。
(它不是酶的特征常数,同一种酶对不同底物的Vmax 也不同。
)9、序列反应: 酶结合底物和释放产物是按顺序先后进行的。
10、乒乓反应:酶结合底物A,并释放产物后,才能结合另一底物,再释放另一产物11、酶的抑制剂:酶分子与配体结合后,常引起酶活性改变,使酶活性降低或完全丧失的配体,称酶的抑制剂,这种效应称抑制作用。
12、大分子结合修饰:利用水溶性大分子与酶分子的侧链基团共价结合,使酶分子的空间结构发生某些精细的改变,从而改变酶的特性与功能。
13、固定化酶:指在一定的空间范围内起催化作用,并能反复和连续使用的酶。
14、固定细胞:固定化死细胞、固定化活细胞。
15、固定化活细胞:固定在载体上并在一定空间范围内进行生命活动(生长、繁殖、新陈代谢)的细胞。
、重点知识概括1、酶的一般特征:酶的催化效率高,酶作用的专一性,大多数酶的化学本质是蛋白质。
2、酶的6 大类:氧化还原酶,转移酶,水解酶,裂合酶,异构酶,连接酶。
食品酶学复习资料教材

绪论1酶学(Enzymology)是研究酶的性质、酶的反应机理、酶的结构和作用机制、酶的生物学功能及酶的应用的科学。
酶的定义:具有生物催化功能的生物大分子,可以分为蛋白类酶(P酶)和核酸类酶(R酶)两大类别。
2什么是酶工程?酶的生产与应用的技术过程食品酶学:酶工程与食品生物技术相结合而形成的一门应用性很强的学科。
食品酶学主要内容:包括酶的基本知识,酶的分离与纯化以及酶在食品工业中的应用等内容。
食品酶学主要任务:讲授酶学基本理论,酶的分离与纯化以及酶在食品加工和保藏中的应用等内容。
3米氏方程:表示一个酶促反应的起始速度与底物浓度关系的速度方程。
这个方程称为Michaelis-Menten方程,是在假定存在一个稳态反应条件下推导出来的,其中值称为米氏常数,是酶被底物饱和时的反应速度,为底物浓度。
当时,,Km等于酶促反应速度达最大值一半时的底物浓度。
4酶与底物结合形成中间络合物的理论1.锁钥假说:认为整个酶分子的天然构象是具有刚性结构的,酶表面具有特定的形状。
酶与底物的结合如同一把钥匙对一把锁一样。
2.诱导契合假说:该学说认为酶表面并没有一种与底物互补的固定形状,而只是由于底物的诱导才形成了互补形状.3.酶生物合成的调节机制——“操纵子学说”5酶的特点:催化效率高、专一性强、反应条件温和、酶的活性是受调节控制绝对专一性:指一种酶只能催化一种底物进行反应,这种高度的专一性称为绝对专一性。
相对专一性:一种酶能催化一类结构相似的底物进行某种相同类型的反应,这种专一性称为相对专一性。
6酶的系统名称由两部分组成:底物+反应类型7酶分为六类:氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类1)氧化还原酶(oxidoreductases):催化底物的氧化或还原,而不是基团的加成或者去除,反应时需要电子的供体或受体。
2)转移酶(Transferase)催化功能团从一个底物向另一个转移。
3)水解酶(Hydrolase)催化底物的水解反应。
食品酶学复习重点

1、单成分酶:只有蛋白质成分,由蛋白质起催化功能。
双成分酶:除蛋白质部分外,还含有非蛋白组分的酶,也叫全酶。
即:全酶=酶蛋白+辅助因子辅助因子:包括辅酶,辅基,金属离子辅酶:与E蛋白结合较松弛,易分离的有机辅因子辅基:与E蛋白结合紧密,不易分离的有机辅因子酶原:没有活性的酶的前体同工酶:催化同一种化学反应,但其酶蛋白本身的分子结构不同的一组酶固定化酶:指在一定的空间范围内起催化作用,并能够反复和连续使用的酶。
固定化细胞:被限制自由移动的细胞,即细胞被约束或限制在一定的空间范围内,但仍保留催化活性并能被反复连续使用。
2、酶的催化作用为什么具有专一性?(1)锁钥假说(2)诱导契合学说:E表面由于底物诱导形成的互补形状①当底物结合到E的活性部位上时,E的构象发生一定的改变②催化基因的正确定向对催化是必要的③底物诱导酶蛋白构象变化导致催化基团的正确定向和底物结合到酶的活性部位上去(3)结构性质互补学说3、E的催化作用为什么具有高效性?高效作用机制?(一)可降低反应的活化能,提高反应速度(二)作用机制(1)E的邻近与定向效应使底物浓度在活性中心附近很高酶对底物分子的电子轨道具有导向作用E使分子间的反应转变为分子内反应邻近效应和定向效应对底物起固定作用(2)诱导契和底物形变的催化效应E从低活性形式转变成高活性形式,利于催化底物形变,利于形成ES复合物底物构象变化,过渡态结构大大降低活化能(3)酸碱催化:可通过暂时提供(或接受)一个质子以稳定过渡态达到催化的反应目的(4)共价催化:底物分子的一部分与E分子上的活性基团间通过共价结合而形成的中间产物,快速完成反应(5)静电催化(6)活性部位的微环境效应疏水环境:介电常数低,加强极性基团间的作用电荷环境:在E活性心附近,往往有一电荷离子,可稳定过渡态的离子4、酶的固定化有哪些优点?固定化应遵循的原则优点:⑴固定化酶在较长时间内可反复使用,使酶的使用效率提高,使用成本降低。
食品酶学考试重点

食品酶学重点1、酶活概念定义:在一定条件下,一定时间内将一定量的底物转化为产物所需要的酶量。
可以用每克酶制剂或每毫升酶制剂含有多少酶单位来表示(U/g或U/ml)。
2、生长因子概念功能生长因子是指某些微生物不能用普通的碳源、氮源物质进行合成,而必须另外加入少量的生长需求的有机物质。
分类:化学结构分成维生素、氨基酸、嘌呤(或嘧啶)及其衍生物和类脂等四类功能:以辅酶与辅基的形式参与代谢中的酶促反应3、酶活性部位活性部位:酶分子中直接与底物结合,并和酶催化作用直接有关的部位。
4、酶有几种诱导物诱导物一般可以分为3类:酶的作用底物如纤维素酶、淀粉酶、蛋白酶等酶的催化反应产物如纤维二糖诱导纤维素酶作用底物的类似物蔗糖甘油单棕榈酸诱导蔗糖酶5、PAGE电泳几类PAGE根据其有无浓缩效应,分为:连续电泳:采用相同孔径的凝胶和相同的缓冲系统不连续电泳:采用不同孔径的凝胶和不同缓冲体系不连续PAGE分为:电荷效应、分子筛效应、浓缩效应6、果胶酶几种(1)聚半乳糖醛酸酶(PG):a.内切PG b.外切(exo-PG)(2)聚甲基半乳糖醛酸裂解酶(PMGL):即果胶裂解酶。
(3)聚半乳糖醛酸裂解酶(PGL)(4)果胶酯酶(PE)7、几类酶包埋法(1)凝胶包埋法天然凝胶:条件温和,操作简便,对酶活影响小,强度较差。
合成凝胶:强度高,耐温度、pH值变化强,因需聚合反应而使部分酶变性失活。
适用性:不适用于底物或产物分子很大的酶类的固定化。
(2)半透膜(微胶囊)包埋法将酶包埋在由各种高分子聚合物制成的小球内。
半透膜:聚酰胺膜、火棉膜等,孔径几埃至几十埃,比酶分子直径小。
适用性:底物和产物都是小分子物质的酶。
微胶囊:直径一般只有几微米至几百微米。
8、单体酶、寡聚酶、多酶复合体单体酶(monomeric enzyme):一般由一条多肽链组成,如溶菌酶;但有的单体酶是由多条肽链组成,肽链间二硫键相连构成一整体。
寡聚酶(oligomeric enzyme):由几个或多个亚基组成,亚基牢固地联在一起,单个亚基没有催化活性。
最新酶工程与食品产业复习题资料

酶工程与食品产业复习题一名词解释1. 酶工程:又叫酶技术,是酶制剂的大规模生产和应用的技术。
2. 别构酶;调节物与酶分子的调节中心结合后,引起酶分子的构象发生变化,从而改变催化中心对底物的亲和力,这种影响被称为别构效应,具有别构效应的酶叫别构酶3. 诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶4. 固定化酶:通过物理的或化学的方法,将酶束缚于水不溶的载体上,或将酶束缚于一定的空间内,限制酶分子的自由流动,但能使酶发挥催化作用的酶5. 修饰酶:在体外用一定的化学方法将酶和一些试剂进行共价连接后而形成的酶6. 非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学.7. 抗体酶:是一种具有催化作用的免疫球蛋白,属于化学人工酶8. 交联型固定化酶:借助双功能试剂使酶分子之间发生交联作用,制成网状结构的固定化酶的方法。
常用的双功能试剂有戊二醛、己二胺、顺丁烯二酸酐、双偶氮苯等。
其中应用最广泛的是戊二醛。
二填空题(每空1分,共计30分)1. __________________________________________________________ 决定酶催化活性的因素有两个方面,一是__________________________________________________ ,二是____________2. ____________________________________________ 求Km最常用的方法是。
3. ____________________________________________________________ 多底物酶促反应的动力学机制可分为两大类,一类是 ________________________________________ ,另一类是 ______4•可逆抑制作用可分为 ________________5. 对生产酶的菌种来说,我们必须要考虑的条件有,一是看它是不是,二是能够利用廉价原料,发酵周期 _,产酶量_,三是菌种不易 _____________________ ,四是最好选用能产生______ 酶的菌种,有利于酶的分离纯化,回收率高。
食品酶学各章复习题汇总(本科)

食品酶学各章复习题汇总(本科)1、怎样理解酶的概念?2、国际酶学委员会推荐的酶的分类和命名规则的主要依据是什么?3、食品酶学的主要研究内容是什么?第二章一、什么叫酶的发酵生产?酶发酵生产的一般工艺流程是什么?二、为什么酶制剂的生产主要以微生物为材料?常用的酶源微生物有哪些?三、培养基组分的基本类别有哪些?各有何主要作用?酶的发酵生产中,碳源的选择主要考虑哪些方面?氮源选择的最基本原则是什么?第三章一、酶提取的主要提取剂有哪几种?怎样选择?二、在酶的分离纯化中,根据溶解度、分子大小、带电性和吸附性不同,能够采用的分离方法各有哪些?其中效率最高的方法是什么?在方法的选择和顺序的安排上有何依据?三、常用的沉淀分离法有哪几种?其主要操作要领是什么?四、根据过滤介质截留物质颗粒的大小,可将过滤分为哪几类?其过滤介质和截留特性分别是怎样的?五、什么是层析分离法?分为哪几类?基本原理分别是什么?六、凝胶过滤层析的分配系数Kd是什么?有什么意义?怎样计算?七、什么是凝胶电泳?按凝胶组成系统分,凝胶电泳可分为哪几类?其基本原理和主要用途分别是什么?八、什么叫等电聚焦电泳?其分离原理是什么?九、什么叫酶的结晶过程?酶结晶的条件和主要方法是什么?十、什么是真空浓缩?其主要影响因素有哪些?第四章一、什么叫固定化酶?酶的固定化方法有哪些?其基本概念分别是什么?二、酶固定化后,其性质是否有变化?都有哪些规律性变化?第五章一、淀粉糖酶主要有哪几种类型?其作用特性分别是怎样的?二、什么是液化(型淀粉)酶?什么是淀粉的酶法液化?其有何优越性?三、什么是果胶物质和果胶酶?果胶酶是如何分类的?四、根据活性中心进行分类,蛋白酶可分为哪几类?其一般性质分别是什么?五、酶活性中心中常见的功能基团有哪些?简述你对活性中心的理解。
六、你熟悉的蛋白酶有那些?其特异性分别是怎样的?七、什么是多酚氧化酶?简述酶促褐变的机理及其控制措施。
八、什么是脂肪氧合酶?它对食品质量有哪些主要的影响?如何控制?八、什么是葡萄糖氧化酶?它在食品工业有哪些主要应用?第六章1、酶在淀粉糖的生产中有哪些应用?主要的机理是什么?2、何为低聚果糖?其酶法合成原理如何?3、在焙烤食品和面条生产中,哪些酶制剂得到了应用?举例说明其用途和作用机理。
食品酶学复习(1)

食品酶学复习资料名词解释(18分)酶活:指酶催化一定化学反应的能力。
酶的比活力:是指每毫克质量的蛋白质中所含的某种酶的催化活力,一般用IU/mg蛋白质来表示。
同工酶:存在于同一种属生物或同一个体中,能催化同一种化学反应,但酶蛋白分子的结构及理化性质和生化特性存在明显差异的一组酶称为同工酶。
变构酶:能对酶的活力进行变构调节的酶称为变构酶或别构酶。
胞内酶:存在于土壤生物生活细胞和死亡细胞之中起催化作用的酶。
胞外酶:游离于土壤生物生活细胞和死亡细胞之外的酶。
酶活性中心:一个酶分子中只有少数氨基酸残基与酶的催化活性直接相关,这些特殊的氨基酸残基一般集中在酶空间结构中一个特定的部位,称为酶的活性中心。
具体地说,酶分子中直接与底物结合,并催化底物发生化学反应的部位。
称为酶的活性中心。
酶原:有些酶在细胞内刚刚合成或分泌时,尚不具有催化活性,这些无活性的酶的前体称为酶原。
酯酶:广义上指具有水解酯键能力的一类酶的总称。
通常所说的酯酶往往指羧酸酯酶。
在有水存在的条件下,该酶能催化酯键裂解,生成相应的酸和醇。
脂肪酶:能催化天然底物油脂水解,生成脂肪酸、甘油和甘油单酯或二酯的酶。
超氧化物歧化酶:含金属的氧化还原酶。
ELISA:是免疫酶技术的一种,是将原抗体反应的特异性与酶反应的敏感性相结合而建立的一种新技术。
问答(50分)1、酶的分离纯化步骤?答:①生物组织或细胞的机械破碎;②根据蛋白质的特性,选择不同的溶剂进行抽提;③粗提;④精制;⑤成品加工。
如何鉴定酶的纯度?酶经分离、纯化后要确定该纯化步骤是否适宜,必须经过对有关参数的测定及计算才能确定。
酶的产量是以活力单位表示,因此在整个分离过程中每一步始终贯穿比活力和总活力的检测、比较。
酶活力(Enzyme activity):酶活力是指酶催化反应的能力,它表示样品中酶的含量。
1961年国际酶学会规定,l min催化lμg分子底物转化的酶量为该酶的一个活力单位 ( 国际单位 ) ,温度为25 ℃,其它条件 (pH、离子强度) 采用最适条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品酶学1、酶的特性及其对食品科学的重要性⑴酶的一般特性:酶的催化效率高、酶作用的专一性、大多数酶的化学本质是蛋白质⑵酶对食品科学的重要性:①酶对食品加工和保藏的重要性:;例如葡萄糖氧化酶作为除氧剂普遍应用于食品保鲜及包装中,延长食品保质期。
②酶对食品安全的重要性:利用酶的作用去除食品中的毒素,③酶对食品营养的重要性:利用酶作用去除食品中的抗营养素,提高食品的营养价值④酶对食品分析的重要性:酶法分析具有准确、快速、专一性和灵敏性强等特点,其中最大优点就是酶的催化专一性强⑤酶与食品生物技术:酶工程的主要研究内容是把游离酶固定化,然后直接应用于食品生产过程中物质的转化。
2名词解释1、酶:2、胞外酶:3、胞内酶:4、多酶体系:5、同功酶:6、酶活力单位:7、酶原:3、酶的发酵生产对培养基的要求⑴碳源:①产酶微生物大部分利用的是有机碳,如麸皮、玉米等②不同微生物所需的碳源不同,因此在配制培养基时应根据不同细胞的不同要求而选择合适的碳源⑵氮源:多数情况下将有机氮源和无机氮源配合使用才能取得较好的效果⑶碳氮比:①在微生物酶生产培养中碳氮比是随生产的酶类、生产菌株的性质和培养阶段的不同而改变的。
②发酵时,不同发酵阶段要求的碳氮比也是不同的。
⑷无机盐:微生物酶生产和其他微生物产品生产一样,培养基中需要有磷酸盐及硫、钾、钠、钙、镁等元素存在。
⑸生长因子:微生物需要一些微量的像维生素一类的物质,才能正常生长发育⑹产酶促进剂:产酶促进剂是指在培养基中添加某种少量物质,能显著提高酶的产率,这类物质称为产酶促进剂。
包括诱导物与表面活性剂。
4、分离纯化酶有哪些?根据什么?根据酶和杂蛋白的性质差异,它们的分离方法可分为:⑴根据分子大小而设计的方法,如离心分离法、筛膜分离法、凝胶过滤法等⑵根据溶解度大小分离的方法,如盐析法、有机溶剂沉淀法、共沉淀法、选择性沉淀法、等电点沉淀法等⑶按分子所带正负电荷多少分离的方法,如离子交换分离法、电泳分离法、聚焦层析法等⑷按稳定性差异建立的分离方法,如选择性热变性法、选择性酸碱变性法、选择性表面变性法等⑸按亲和作用的差异建立的分离方法,如亲和层析法、亲和电泳法等5、酶分子修饰的方法和意义酶分子修饰:通过各种方法使酶分子的结构发生某些变化,从而改变酶的某些特性和功能的技术过程。
酶分子修饰的方法:对酶分子的修饰方法分为化学法、生物法、和物理法。
化学法可分为金属离子置换法、大分子修饰法、肽链有限水解法、蛋白侧链基团的小分子修饰法等。
生物法是通过基因工程的手段改变蛋白质,即基于核算水平对蛋白质进行改造,利用基因操作技术对DNA或mRNA进行改造和修饰,以期获得化学结构更为合理的蛋白质。
物理法的特点是不改变酶的组成和基团,酶分子的共价键不发生变化。
意义:(1)提高酶的活力,(2)增强酶的稳定性活力稳定性和热稳定性(3)降低或消除酶的抗原性(4)研究和了解酶分子中主链侧链组成单位金属离子和各种物理因素对酶分子空间构象的影响6、酶的动力学研究包括哪些内容?以L-B图表示竞争性抑制,非竞争性抑制及反竞争性抑制的区别。
研究内容:底物浓度、抑制剂、温度、PH和激活剂等因素对酶促反应速度的影响。
竞争性抑制非竞争性抑制反竞争性抑制7、简述米氏常数的含义及应用价值,可逆抑制和不可逆抑制的区别含义:米氏常数Km值是当酶促反应速度达到最大反应速度的一半时的底物浓度。
应用价值:①Km是酶的一个特征性常数,Km的大小只与酶本身的性质有关,而与酶浓度无关;②Km值还可以用于判断酶的专一性和天然底物;③Km可以作为酶和底物结合紧密程度的一个度量指标,用来表示酶与底物结合的亲和力大小;④如果已知某个酶的Km值,就可以计算出在某一个底物浓度条件下,其反应速度相当于Vmax的百分比;⑤Km值还可以帮助我们推断具体条件下某一代谢反应的方向和途径。
可逆抑制与不可逆抑制的区别:鉴别可逆抑制作用和不可逆抑制作用,除了用透析、超滤和凝胶过滤等物理方法能否除去抑制剂来判断外,还可采用化学动力学的方法来区分。
(一)曲线1,无抑制剂;曲线2,不可逆抑制剂;曲线3,可逆抑制剂在测定酶活力的系统中加入一定量的抑制剂,然后测定不同酶浓度条件下的酶促反应初速度,以酶促反应初速度对酶浓度作图。
在测定酶活力的系统中不加抑制剂时,以酶促反应初速度对酶浓度作图得到如图1曲线1所示的一条通过原点的直线;当测定酶活力的系统中加入一定量的不可逆抑制剂时,由于抑制剂会使一定量的酶失活,因此只有加入的酶量大于不可逆抑制剂的量时,才表现出酶活力。
以酶促反应初速度对酶浓度作图得到如图1曲线2所示的一条与曲线1平行的相交于横坐标正侧的直线,所以不可逆抑制剂的作用相当于把原点向右移动;当测定酶活力的系统中加入一定量的可逆抑制剂时,由于抑制剂的量是恒定的,因此以酶促反应初速度对酶浓度作图得到如图1曲线3所示的一条通过原点,但斜率较低于曲线1的直线。
8、固定化酶的优点和应用实例优点:⑴同一批固定化酶在工艺流程中重复多次使用⑵固定化后,和反应物分开,有利于控制生产过程,同时也省去了热处理使酶失活的步骤⑶稳定性显著提高⑷可长期使用,并可预测衰变的速度⑸提取了研究酶动力学的良好模型应用实例:包埋法①配成一定浓度的酶溶液和一定浓度的海藻酸钠,配成2%-3%海藻酸钠溶液;②配制一定浓度0.3%-1.0%CaCl2溶液,最后将以上两种溶液混合配制形成海藻酸钙。
9、酶被固定化后的理化性质的变化,对工业应用的利弊。
(1)固定化酶的形状固定化酶的形式多样,依不同用途有颗粒、线条、薄膜和酶管等形状。
(2)固定化酶的性质酶在水溶液中以自由的游离状态存在,但是固定后酶分子便从游离的状态变为牢固地结合于载体的状态,其结果往往引起酶的性质的改变。
(3)酶活力固定化酶的活力在多数情况下比天然酶的活力低;也有在个别情况下,酶经固定化后其活力升高(4)固定化酶的稳定性(a)操作稳定性(b)贮藏稳定性(c)热稳定性(d)对蛋白酶的稳定性(e)酸碱稳定性(5)固定化酶的反应特性(a)底物特异性(b)反应的最适pH (c)反应的最适温度(d)最大反应速度对工业应用的利弊:优点:①无需进行酶的分离和纯化,减少酶的活力损失,同时大大降低了成本;②可进行多酶反应,且不需添加辅助因子,固定化细胞不仅可以作为单一的酶发挥作用,而且可以利用菌体中所含的复合酶系完成一系列的催化反应,对于这种多酶系统,辅助因子再生容易;③对于活细胞来说,保持了酶的原始状态,酶的稳定性更高,对污染的抵抗力更强;④细胞生长停滞时间短,细胞多,反应快等等。
正是由于固定化细胞的这些无可比拟的优势,尽管其出现远远晚于固定化酶,但其应用范围比固定化酶更为广泛。
缺点:①必须保持菌体的完整,需防止菌体的自溶,否则影响产物的纯度;②必须抑制细胞内蛋白酶对目的酶的分解;10、比较α—淀粉酶、葡萄糖淀粉酶、β—淀粉酶、异淀粉酶的作用位点(即水解键)及其产物;以支链淀粉(玉米)为原料,制造果葡糖浆,需要哪些酶参加催化反应以支链淀粉(玉米)为原料,制造果葡糖浆,需要哪些酶参加催化反应11、果胶酶属于哪类酶?其作用位点及其产物,在食品工业中如何合理和有效使用果胶酶:果胶酶与纤维素酶相类似,是一类复合酶,包含多种组分,大致分为果胶水解酶、果胶裂解酶、果胶酯酶等,它是指能够分解果胶物质的各种酶的总称。
作用位点及产物:(1)聚半乳糖醛酸酶(polygalacturonase, PG):此类能水解半乳糖醛酸中α-1,4键,生成具有不饱和键的半乳糖醛酸酯(2)聚甲基半乳糖醛酸裂解酶(PMGL):切断果胶分子α-1,4糖苷键,以随机方式解聚高度酯化的果胶,使溶液的粘度快速下降(3)聚半乳糖醛酸裂解酶(PGL):也称果胶酸裂解酶。
解聚低甲氧基果胶或果胶酸,产物为半乳糖醛酸二聚体,只能裂解贴近游离羧基的糖苷键。
(4)果胶酯酶(PE)使果胶中的甲醇水解,生成果胶酸果胶酶在食品工业中的应用:果胶物质存在于水果和蔬菜中,它的变化对于水果和蔬菜的结构有重要影响。
果胶酶能降解果胶物质,因而在食品加工中和保藏中起重要的作用,微生物果胶酶是食品工厂中使用量最大的酶制剂之一,主要应用与果汁的萃取、澄清以及果酒酿造。
在工艺过程中,添加果胶酶助剂能够提高出汁率,加速果汁澄清,降低成本。
同时,由于果胶酶降解果胶质,产品更易于吸收和存储。
12、简述酶法低乳糖牛乳的生产工艺鲜奶——检验牛乳中乳糖含量——85C保持15秒——冷却(3——6C)——加乳糖酶——搅拌保持一定时间——取样检验水解后牛乳中乳糖含量——均质——高温杀菌——冷却(3——6C)——灌装封口——保温——出厂13、蛋白酶分类?蛋白酶水解生产水解蛋白产生苦味的来源(一)蛋白酶分类<1>、来源:(1)植物:菠萝、木瓜、无花果(2)动物:胃、胰蛋白酶、凝乳酶(胃)(3)微生物:1398枯草杆菌、3942栖土曲霉蛋白酶、放线菌蛋白酶<2>、最适作用条件:(1)中性蛋白酶:pH6~8 1398枯草杆菌、3942栖土曲霉蛋白酶(2)碱性蛋白酶:pH9~11 2709枯草杆菌蛋白酶(3)酸性蛋白酶:pH1~3 胃蛋白酶<3>、对底物作用方式:(1)内肽酶:产物为脲、胨、多肽、低肽(2)外肽酶:羧肽酶:从羧基末端氨肽酶:从氨基末端<4>、根据酶活性部位:(1)丝氨酸蛋白酶(2)巯基蛋白酶(3)金属蛋白酶(4)羧基蛋白酶蛋白酶水解生产水解蛋白产生苦味的来源:水解蛋白质的苦味和蛋白质原有的氨基酸组成有关,特别是蛋白质中的疏水性氨基酸是导致蛋白质经水解后产生苦肽的重要原因。
当蛋白质处于天然稳定状态时,这些氨基酸埋藏在蛋白质结构的内部,因而对蛋白质的味道不会产生明显的影响。
在酶水解过程中,小肽的数量将增加,从而暴露了这些疏水性氨基酸,当它们同味蕾相作用时就产生了苦味。
如果采取有控制的酶水解,使蛋白质的水解反应停止在某一个阶段,使肽链具有足够的长度将疏水性氨基酸埋藏在它的内部,就能减少水解蛋白质的苦味。
14、超氧化歧化酶(SOD)的特性及作用原理当SOD受到外界各种因素,如温度、pH、氰化物、变性剂和电离辐射等的影响,其分子结构和酶活性都会发生变化。
1)热稳定性超氧化物歧化酶是一种金属蛋白,它对热表现出异常的稳定性。
2)pH的影响pH的改变会引起酶蛋白与金属辅因子结合状态的改变3)对氰化物的敏感性不同种类的SOD对氰化物的敏感性是不同的。
4)金属辅因子Cu-Zn-SOD中Cu与Zn的作用是不同的,Zn仅与酶分子的结构有关,而与催化活性无关,而Cu却与催化活性有关。
5)变性剂和还原剂SOD的解聚会导致酶活性的降低。
电离辐射SOD能清除超氧阴离子,所以SOD具有抗辐射作用作用机理:SOD2O2-+ 2H+→O2+ H2O2根据衰老的自由基学说,老化是自由基产生和清除发生障碍的结果。