金属拉伸试验应该注意的几个问题
金属材料拉伸试验影响因素及控制策略

金属材料拉伸试验的影响因素包括以下几个方面:1. 试样制备:试样的制备对拉伸试验的结果有很大的影响。
试样的形状、尺寸、精度和制备方法等都会对试验结果产生影响。
在试样制备过程中,应该采用正确的制备方法,保证试样的尺寸精度和表面质量。
2. 试验机:试验机的精度和灵敏度对拉伸试验的结果也有影响。
试验机的误差和灵敏度不高会导致试验结果不准确。
因此,在进行拉伸试验时,应该选择合适的试验机,并确保其精度和灵敏度符合要求。
3. 夹具:夹具的精度和稳定性也会对拉伸试验的结果产生影响。
夹具的误差和不稳定会导致试验结果失真。
因此,在进行拉伸试验时,应该选择合适的夹具,并确保其精度和稳定性符合要求。
4. 环境温度:环境温度对金属材料的拉伸性能也有影响。
在不同的温度下,金属材料的拉伸性能会有所不同。
因此,在进行拉伸试验时,应该确保环境温度的稳定性和恒定性。
5. 人员操作:人员的操作技能和经验也会对拉伸试验的结果产生影响。
操作人员的误操作或不当处理会导致试验结果出现偏差。
因此,在进行拉伸试验时,操作人员应该具备相应的技能和经验,并严格按照规定的操作程序进行处理。
针对以上影响因素,可以采取以下控制策略:1. 试样制备:采用正确的制备方法,保证试样的尺寸精度和表面质量。
试样的形状、尺寸、精度和制备方法等应该符合标准要求。
2. 试验机:选择合适的试验机,并确保其精度和灵敏度符合要求。
在试验前应该对试验机进行检查和校准,确保其测量准确度和稳定性。
3. 夹具:采用稳定的夹具,确保夹具的精度和稳定性符合要求。
在试验前应该对夹具进行检查和校准,确保其能够正确地夹持试样。
4. 环境温度:保持环境温度的稳定性和恒定性。
在试验前应该对环境温度进行检查和控制,确保其符合标准要求。
5. 人员操作:操作人员应该具备相应的技能和经验,并严格按照规定的操作程序进行处理。
在试验前应该对操作人员进行培训和考核,确保其能够正确地操作和处理试样。
金属材料拉伸试验需要注意的若干问题

金属材料拉伸试验需要注意的若干问题摘要:本文讨论金属材料的拉伸试验需要注意的若干问题,例如:试样的尺寸测量;试样的取样部位;机加工;拉伸试验的速率,屈服力的确定,断后伸长率等因素。
关键词:屈服力;断后伸长率金属材料的拉伸试验是金属材料力学性能试验中的重要内容之一,主要包括屈服强度、抗拉强度、断后伸长率、断面收缩率的测定。
这些参数能否准确、真实的被测定主要取决于试样的取样部位及方向,机加工,试样的尺寸测量,拉伸试验的速率,规定非比例延伸强度(?%l0.2)的确定方法,断后伸长的测量等因素。
经过多年的试验工作及学习相关标准、文献、资料,将从以下几个方面论述一下自己的看法和体会以供大家参考。
1 试样的取样部位及方向能否准确、真实的反映出金属材料的力学性能与试样的取样部位及方向有重要关系。
因此取样时有三个主要因素要考虑:①取样部位:一般中心部位的性能低于其他部位的性能;②取样方向:一般纵向试样的性能优于横向试样的性能,特别是断面收缩率的差异特别显著;③取样数量:试样应有代表性,数量由产品标准及使用情况而定。
这三个主要因素与力学性能试验结果有密切关系是因为:①金属材料在冷变形或热变形的加工过程中,变形量不会处处均匀,变形时金属沿主变形方向流动;②金属材料内部会存在各类冶金缺陷,在加工变形时缺陷的分布也不均匀;③金属材料加热或散热的条件也会有差异,所以成材后的金相组织必然也不均匀;④还有其他诸多工艺变动因数等,决定了名义上相同的一批,甚至同一产品(如同一块钢板)的不同部位,其力学性能也出现差异。
因此,在不同部位取样、制样和试验,其结果必然不同[1]。
2 试样机加工后的形状公差一般试样机加工后造成的形状公差有三种情况:①一端大另一端小;②两端大中间小;③中间大两端小。
最常见的是一端大另一端小的情况。
这种情况往往会产生标外断。
3 试样原始横截面积的测量①对于圆形横截面积的试样,在其标距的两端及中间三处横截面上相互垂直的两个方向测量直径,取两个方向的平均值为直径计算面积,取三处测得面积的最小值为试样的原始横截面积。
金属材料拉伸试验按国家标准执行

拉伸试验的目的
评估材料的强度和塑性
通过拉伸试验,可以了解材料在受力过程中发生的变形行为,从而 评估其强度和塑性。
确定材料的关键力学性能参数
拉伸试验可以获得材料的弹性模量、屈服强度、抗拉强度等关键参 数,这些参数对于材料的应用和设计具有重要意义。
试验机选择
根据试验要求选择合适的试验机,确保其精度和量程满足要求。
试验环境
确保试验环境温度、湿度等参数符合标准规定,以减小环境对试验结果的影响。
操作规范
严格按照操作规程进行试验,避免操作失误对试验结果造成影响。
拉伸试验的误差来源
试样制备误差
试样尺寸、形状、表面处理等不符合标准要 求,导致试验结果失真。
比较不同材料的性能
拉伸试验是一种相对比较的试验方法,可以用于比较不同材料的性 能,从而为材料的选择和应用提供依据。
拉伸试验的原理
拉伸试验通常在万能材料试验机上进行,通过在试样两端施加拉伸载荷,使试样发生变形直至断裂。
在拉伸过程中,试验机记录试样的应力-应变曲线,通过该曲线可以获得材料的弹性模量、屈服强度、 抗拉强度等关键参数。
根据需要,计算并记录弹性模量、屈 服点、抗拉强度、延伸率等拉伸特性 指标。
05
03
预加载
对试样施加一定的预载荷,以消除夹 具与试样之间的间隙,并使试样处于 紧张状态。
Байду номын сангаас04
拉伸试验
以恒定的速率对试样施加拉伸力,记 录试样的变形和应力变化。
03
拉伸试验的设备与工具
拉伸试验机的类型
机械式拉伸试验机
01
屈服点是指金属材料在受到拉伸 力作用时,开始发生屈服现象的 应力极限。
对金属材料进行拉伸试验的常见问题

对金属材料进行拉伸试验的常见问题金属材料是人类社会发展中不可或缺的物质之一,它们广泛应用于建筑、制造、航空航天等各个领域。
为了评估金属材料的性能和可靠性,拉伸试验被广泛应用。
然而,在进行拉伸试验时,我们常常会遇到一些常见问题,本文就对这些问题展开讨论。
首先,一个常见的问题是如何正确选择试样。
试样的选择直接影响到实验结果的准确性。
一般来说,试样的长度应远大于直径,以减小几何因素对试验结果的影响。
此外,试样的形状也需要注意,常见的试样形状有圆柱形、矩形等,根据特定的试验要求选择合适的形状。
其次,试验仪器的校准是进行拉伸试验的重要环节。
在实验前,对试验设备进行校准是确保实验结果准确可靠的必要步骤。
校准的目的是调整和检验试验设备的性能和精度,确保在试验过程中所得到的数据符合要求。
另一个常见问题是如何确定试验条件。
试验条件的选择直接关系到试验结果的准确性和可比性。
拉伸试验时,要考虑到材料的性质和试验目的,确定合适的载荷速率、试验温度、应变速率等试验条件。
不同条件下,材料的力学性能可能会发生巨大变化,因此,合理选择试验条件对于准确评估材料性能至关重要。
在拉伸试验过程中,还常常会出现样品失效的问题。
样品失效可能表现为试样的断裂、塑性变形或变形不均匀等现象。
为了准确评估材料的力学性能,我们需要对失效机制进行深入分析和研究。
通过对失效机制的了解,可以指导试验过程中的数据处理和结果分析,提高试验结果的可靠性。
此外,试验结果的分析与处理也是拉伸试验中的一个关键环节。
通过试验设备获取的数据需要进行处理和分析,以获得材料的力学性能参数。
常用的处理方法包括计算材料的应力-应变曲线、计算材料的屈服强度、拉伸强度、延伸率等指标。
这些参数可以用于比较不同材料的性能,评估材料的可靠性和适用性。
除了以上提到的常见问题,还有一些其他细节需要注意。
例如,在拉伸试验中,要保证试样与夹具的配合严密,以免发生滑移或颈缩等不正常现象。
另外,要在试验过程中及时记录和监测试样的应变和应力变化。
金属材料 拉伸试验 速度选择

金属材料拉伸试验速度选择怎样选择金属材料拉伸试验的速度在材料工程领域,了解金属材料的力学性能对于材料的设计和使用至关重要。
而拉伸试验是评价金属材料力学性能中最为常见的一种方法。
通过在金属材料上施加拉伸载荷,并观察材料的变形和断裂行为,可以得到金属材料的一系列力学性能参数。
而在进行拉伸试验时,速度选择是十分重要的,因为它会直接影响到试验结果的精度和可靠性。
在进行金属材料拉伸试验时,速度选择需要考虑以下几个方面:1. 材料的性质和应用不同的金属材料在应力应变曲线上表现出不同的特点,有些材料具有良好的塑性延展性,而有些材料则更具有脆性。
不同的金属材料在高速和低速下的应变硬化行为也会有所不同。
在选择拉伸试验速度时,需要考虑被测试材料的性质和应用环境,以确保试验结果的可靠性和实用性。
2. 试验目的进行拉伸试验时,可能有不同的试验目的,比如确定金属材料的屈服强度、抗拉强度、断裂伸长率等力学性能参数。
针对不同的试验目的,选择合适的拉伸试验速度也会有所不同。
比如在确定金属材料的屈服强度时,较慢的速度有助于观察材料产生塑性变形的过程;而在进行断裂韧性评价时,较快的速度可以更好地模拟实际工程中的应力速率。
3. 数据分析需求在拉伸试验中得到的应力应变曲线通常用于分析金属材料的力学性能。
而在进行试验速度选择时,也需要考虑后续的数据分析需求。
比如在评估金属材料的应变硬化指数时,通常需要在不同速度下进行拉伸试验,以绘制应变硬化曲线进行分析。
试验速度的选择需要根据对试验数据的后续分析需求进行综合考虑。
4. 设备条件拉伸试验设备的性能和条件也会影响试验速度的选择。
一些设备可能有速度范围的限制,或者在不同速度下的控制精度有所不同。
在选择拉伸试验速度时,也需要考虑设备本身的条件和限制。
选择金属材料拉伸试验的速度需要综合考虑材料的性质、试验目的、数据分析需求和设备条件。
在实际操作中,可以根据具体情况进行试验速度的选择,并注意在试验报告中详细记录试验速度和相应的试验条件,以保证试验结果的可靠性和实用性。
金属材料拉伸实验

金属材料拉伸实验拉伸实验是用来检测材料在拉伸过程中的性能和力学行为的一种常见实验方法。
在这个实验中,一根材料样品会经受一个施加在其两端的拉力,然后通过测量样品的变形来确定其力学性质。
首先,要进行拉伸实验,我们需要准备一根金属材料样品。
这个样品可以是一个均匀的圆柱形条或矩形条,并且要保证材料的长度远大于其直径或厚度。
接下来,我们需要确定实验的拉伸速度。
拉伸速度会影响材料的变形和断裂行为。
通常来说,实验的拉伸速度是恒定的,并且在试验的不同阶段保持一致。
常见的拉伸速度可以是每分钟1毫米或每分钟10毫米。
在进行实验之前,我们需要在样品的两端附上夹具。
夹具会给样品施加拉力,并且还会防止样品在拉伸过程中滑动或扭曲。
夹具要保证稳固并且与样品的表面接触紧密,以避免力的集中和样品的损坏。
在拉伸实验中,我们可以测量以下几个关键参数:1. 应力(Stress): 应力是指单位面积上施加在材料上的力。
它的计算公式是应力=施加力/材料横截面积。
2. 应变(Strain): 应变是材料在受力下发生的长度变化与原始长度之比。
它的计算公式是应变=变形长度/原始长度。
3. 弹性模量(Young's modulus): 弹性模量反映了材料在弹性变形阶段时的硬度和刚性。
它的计算公式是弹性模量=应力/应变。
4. 屈服强度(Yield strength): 屈服强度是材料开始发生非弹性变形的应力。
在拉伸实验中,我们可以通过观察材料的应力-应变曲线,找到出现第一个明显断裂的点。
这个点对应的应力即为材料的屈服强度。
5. 断裂强度(Ultimate tensile strength): 断裂强度是材料在拉伸过程中最大的应力。
在实验中,当材料开始发生明显断裂时,测得的应力即为材料的断裂强度。
通过实验测量这些参数,我们可以了解材料的力学性质和使用限制。
拉伸实验也可以用来评估材料的可靠性和应用范围,为工程设计提供参考和依据。
金属材料拉伸试验中安装引伸计的注意事项 引伸计常见问题解决方法

金属材料拉伸试验中安装引伸计的注意事项引伸计常见问题解决方法高温拉伸试验通常使用机械式陶瓷杆高温引伸计。
今日美特斯我跟大家一起聊一聊金属材料拉伸试验中安装引伸计的注意事项1、引伸计应安装在试样的中心,刀口必需垂直于试样表面,引伸计的两根支杆要平行于试样且在同一条线上,后再调整引伸计的标距,保证引伸计的标距精准。
2、由于引伸计支杆比较长,卡持在试样表面后简单显现打滑现象。
为了避开打滑,试样安装好之后,先给试样一个小的预加载,然后再安装引伸计。
实际操作中,由于陶瓷引伸计本身重量较大,安装引伸计时应调整引伸计的固定装置,使得引伸计上端支杆的夹持力大于下端的,这样才能使引伸计达到受力平衡。
引伸计是扭矩试验机紧要的灵敏度测试器件,扭矩试验机在出厂时,配置了引伸计,并已标定了灵敏度系数,作为系统参数存入系统掌控器,一般使用不需更改。
需要注意的引伸计是扭矩试验机紧要的灵敏度测试器件,扭矩试验机在出厂时,配置了引伸计,并已标定了灵敏度系数,作为系统参数存入系统掌控器,一般使用不需更改。
需要注意的是,不同引伸计的灵敏度系数是不同的,也就是说,不同试验机所配置的引伸计不能互换。
下面就有我为您认真叙述引伸计的安装与调零方法:一、将定位销插入限位杆与弹性臂的缝隙并用手固定。
二、将引伸计刃口靠置于试件试验段中部位置三、用橡皮筋将上、下弹性臂与试件固定,然后拔除定位销。
四、按掌控面板数字键,进行变形调零。
在变形测量完毕后,应适时将引伸计摘下。
测量时注意变形量不能超过引伸计的测量范围,以免损坏引伸计。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
金属材料拉伸试验应该注意的几个问题

精心整理金属拉伸试验应该注意的几个问题引伸计如果需要做σ0.2,就需要引伸计。
一般结构钢机械性能试验不用引伸计。
引伸计一般用于屈服强度台阶不明显的材料。
不要引伸计的拉伸曲线,是把标距以外的变形等干扰都包含进曲线了。
试验的可靠性或称准确性值得商榷。
用引伸计才是最准确的。
引申计的量程小,一般用在屈服和屈服之前使用,如在屈服后继续使用,会损坏引申计,引申计用来测量弹性模量,如用一般的差动编码器测量,计算结果会和真实的弹性模量差一个数量级,由标距造成的,引伸计在测量中精的量为,应为6—60度。
”。
这里面有一个很关键的问题,就是应力速度与应变速度的切换点的问题。
最好是在弹性段结束的点进行应:力速度到应变速度的切换。
在切换的过程中要保证没有冲击、没有掉力。
这是拉力试验机的一个非常关键的技术。
其次是引伸计的装夹、跟踪与取下来的时机。
对于钢材的拉伸的试验,如果要求取最大力下的总伸长(Agt ),那么引伸计就必须跟踪到最大力以后再取下。
对于薄板等拉断后冲击不大的试样,引伸计可以直接跟踪到试样断裂;但是对于拉力较大的试样,最好的办法是试验机拉伸到最大力以后开始保持横梁位置不动,等取下引伸计以后在把试样拉断。
有的夹具在夹紧试样的时候会产生一个初始力,一定要把初始力消除以后再夹持引伸计,这样引伸计夹持的标距才是试样在自由状态下的原始标距。
能够这么做试验的试验机不多,请您在选购和使用的时候注意这几点。
任何的材料在受到外力作用时都会产生变形。
在受力的初始阶段,一般来说这种变形与受到的外力基本成线性的比例关系,这时若外力消失,材料的变形也将消失,恢复原状,这一阶段通常称为弹性阶段,物理学中的虎克定律,就是描述这一特性的基本定律。
但当外力增大到一定程度后,变形与受到的外力将不再成线性比例关系,这时当外力消失后,材料的变形将不能完全消失,外型尺寸将不能完全恢复到原状,这一阶段称为塑性变形阶段。
由于材料种类繁多,性能差异很大,弹性阶段与塑性阶段的过渡情况很复杂,通过和残余应力等指标作为材料弹性阶段与塑性阶段的转折点的指标来反应材料的过渡过程的性能,其中屈服点与非比例应力是最常用的指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属拉伸试验应该注意的几个问题引伸计如果需要做σ,就需要引伸计。
一般结构钢机械性能试验不用引伸计。
引伸计一般用于屈服强度台阶不明显的材料。
不要引伸计的拉伸曲线,是把标距以外的变形等干扰都包含进曲线了。
试验的可靠性或称准确性值得商榷。
用引伸计才是最准确的。
引申计的量程小,一般用在屈服和屈服之前使用,如在屈服后继续使用,会损坏引申计,引申计用来测量弹性模量,如用一般的差动编码器测量,计算结果会和真实的弹性模量差一个数量级,由标距造成的,引伸计在测量中精度高,但是量程小,所以一般试验机进行拉伸压缩试验都不用引伸计,除非测量弹性模量和要求很高的精度时,而一般试验,一般的差动编码器测位移精度足够,引申计是用来测量变形部分延伸率的,如果不用引伸计就不能得到应力-应变曲线,因为此时得到的应变把拉伸机齿轮空转及位移和非测试部分的位移都算上了。
但是不用引伸计还是可以得到抗拉强度的,另外对于有屈服平台的材料也能得到屈服强度,但是对于没有屈服平台就是连续屈服的材料就没办法得到屈服强度了。
关于引伸计除了通产所见的机械引伸计外,目前比较流行的是激光引伸计,测试时有激光打在样品上作为测量位移的标定。
这样就能测试机械引伸计所无法测的叫做post-uniform elongation的参量,即试样发生颈缩后到断裂前的延伸率。
这个参量在表征带孔件冲压时扩孔率时非常重要。
拉伸试验, 金属虽然说每一个试验机厂家对金属拉伸都很熟悉,但是真正完全能够把标准以及标准后面的理由吃透的厂家并不多,所以现在每一个试验机厂家在指导用户完成金属拉伸试验的时候一般是从他们自己设备的能力出发,以最简单的方式来完成试验,比如全部以横梁位移的速度来完成整个试验过程。
金属拉伸试验还是有很多细节问题非常值得我们重视。
首先是拉伸速度的问题。
在弹性变形阶段,金属的变形量很小而拉伸载荷迅速增大。
这时候如果以横梁位移控制来做拉伸试验,那么速度太快会导致整个弹性段很快就被冲过去。
以弹性模量为200Gpa的普通钢材为例,如果标距为50mm的材料,在弹性段内如以10mm/min的速度进行拉伸试验,那么实际的应力速率为 200000N/mm2S-1×10mm/min×1min/60S×1/50mm=666N/mm2S-1一般的钢材屈服强度就小于600Mpa,所以只需要1秒钟就把试样拉到了屈服,这个速度显然太快。
所以在弹性段,一般都选择采用应力速率控制或者负荷控制。
塑性较好的材料试样过了弹性段以后,载荷增加不大,而变形增加很快,所以为了防止拉伸速度过快,一般采用应变控制或者横梁位移控制。
所以在GB228-2002里面建议了,“在弹性范围和直至上屈服强度,试验机夹头的分离速率应尽可能保持恒定并在规定的应力速率的范围内(材料弹性模量E/(N/mm2)<150000,应力速率控制范围为2—20(N/mm2)?s-1、材料弹性模量E/(N/mm2)≥ 150000,应力速率控制范围为6—60(N/mm2)?s-1。
若仅测定下屈服强度,在试样平行长度的屈服期间应变速率应在s~s之间。
平行长度内的应变速率应尽可能保持恒定。
在塑性范围和直至规定强度(规定非比例延伸强度、规定总延伸强度和规定残余延伸强度)应变速率不应超过s。
”。
这里面有一个很关键的问题,就是应力速度与应变速度的切换点的问题。
最好是在弹性段结束的点进行应:力速度到应变速度的切换。
在切换的过程中要保证没有冲击、没有掉力。
这是拉力试验机的一个非常关键的技术。
其次是引伸计的装夹、跟踪与取下来的时机。
对于钢材的拉伸的试验,如果要求取最大力下的总伸长(Agt),那么引伸计就必须跟踪到最大力以后再取下。
对于薄板等拉断后冲击不大的试样,引伸计可以直接跟踪到试样断裂;但是对于拉力较大的试样,最好的办法是试验机拉伸到最大力以后开始保持横梁位置不动,等取下引伸计以后在把试样拉断。
有的夹具在夹紧试样的时候会产生一个初始力,一定要把初始力消除以后再夹持引伸计,这样引伸计夹持的标距才是试样在自由状态下的原始标距。
能够这么做试验的试验机不多,请您在选购和使用的时候注意这几点。
任何的材料在受到外力作用时都会产生变形。
在受力的初始阶段,一般来说这种变形与受到的外力基本成线性的比例关系,这时若外力消失,材料的变形也将消失,恢复原状,这一阶段通常称为弹性阶段,物理学中的虎克定律,就是描述这一特性的基本定律。
但当外力增大到一定程度后,变形与受到的外力将不再成线性比例关系,这时当外力消失后,材料的变形将不能完全消失,外型尺寸将不能完全恢复到原状,这一阶段称为塑性变形阶段。
由于材料种类繁多,性能差异很大,弹性阶段与塑性阶段的过渡情况很复杂,通过和残余应力等指标作为材料弹性阶段与塑性阶段的转折点的指标来反应材料的过渡过程的性能,其中屈服点与非比例应力是最常用的指标。
虽然屈服点与非比例应力同是反应材料弹性阶段与塑性阶段“转折点”的指标,但它们反应了不同过渡阶段特性的材料的特点,因此它们的定义不同,求取方法不同,所需设备也不完全相同。
因此笔者将分别对这两个指标进行分析。
本文首先分析屈服点的情况:一切的产品与设备都是由各种不同性能的材料构成,它们在使用中会受到各种各样的外力作用,自然就会产生各种各样的变形,,但这种变形必须被限制在弹性范围之内,否则产品的形状将会发生永久变化,影响继续使用,设备的形状也将发生变化,轻则造成加工零部件精度等级下降,重则造成零部件报废,产生重大的质量事故。
那么如何确保变形是在弹性范围内呢?从上面的分析已知材料的变形分为弹性变形与塑性变形两个阶段,只要找出这对已知材料的力学性能进行试验与理论分析,人们总结出了采用屈服点、非比例应力两个阶段的转折点,工程设计人员就可确保产品与设备的可靠运行。
从上面的描述,可以看出准确求取屈服点在材料力学性能试验中是非常重要的,在许多的时候,它的重要性甚至大于材料的极限强度值(极限强度是所有材料力学性能必需求取的指标之一),然而非常准确的求取它,在许多的时候又是一件不太容易的事。
它受到许多因素的制约,归纳起来有:*夹具的影响;*试验机测控环节的影响;*结果处理软件的影响;*试验人员理论水平的影响等。
这其中的每一种影响都包含了不同的方面。
下面逐一进行分析一、夹具的影响这类影响在试验中发生的几率较高,主要表现为试样夹持部分打滑或试验机某些力值传递环节间存在较大的间隙等因素,它在旧机器上出现的概率较大。
由于机器在使用一段时间后,各相对运动部件间会产生磨损现象,使得摩擦系数明显降低,最直观的表现为夹块的鳞状尖峰被磨平,摩擦力大幅度的减小。
当试样受力逐渐增大达到最大静摩擦力时,试样就会打滑,从而产生虚假屈服现象。
如果以前使用该试验机所作试验屈服值正常,而现在所作试验屈服值明显偏低,且在某些较硬或者较脆的材料试验时现象尤为明显,则一般应首先考虑是这一原因。
这时需及时进行设备的大修,消除间隙,更换夹块。
二、试验机测控环节的影响试验机测控环节是整个试验机的核心,随着技术的发展,目前这一环节基本上采用了各种电子电路实现自动测控。
由于自动测控知识的深奥,结构的复杂,原理的不透明,一旦在产品的设计中考虑不周,就会对结果产生严重的影响,并且难以分析其原因。
针对材料屈服点的求取最主要的有下列几点:1、传感器放大器频带太窄由于目前试验机上所采用的力值检测元件基本上为载荷传感器或压力传感器,而这两类传感器都为模拟小信号输出类型,在使用中必须进行信号放大。
众所周知,在我们的环境中,存在着各种各样的电磁干扰信号,这种干扰信号会通过许多不同的渠道偶合到测量信号中一起被放大,结果使得有用信号被干扰信号淹没。
为了从干扰信号中提取出有用信号,针对材料试验机的特点,一般在放大器中设置有低通滤波器。
合理的设置低通滤波器的截止频率,将放大器的频带限制在一个适当的范围,就能使试验机的测量控制性能得到极大的提高。
然而在现实中,人们往往将数据的稳定显示看的非常重要,而忽略了数据的真实性,将滤波器的截止频率设置的非常低。
这样在充分滤掉干扰信号的同时,往往把有用信号也一起滤掉了。
在日常生活中,我们常见的电子秤,数据很稳定,其原因之一就是它的频带很窄,干扰信号基本不能通过。
这样设计的原因是电子秤称量的是稳态信号,对称量的过渡过程是不关心的,而材料试验机测量的是动态信号,它的频谱是非常宽的,若频带太窄,较高频率的信号就会被衰减或滤除,从而引起失真。
对于屈服表现为力值多次上下波动的情况,这种失真是不允许的。
就万能材料试验机而言,笔者认为这一频带最小也应大于10HZ,最好达到30HZ。
在实际中,有时放大器的频带虽然达到了这一范围,但人们往往忽略了A/D转换器的频带宽度,以至于造成了实际的频带宽度小于设置频宽。
以众多的试验机数据采集系统选用的AD7705、AD7703、AD7701等为例。
当A/D转换器以“最高输出数据速率4KHZ”运行时,它的模拟输入处理电路达到最大的频带宽度10HZ。
当以试验机最常用的100HZ的输出数据速率工作时,其模拟输入处理电路的实际带宽只有,这会把很多的有用信号给丢失,如屈服点的力值波动等。
用这样的电路当然不能得到正确试验结果。
2、数据采集速率太低严格来说这需要许多的专用测试仪器及专业人员来完成。
但通过下面介绍的简单方法,可做出一个定性的认识。
当一个系统的采样分辨率达到几万分之一以上,而显示数据依然没有波动或显示数据具有明显的滞后感觉时,基本可以确定它的通频带很窄或采样速率很低。
除非特殊场合(如:校验试验机力值精度的高精度标定仪),否则在试验机上是不可使用的。
目前模拟信号的数据采集是通过A/D转换器来实现的。
A/D转换器的种类很多,但在试验机上采用最多的是∑-△型A/D转换器。
这类转换器使用灵活,转换速率可动态调整,既可实现高速低精度的转换,又可实现低速高精度的转换。
在试验机上由于对数据的采集速率要求不是太高,一般达每秒几十次到几百次就可满足需求,因而一般多采用较低的转换速率,以实现较高的测量精度。
但在某些厂家生产的试验机上,为了追求较高的采样分辨率,以及极高的数据显示稳定性,而将采样速度降的很低,这是不可取的。
因为当采样速度很低时,对高速变化的信号就无法实时准确采集。
例如金属材料性能试验中,当材料发生屈服而力值上下波动时信号变化就是如此,以至于不能准确求出上下屈服点,导致试验失败,结果丢了西瓜捡芝麻。
那么如何判断一个系统的频带宽窄以及采样速率的高低呢?3、控制方法使用不当针对材料发生屈服时应力与应变的关系(发生屈服时,应力不变或产生上下波动,而应变则继续增大)国标推荐的控制模式为恒应变控制,而在屈服发生前的弹性阶段控制模式为恒应力控制,这在绝大多数试验机及某次试验中是很难完成的。