微积分第一章---函数--习题及答案
高等数学教材微积分课后答案

高等数学教材微积分课后答案第一章微积分基本概念1. 第一节课后习题答案1.1 单项选择题1. A2. B3. C4. D5. A1.2 填空题1. 42. 273. 184. 05. 21.3 解答题1. (a) 首先将函数对x求导,得到f'(x) = 6x^2 + 12x - 8。
令f'(x) = 0,解得x = -2和x = 2/3。
然后再带入原函数,得到f(-2) = 0和f(2/3) = -1/27。
因此,函数在x = -2和x = 2/3处取得极值,极大值为0,极小值为-1/27。
(b) 由于f'(x) = 6x^2 + 12x - 8 > 0,说明函数在(-∞, -2)和(2/3, +∞)上为增函数;当-2 < x < 2/3时,f'(x) < 0,说明函数在(-2, 2/3)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, -2)上递增,在(-2, 2/3)上递减,在(2/3, +∞)上递增。
2. 第二节课后习题答案2.1 单项选择题1. C2. A3. D4. B5. C2.2 填空题1. 82. 123. 04. -∞5. +∞2.3 解答题1. (a) 首先求函数的导数,得到f'(x) = 2e^x - 12x。
令f'(x) = 0,解得x = ln6。
然后带入原函数,得到f(ln6) = 4ln6 - 6ln^2(6)。
因此,函数在x = ln6处取得极值。
(b) 由于f'(x) = 2e^x - 12x > 0,说明函数在(-∞, ln6)上为增函数;当x > ln6时,f'(x) < 0,说明函数在(ln6, +∞)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, ln6)上递增,在(ln6, +∞)上递减。
第二章微分学中值定理1. 第三节课后习题答案1.1 单项选择题1. B2. D3. C4. A5. D1.2 填空题1. 42. 53. π/24. √35. 01.3 解答题1. 根据罗尔定理,首先证明f(x)在区间[0, 1]上连续。
微积分第1章函数极限与连续答案

2微积分 第一章练习题答案、选择题:F 列函数为偶函数的是( 1、 ★ A 、B 、C 均为奇函数A. y x 3 sin 2 xB. 5xcos xC. y sin x cos 5xxxD. y 22F 列函数不具有对称性的是 A. y arctanx B. 下列函数在定义域内无界的是 1A. y 1 sin x 下列各对函数不相等的是 A. C.B. )• ★对称性就是奇偶性• A 、B 、D 均奇•指数函数无对称性x “x ( C ). x 32 (x sin xC. D.ln(x , 1 x 2)).cos(ln x)C. y arcta ne xD. ysin x).B.2) D. sin 2 x cos 2 x 与 y 1 A .是幕函数 B.是指数函数 C .不是基本初等函数 D.不是函数6、对于普通分段函数,以下说法不正确的是A.定义域为各段并集 C.各段内分别为初等函数 (D ).B.整体若不能由一个解析式表示就不是初等函数 D 不是一个函数,而是多个函数 7、 函数 8、函数 函数 10、lim xf (x)在点X 。
处有定义是函数 f ( x)在点X 。
处极限存在的( f (x)在点X 0处有定义是函数 f (x)在点X 0处连续的 f (x)在点X °处连续是f (x)在点X °处极限存在的( xe (D.不存在 ) 为两个方向,D.无关)条件 B.必要)条件 A.充分)条件 x 仍为两个方向无穷;指数函数不对称111、 lim sin— x 0 (D.不存在但函数有界 1,lim sin —lim sin ux 0xu12、已知 13、已知 lim 2x a 1,则常数a x 3x 2x 3 4 ax 1 lim xB.0 ,且分式极限存在,分子必T 014、2x4,则常数a ( D. ★由已知nA.lim xs in 丄 x1 B. lim xsin 1xxC. xlim 2 (2 sin x) 0 x1 xD. lim x sin x x sin k(x 15、 limx 2 x 2 2)A.sin k(x ★ v lim x 22)x 2216、若 lim (1 ax)x e 3,则 a (x 0B.2★ v lim (1 ax)xex 02a17、f(x) ,则x叫f (x)(B.1 )18、f(x)1 .sinx x19、20、21、B. limx 0时,C.极限值为.1xsi nx(C.e x)是无穷小量In x,(B. xs in〔)不是无穷小★x)正确★ Um*1 . sinxxD. lim xsin1x1 22 lim (xsinx23、函数y(x 填空题:1、函数f(x)f(0)3、已知4、已知5、已知1★ v lim e x lim e u 0x 0 u★与f(0)0无关sin x;x1 ;cosx 12x23" x2x arctan x、1 1—sin —无穷小量与有界变量乘积x xlim xx 1lim(x 1)x 1 \ /分母极限为0, 不满足极限商的运算法则条件sinx1; C.limxx 0 x.1sinlim xx 11xx(2sin X)xx2 11^cosx1 x2(3x 1)x0 f(x) ln 2 f (x) x2,B.2)f(x)的间断点为(1 .sin xC.A.lim - lim sinxx x xB. 10: lim sinx不存在,不满足法则条件xC. 2D. 3★使分母为0的点x 0的定义域为0x23x 1,2]X—0f(f (0))1,f(f(0)) f(1) (x 2)x1,则f(x。
大学数学微积分第二版上册课后练习题含答案

大学数学微积分第二版上册课后练习题含答案前言数学是一门抽象的学科,需要大量的练习才能真正理解和掌握。
微积分作为数学中的基础学科,更是如此。
本文将为大家提供大学数学微积分第二版上册的课后习题及其答案,供大家参考和练习。
课后习题及答案第一章函数与极限习题1.11.计算以下极限:1.$\\lim\\limits_{x\\rightarrow 1}\\frac{x-1}{x^2-1}$2.$\\lim\\limits_{x\\rightarrow 0}\\frac{\\sqrt{1+x}-1}{x}$3.$\\lim\\limits_{x\\rightarrow 0}(\\frac{1}{\\sin{x}}-\\frac{1}{x})$答案:1.$\\frac{1}{2}$2.$\\frac{1}{2}$3.02.求曲线$y=\\frac{1}{x}$与直线y=x在第一象限中形成的夹角。
答案:$\\frac{\\pi}{4}$3.证明:$\\lim\\limits_{x\\rightarrow 0}x\\sin\\frac{1}{x}=0$答案:对任意$\\epsilon>0$,取$\\delta=\\epsilon$,则当$0<|x|<\\delta$时,有$|x\\sin\\frac{1}{x}-0|<|x|<\\delta=\\epsilon$ 习题1.21.求下列函数的导数:1.y=2x3+3x2−4x+12.$y=\\frac{1}{2}x^3-x^2+2x-1$3.$y=\\frac{1}{\\sqrt{x}}+x\\ln{x}$答案:1.y′=6x2+6x−42.$y'=\\frac{3}{2}x^2-2x+2$3.$y'=-\\frac{1}{2x^{\\frac{3}{2}}}+\\ln{x}+1$2.求函数y=xe x在x=1处的导数。
答案:y′=e+13.求f(x)=|x−2|的导函数。
微积分第一章详细答案

第一章习题1-11.用区间表示下列不等式的解2(1)9;(2)1;1(3)(1)(2)0;(4)00.011 x x x x x ≤>--+<<<+解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3].(2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞).(3)原不等式的解为21x -<<,用区间表示是(-2,1). (4)原不等式可化为0.0110.0110x x -<+<⎧⎨+≠⎩即 1.010.991x x -<<-⎧⎨≠⎩用区间表示是(-1.01,-1)∪(-1,-0.99). 2.用区间表示下列函数的定义域: 1(1)(2)arcsin(1)lg(lg );1(3).ln(2)y y x x xy x =-=-+=-解 (1)要使函数有意义,必须2010x x ≠⎧⎨-≥⎩即011x x ≠⎧⎨-≤≤⎩所以函数的定义域为[-1,0)∪(0,1].(2)要使函数有意义,必须111lg 00x x x -≤-≤⎧⎪>⎨⎪>⎩即0210x x x ≤≤⎧⎪>⎨⎪>⎩所以函数的定义域是12x <≤,用区间表示就是(1,2].(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1).3.确定下列函数的定义域及求函数值f (0),ff (a )(a 为实数),并作出图形(1)1,0,2,011,12x x y x x x ⎧<⎪⎪=⎨≤<⎪⎪<≤⎩; (2)y=211,12x x x ⎧≤⎪⎨-<<⎪⎩解 (1)函数的定义域(){|0}{|01}{|12}{|112}(,1)(1,2]或D f x x x x x x x x x =<≤<<≤=<<≤=-∞10(0)200,1,()201112a a f ff a aa a ⎧<⎪⎪=⨯===⎨≤<⎪⎪<≤⎩,图1-1 图1-2(2)函数的定义域(){|1}{|12}{|2}(2,2)D f x x x x x x =≤<<=<=-221(0)1,11,()112a f ff a a a ≤===-==-<<⎪⎩4.设1,1()1,1x f x x ⎧≤⎪=⎨->⎪⎩,求f (f (x )).解 当|x |≤1时, f (x )=1, f (f (x ))= f (1)=1;当|x |>1时, f (x )=-1, f (f (x ))= f (-1)=1, 综上所述f (f (x ))=1(x ∈R ).5.判定下列函数的奇偶性: (1) f (x )=21cos xx-; (2)f (x )=(x 2+x )sin x ;(3)f (x )=1e ,0e 1,0x x x x -⎧-≤⎨->⎩解 (1) ∵221()1()()cos()cos x xf x f x x x----===-∴f (x )是偶函数.(2)∵222()[()()]sin()()(sin )()sin ()f x x x x x x x x x x f x -=-+--=--=--≠ 且()()f x f x -≠-, ∴f (x )是非奇非偶函数.(3)当x <0时,-x >0, ()1(1)()e e x x f x f x ---=-=--=-; 当x ≥0时,-x ≤0, ()()11(1)()e e e x x x f x f x ---=-=-=--=-,综上所述, x ∀∈R ,有f (-x )=-f (x ),所以f (x )是奇函数.6.设f (x )在区间(-l ,l )内有定义,试证明:(1) f (-x )+f (x )为偶函数; (2) f (-x ) -f (x )为奇函数. 证 (1)令()()()F x f x f x =-+(,)x l l ∀∈-有()[()]()()()()F x f x f x f x f x F x -=--+-=+-=所以()()()F x f x f x =-+是偶函数;(2)令()()()F x f x f x =--,(,)x l l ∀∈-有()[()]()()()[()()]()F x f x f x f x f x f x f x F x -=----=--=---=-所以()()()F x f x f x =--是奇函数.7. 试证:(1) 两个偶函数的代数和仍为偶函数; (2) 奇函数与偶函数的积是奇函数. 证 (1)设f (x ),g (x )均为偶函数,令()()()F x f x g x =± 则 ()()()()()(F x f x g x f x g x F x-=-±-=±=, 所以()()f x g x ±是偶函数,即两个偶函数的代数和仍为偶函数.(2)设f (x )为奇函数,g (x )为偶函数,令()()()F x f x g x =⋅, 则 ()()()()()(F x f x g x f x g x F x -=-⋅-=-=-, 所以()()f x g x ⋅是奇函数,即奇函数与偶函数之积是奇函数. 8. 求下列函数的反函数:22(1)2sin 3;(2);212101,(3)()2(2)1 2. xxy x y x x f x x x ==+-≤≤⎧=⎨--<≤⎩解 (1)由2sin 3y x =得1arcsin 32y x =所以函数2sin 3y x =的反函数为1arcsin(22)32x y x =-≤≤.(2)由221xxy =+得21x y y=-,即2log 1y x y=-.所以函数221xx y =+的反函数为2log (01)1x y x x =<<-.(3)当01x ≤≤时,由21y x =-得1,112y x y +=-≤≤;当12x <≤时,由22(2)y x =--得22x y =-<≤;于是有1112212y y x y +⎧-≤≤⎪=⎨⎪-<≤⎩,所以函数22101()2(2)12x x f x x x -≤≤⎧=⎨--<≤⎩的反函数是1112()212x x f x x +⎧-≤≤⎪=⎨⎪-<≤⎩.9. 将y 表示成x 的函数,并求定义域:222(1)10,1;(2)ln ,2,sin ;(3)arctan ,().为实数u vy u x y u u v x y u u v a x a ==+======+解 (1)211010u x y +==,定义域为(-∞,+∞);(2) sin ln ln 2ln 2sin ln 2vxy u x ====⋅定义域为(-∞,+∞);(3) arctan arctan arctan y u ===(a 为实数),定义域为(-∞,+∞).习题1-21.下列初等函数是由哪些基本初等函数复合而成的? (1) y=(2) y =sin 3ln x ;(3) y = tan 2xa; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin x u a =,则y =再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,xy u v v a ===复合而成的.(2)令sin ln u x =,则3y u =,再令ln v x =,则sin u v =.因此3sin ln y x =是由基本初等函数3,sin ,ln y u u v v x ===复合而成.(3)令2tan u x =,则u y a =,再令2v x =,则tan u v =,因此2t a n x y a =是由基本初等函数2,tan ,uy a u v v x ===复合而成.(4)令23ln (ln )u x =,则ln y u =,再令3ln(ln )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2ln ,,ln ,y u u v v w ===3,ln w t t x ==复合而成.2.设f (x )的定义域为[0,1],分别求下列函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a ),(a >0); (4) f (e x +1).解 (1)由f (x )的定义域为[0,1]得0≤x 2≤1,于是-1≤x ≤1,所以f (x 2)的定义域为[-1,1].(2)由f (x )的定义域为[0,1]得0≤sin x ≤1,于是2k π≤x ≤(2k +1)π,k ∈z ,所以f (sin x )的定义域为[2k π,(2k +1) π], k ∈Z .(3)由f (x )的定义域为[0,1]得0≤x+a ≤1即-a ≤x ≤1-a 所以f (x+a )的定义域为[-a ,1-a ]. (4)由f (x )的定义域为[0,1]得0≤e x +1≤1,解此不等式得x ≤-1,所以f (e x +1)的定义域为(-∞,-1]. 3. 求下列函数的表达式:(1) 设ϕ(sin x )=cos 2x +sin x +5,求ϕ(x ); (2) 设g (x -1)=x 2+x +1,求g (x ); (3) 设1()f x x +=x 2+21x,求f (x ).解 (1)法一:令sin t x =,则222cos 1sin 1x x t =-=-,代入函数式,得:22()156t t t t t ϕ=-++=+-,即 2()6x x x ϕ=++.法二:将函数的表达式变形得:22(sin )(1sin )sin 56sin sin x x x x x ϕ=-++=+-令sin t x =,得 2()6t t t ϕ=+-,即 2()6x x x ϕ=+-.(2)法一:令1t x =-,则1x t =+,将其代入函数式,得22()(1)(1)133g t t t t t =++++=++即 2()33g x x x =++.法二:将函数表达式变形,得22(1)(21)(33)3(1)3(1)3g x x x x x x -=-++-+=-+-+令1x t -=,得 2()33g t t t =++, 即 2()33g x x x =++.(3)法一:令1x t x+=,两边平方得22212x t x++=即22212x t x+=-,将其代入函数式,得2()2f t t =-,即2()2f x x =-.法二:将函数表达式变形,得222111222f x x x x x x ⎛⎫⎛⎫⎛⎫=-=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令1x t x+=,得2()2f t t =-,即2()2f x x =-.4.设f (x )为奇函数,证明:若f (x )在x =0有定义,则f (0)=0.证 ∵f (x )为奇函数,且f (x )在x =0处有定义,∴ (0)(0)f f -=-又(0)(0)f f -=于是(0)(0)f f =- 即2(0)0,(0)0f f =∴=.5.证明:狄利克雷函数是周期函数,任何一个正有理数均是它的周期,但无最小正周期. 证 狄利克雷函数1,,()0,当为有理数时当为无理数时.x D x x ⎧=⎨⎩设T 是任一正有理数, x ∀∈R ,当x 为有理数时,x+T 为有理数,于是()1D x T +=,又()1D x =,所以()()D x T D x +=; 当x 为无理数时,x+T 为无理数,于是()0D x T +=,又()0D x =,所以()()D x T D x +=. 综上所述, x ∀∈R 有()()D x T D x +=,所以()D x 是周期函数,任何一个正有理数均是它的周期,又设P 是任一无理数, x P ∃=-∈R ,使()(0)1D x P P +==,而()0D x =,故()()D x P D x +≠,即无理数不是()D x 的周期;因为不存在最小的正有理数,所以()D x 无最小正周期.习题1-31.设销售商品的总收入是销售量x 的二次函数,已知x =0,2,4时,总收入分别是0,6,8,试确定总收入函数TR(x ).解 设2()TR x ax bx c =++,由已知(0)0,(2)6,(4)8TR TR TR === 即 04261648c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 1240a b c ⎧=-⎪⎪⎨=⎪⎪=⎩所以总收入函数21()42TR x x x =-+.2.设某厂生产某种产品1000吨,定价为130元/吨,当一次售出700吨以内时,按原价出售;若一次成交超过700吨时,超过700吨的部分按原价的9折出售,试将总收入表示成销售量的函数.解 设销售量为x ,实际每吨售价为P 元,由题设可得P 与x 间函数关系为1307001177001000x P x ≤⎧=⎨<≤⎩,总收入 130700()130700(700)1177001000TR x x x x x ≤⎧=⎨⨯+-⨯<≤⎩,即 130700()91001177001000TR x x x xx ≤⎧=⎨+<≤⎩.3. 已知需求函数为105Q P =-,成本函数为C =50+2Q ,P 、Q 分别表示价格和销售量.写出利润L 与销售量Q 的关系,并求平均利润.解 由题设知总收入2()105QR Q PQ Q ==-,则总利润 ()221()()()8505021055Q L Q R Q C Q Q Q Q Q ⎛⎫=-=-=--+- ⎪⎝⎭, 平均利润 ()150()85L Q AL Q Q QQ==--.4. 已知需求函数Q d 和供给函数Q s ,分别为Q d =100233P -,Q s =-20+10P ,求相应的市场均衡价格.解 当d s Q Q =时供需平衡,由d s Q Q =得1002201033P P -=-+,解得5P =所以市场均衡价格5P =.。
微积分第2版-朱文莉第1章 函数习题详解

习题1.1(A)1、用区间表示下列点集。
(1) {}0x x ≠;解 由于实数全体为),(-∞+∞,因此 {}()0,0(0,)x x ≠=-∞⋃+∞ (2) {}45x x -<;解 由54<-x ,有91<<-x ,因此 {}45(1,9)xx -<=- (3) {}10x x +> 解 由01>+x ,有1->x 或1-<x ,因此{}10(,1)(1,)xx +>=-∞-⋃-+∞ (4) {}2560x x x ++<解 由0652<++x x ,有23-<<-x ,因此{}2560(3,2)x xx ++<=-- 2、用区间表示下列不等式所表示的集合。
(1) 25<-x 解 由25<-x ,有73<<x ,因此52(3,7)x x -<⇔∈(2) 4)2(02<-<x解 由4)2(02<-<x ,有220<-<x ,即40<<x ,且2≠x ,因此 20(2)4(0,2)(2,4)x x <-<⇔∈⋃(3) 73>+x解 由73>+x ,有4>x 或10-<x ,因此37(4,)(,10)x x +>⇔∈+∞⋃-∞-(4) 231x x +>-解 由231x x +>-,有32->x 或4-<x ,因此 2231(,4)(,)3x x x +>-⇔∈-∞-⋃-+∞ (B)1、设(,)a b 是一个有限的开区间,证明:对任何(,)x a b ∈一定存在x 的一个邻域(,)(,)oU x a b δ⊂。
证明 对任何),(b a x ∈,有b x a <<,记},min{a x x b --=δ,则0>δ。
下面我们来证明(,)(,)o U x a b δ⊂。
微积分答案

第一章 函数与极限1.2-1.3 数列和函数的极限一、 根据数列或函数极限的定义证明下列极限:1. 0)1(lim 2=-∞→n n n ; 2.521532lim =+-∞→n n n ; 3. 224lim 42x x x →--=-+; 4. 0cos lim =+∞→x x x ;5. 证明11lim=-+∞→x x x ,并求正数X ,使得当x X >时,就有01.0|11|<--x x.(X 2=101)二、设}{n x 为一数列.1. 证明:若ax n n =∞→lim ,则||||lim a x n n =∞→;2. 问:(1)的逆命题“若||||lim a x n n =∞→,则ax n n =∞→lim ”是否成立?若成立,证明之;若不成立,举出反例. (逆命题不成立。
反例:(1)nn x =-。
)三、判断下列命题的正误:1. 若数列}{n x 和}{n y 都收敛,则数列}{n n y x +必收敛; (正确)2. 若数列}{n x 和}{n y 都发散,则数列}{n n y x +必发散; (错误)3. 若数列}{n x 收敛,而数列}{n y 发散,则数列}{n n y x +必发散。
(正确) 四、证明:对任一数列}{n x ,若ax k k =-∞→12lim 且ax k k =∞→2lim ,则ax n n =∞→lim . 五、证明:A x f x =∞→)(lim 的充分必要条件是Ax f x =-∞→)(lim 且Ax f x =+∞→)(lim .六、根据函数的图形写出下列极限(如果极限存在):1. lim arctan x x π→-∞=-2,lim arctan x x π→+∞=2和lim arctan x x→∞不存在2. lim sgn 1x x →-∞=-,1lim sgn x x →+∞=和lim sgn x x→∞不存在3.lim x x e →-∞=,lim x x e →+∞=+∞和lim xx e →∞不存在七、证明:若)(lim 0x f x x →存在,则函数)(x f 在0x 的某个去心邻域内有界.八、证明:函数)(x f 当0x x →时的极限存在的充分必要条件是左极限,右极限均存在并且相等,即)(lim )(lim )(lim 0x f A x f A x f x x x x x x +-→→→==⇔=.九、设||)(x x f =,求0lim ()0x f x -→=,0lim ()0x f x +→=和0im ()0l x f x →=.十、设x x f sgn )(=,求0lim (1)x f x -→=-,0lim ()1x f x +→=和0lim ()x f x →不存在1.4 无穷小与无穷大一、填空题1. 当x →∞时,11-x 是无穷小;当1x →时,11-x 是无穷大.2. 当0x -→时,x e 1是无穷小;当0x +→时,xe 1是无穷大.3. 当1x →时,x ln 是无穷小;当0x +→时,x ln 是负无穷大;当x →+∞时,x ln 是正无穷大. 二、选择题当0→x 时,函数x x1cos1是(D ) (A )无穷小; (B )无穷大;(C )有界的,但不是无穷小; (D )无界的,但不是无穷大.三、证明函数x x x f sin )(=在)0(∞+,内无界,但当+∞→x 时,)(x f 不是无穷大. 四、判断下列命题的正确性:1. 两个无穷小的和也是无穷小. (正确)2. 两个无穷大的和也是无穷大. (错误)3. 无穷小与无穷大的和一定是无穷大. (正确)4. 无穷小与无穷大的积一定是无穷大. (错误)5. 无穷小与无穷大的积一定是无穷大. (错误)6. 无穷大与无穷大的积也是无穷大. (正确) 五、举例说明:1. 两个无穷小的商不一定是无穷小;2. 无限个无穷小的和不一定是无穷小. 六、根据定义证明:1. 当0→x 时,x x x f 1sin)(=为无穷小;2. 当+→0x 时,xe xf 1)(=为无穷大;3. 当-∞→x 时,xe xf =)(为无穷小.1.5 极限运算法则一、计算下列极限:1.22lim(31224)x x x →-+=2. 22131im 21l x x x x →-+=-3. 224im 4l 2x x x →-=-4. 11lim 1n x x n x →-=-(n 是正整数)5. 3131lim()111x x x →-=--6. 0233()lim 3h x h x x h →+-=二、计算下列极限:1. 211lim(3)6)(2x x x →∞-+=2. 2231lim 4134x x x x →∞+=+- 3. 2321lim 510x x x x x →∞++=-+4. 235lim 101x x x x →∞+-=+∞5.2221211lim 2(...)n n n n n →∞-+++=6. 221...lim (||1||1)1.1..1n nn a a a a b b b b b a →∞++++-<<=++++-, 7. 1123lim 2313n n n n n ++→∞+=+ 三、若0)1(lim 2=--+∞→b ax x x x ,求b a ,的值. (1,1a b ==-)四、若23)11(lim 21=---→x x x a x ,求a 的值. (2a =)五、计算下列极限:1. 2211lim 2x x x x x →++=+-∞2.2lim(543)x x x →∞--=∞3. 32251lim 465x x x x x →∞-+=++∞.六、计算下列极限: 1.211lim(1)cos10x x x →-=-2.301lim s ni x x x →=3. 2(1)arcta 0n lim x x x x →∞+=. 七、设2,1()5,1x x f x x x ⎧≤⎪=⎨->⎪⎩,分别求函数)(x f 在1-=x 与1=x 的左极限、右极限和极限.(4,1--,不存在)八、设11lim )(22+-=∞→nn n x x x f ,试求)(x f 的表达式. (1,1()0,11,1x f x x x ⎧-<⎪==⎨⎪>⎩)1.6 极限存在的两个准则两个重要极限一、利用夹逼定理求下列极限: 1. 222111lim(...)120n n n n n →∞+++=+++2.222111lim(...)120n n n n n n n n →∞+++=++++++3. 21lim (arctan )0x x x →∞=二、证明:332lim =+∞→n n n n .三、设12max{...}m a a a a =,,,(01,2,...,)k a k m >=,,证明:n a=.四、设1>a ,证明0lim=∞→nn a n五、利用数列的单调有界准则证明下列数列收敛,并求出极限:1. 12,n x x x ===...;(l i m 2n n x →∞=)2. 11121111111n n n x x x x x x x --==+=+++,,...,,....(lim n n x →∞=) 六、设11x a y b ==,(0)a b <<,n n n y x x =+1,21nn n y x y +=+. 1. 证明数列}{n x 单调增加,数列}{n y 单调减少且满足(1,2,...)n n x y n <=; 2. 证明数列}{n x 和}{n y 都收敛,并且有相同的极限.七、计算下列极限:1.0sin 33lim44x x x →=2. 0sin lim (,0)sin x x x ααββαβ→≠=3.lim sinx x xππ→∞=4. sin m1li x xx ππ→=-5.01cos lim arctan 12x x x x →-=6. 0lim x +→=7. 1lim 2s n 30i n n n →∞=.八、计算下列极限:1. 1lim(1)1nn n e→∞+=+2. 522lim(1)x x x e +→∞+=3.1x e →=4. 21lim()211x x x e x →∞-=+5. 2cot 2lim(1tan )x x x e →+=6.21lim(11)nn n →∞-=.九、已知2)1(lim 1=+→xx ax ,求a 的值. (ln 2a =)十、设⎪⎪⎩⎪⎪⎨⎧>-<=0cos 102sin )(2x x x x xxx f ,,,求(0)(0)f f -+,和)(lim 0x f x →. (2,2,2)十一、设⎪⎩⎪⎨⎧≥+<=00tan )(2x x x x xaxx f ,,,已知)(lim 0x f x →存在,求a 的值. (0a =)1.7 无穷小的比较一、比较下列各对无穷小:1. 221,(1)(1)x x x --→ (后者高阶) 2. 321,1(1)x x x --→ (同阶)3.21cos ,(0)x x x -→ (同阶) 4. 2tan sin ,(0)x x x x -→ (前者高阶) 二、证明:当0→x 时,有以下等价无穷小成立:1. arcsin x x ;2.3tan sin 2x x x -. 三、利用等价无穷小代换计算下列极限:1. 20arctan lim sin 1x x x x →=2. 21lim s n 0i x x x →∞=3.lim 12x +→=四、当0x →时,下列四个无穷小中,哪一个是比其他三个更高阶的无穷小?A.2x B.1cos x -1 D.tan x x - (D )五、证明:若α是β的高阶无穷小,则αββ+ 。
微积分上学期答案

1微积分答案 第一章 函数一、1.B; 2.D; 3.A; 4.C; 5.D二、1.1cos -x 或22sin2x ;2.100010-<⎧⎪=⎨⎪>⎩x x x 或()f x ; 3.4,-1;4.y =[0,1];5.1(1)2y x =-. 三、1. (1)[1,2)(2,4)D =⋃; (2)[3,2][3,4]D =--⋃. 2.(1)102,1y u u x ==+ ;(2)1,sin ,u y e u v v x===;(3) 2arctan ,ln ,1y u u v v x===+.3. 211,12,()12400,44ab C C x x x ====++ ()1400124c x C x x x==++.4. (1)90010090(100)0.011001600751600x P x x x <≤⎧⎪=--⋅<<⎨⎪≥⎩;(3)L=21000(元). (2)2300100(60)310.011001600151600x x L P x x xx x x ≤≤⎧⎪=-=-<<⎨⎪≥⎩;四、略.第二章 极限与连续(一)一、1.C ; 2. D ; 3.C ; 4.B ; 5.C 二、1. -2; 2. 不存在; 3. 14; 4. 1; 5.ab e .三、 1、(1)4; (2)25; (3)1; (4)5; (5)2.2、(1)3; (2)0; (3)2; (4)5e -; (5)2e-.3、11,2=-=-αβ 4、利用夹逼定理:11←<<→四、略。
第二章 极限与连续(二)一、1. D ; 2. C ; 3. B ; 4. C ; 5. B 二、1、0; 2、-2; 3、0; 4、2; 5、0,1x x ==-.2三、1、(1)1=x 是可去间断点;2=x 是连续点.(2)=xk π是第二类间断点(无穷间断点); 2=+x k ππ是可去间断点.(3)0=x 是可去间断点. (4)1x =是跳跃间断点.2、1()011⎧<⎪==⎨⎪->⎩x x f x x x x ,1=±x是跳跃间断点.3、(1)0;(2)cos α;(3)1; (4)0;(5)12.四、略。
经济数学(微积分)自测题

第一章 第一章 函数 自测题一、填空题(请将正确答案直接填在题中横线上):1.函数()(ln )f x f x =则的定义域为______________。
2.设1, 1()0, 1,(),[()] ,[()]1,1x x f x x g x e f g x g f x x ⎧<⎪=====⎨⎪->⎩则。
3.函数2, 0()2ln ln 2, 2x x f x x x x -≤⎧⎪⎪=<<⎨⎪-≥⎪⎩的反函数1()f x -=________________。
4.设函数()f x 满足212()()1xf x x f x x +=+,则()f x =__________。
5.设(sin )cos 1.(cos )22x xf x f =+则=____________________。
二、选择题(请在每小题的四个备选答案中,选出一个正确的答案,并将其号码填在括号内):1.函数2211x y x -=+的值域是( )。
(A) 11y -≤≤ (B) 11y -≤< (C) 11y -<≤ (D) 01y ≤≤ 2.()sin ()xf x xex -=-∞<<+∞是( )。
(A) 有界函数 (B) 单调函数 (C) 周期函数 (D) 奇函数 3.设x ∈(-1,1),则1()lg1xf x x -=+( )。
(A) 既是奇函数,又是单调减函数 (B) 既是奇函数,又是单调增函数 (C) 既是偶函数,又是单调增函数 (D) 既是偶函数,又是单调增函数4.设22,0(), 0x x e x x f x e x x ππ⎧--<<⎪=⎨+≤<⎪⎩,在其定义域内为( )。
(A) 无界函数 (B) 周期函数 (C) 单调函数 (D) 偶函数 5.已知函数()f x 在(,)-∞∞上单调减,则下列函数中单调增的是( )。
(A) 2()f x (B) 1()f x (C) ()f x - (D) ()xf x三、充分判断题:解题说明:本题要求判断给出的条件能否充分支持题干陈述的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数一、填空1、设()()x t t f ψ=,则()()=-01f f 。
2、设()111>≤⎩⎨⎧=x x x x f ,则()()xe f x f +•1sin = 。
3、712arcsin42-+-=x x y 的定义域为 。
4、()xx f x f 212=⎪⎭⎫⎝⎛- ,则()x f = 。
5、()001<≥⎪⎩⎪⎨⎧=x x xx x f ,则()[]=x f f 。
6、已知()()[]21,sin x x f x x f -==ϕ,则()x ϕ= 。
7、设函数()x f 满足关系式:()()xe xf x f 3121=--+,则函数()x f = 。
8、已知()[]()2sin,cos 1xx x x f =+=ϕϕ,则()x f = 。
9、已知()⎪⎩⎪⎨⎧≤≤+<≤<≤-+=3121033132x x x x x x f x,则其反函数()x f 1-= 。
10、函数3arcsin cos lg x y =由 复合而成。
二、选择1、函数()xx f 3=,则()y x f +=( )A 、()()y f x fB 、()x f 2C 、()x fD 、()y f2、若()x f 是(-∞,+∞)上有定义的函数,则下列( )奇函数。
A 、()3x f B 、()[]3x f C 、()()x f x f -- D ()()x f x f -+ 3、设函数()x f 定义在(0,+∞)内,b a ,为任意正数,若函数()xx f 单调减少,则有( )A 、()()()b f a f b a f +<+B 、()()()b a b f a f b a f ++<+C 、()()()b f a f b a f +>+D 、()()()ba b f a f b a f ++>+4、设函数()u f 的定义域为10<<u ,则()x f ln 的定义域为( ) A 、(0 ,1) B 、(1 ,a ) C 、(0 ,e ) D 、(1 ,e )5、设[x]表示不超过x 的最大整数,则函数[]x x y -=为( ) A 、无界函数 B 、单调函数 C 、偶函数 D 、周期函数6、设函数()x xe x x f sin tan +=,则()x f 是( )A 、偶函数B 、无界函数C 、周期函数D 、单调函数 7、函数()()()()2212sin ---=x x x x x x f 在下列哪个区间内有界( )A 、(-1 ,0)B 、(0 ,1)C 、(1,2)D 、(2 ,3)8、若在(-∞,+∞)内()x f 单调增加,()x ϕ单调减少,则()[]x f ϕ在(∞,+∞)内( )A 、单调增加B 、单调减少 C、不是单调函数 D、增减性难以判定 三、计算1、设函数()x f y =的定义域为[0,3a ](a >0),求()()()a x f a x f x g 32-++=的定义域。
2、已知()⎩⎨⎧≤<≤≤=+2121012x x x x x ϕ ,求()x ϕ及其定义域。
3、设()⎩⎨⎧>+≤-=0202x x x x x g ,()⎩⎨⎧≥-<=002x xx x x f ,求()[]x f g4、设()x f 是(-a ,a )上是奇函数,已知0≥x 时,()()()00,==ϕϕx x f ,试求:在(-a ,0)上()=x f ?四、应用题1、某商品的单价为100元,单位成本为60元,商家为了促销,规定凡是购买超过 200单位时,对超过部分按单价的九五折出售,求成本函数、收益函数、利润函数。
2、某电视机每台售价为500元时,每月可销售2000台,每台售价为450元时,每月可增销400台,试求该电视机的线必性需求函数。
3、某厂生产某商品的可变成本为15元/件,每天的固定成本为2000元,如果每件商品的出厂价为20元,为了不亏本,该厂每天至少应生产多少件该商品? 五、设()xcx bf x af =⎪⎭⎫⎝⎛+1 ,其中c b a ,,为常数,且b a ≠,试证:()()x f x f -=。
应用实例生小兔问题兔子出生以后两个月就能生小兔,如果每月生一次且恰好生一对小兔,且出生的兔子都成活,试问一年以后共有多少对兔子,两年后有多少对兔子?解 先直接推算,在第1月只有1对兔子;第2月也只有一对兔子;在第3月这对兔子生了1对小兔子,共有2对兔子;在第4月,老兔子又生了1对小兔子,共有3对小兔子;在第5个月,老兔子生1对小兔子,且在第3月出生的小兔也生育1对小兔子,故共有5对小兔子,在第6个月,老兔子、在第3、第4月出生的小兔子各生1对小兔子,故共有8对小兔子。
如此类推,不难得到月份和小兔子对数的关系如表1所示。
表1 兔子对数增长从表1看出,一年后(第13月)时共有233对兔子。
但是计算2年后时,这种方法似乎有些繁和苯,且容易出错。
有没有更好的方法呢?现在回过头来仔细观察一下每月小兔数的变化情况,我们发现从第3月开始,每月小兔对数就是前两月的小兔对数之和。
若记n r 为第n 月的小兔对数,则我们发现的规律为,4,3,,1,11221=+===--n r r r r r n n n (1)用(1)式就很容易用计算机算出2年后兔子的对数为75025。
交通路口的红绿灯模型问题:在一个由红绿灯管理下的十字路口,如果绿灯亮15秒种,问最多可以有多少汽车通过这个交叉路口.分析:这个问题提得笼统含混,因为交通灯对十字路口的控制方式很复杂,特别是车辆左、右转弯的规则,不同的国家都不一样。
通过路口的车辆的多少还依赖于路面上汽车的数量以及它们的行驶的速度和方向. 这里我们在一定的假设之下把这个问题简化.假设:(1)十字路口的车辆穿行秩序良好,不会发生阻塞.(2)所有车辆都是直行穿过路口,不拐弯行驶,并且仅考虑马路一侧或单行线上的车辆.(3)所有的车辆长度相同,为L 米,并且都是从静止状态匀加速启动. (4)红灯下等待的每相邻两辆车之间的距离相等,为D 米. (5)前一辆车起动后,下一辆车起动的延迟时间相等,为T 秒.对于我们的问题,可以认为在红灯下等待的车队足够长,以致排在队尾的司机看见绿灯又转为红灯时仍不能通过路口.我们用X 轴表示车辆行驶的道路.原点O 表示交通灯的位置,X 轴的正向是汽车行驶的方向.以绿灯开始亮为起始时刻.于是在红灯前等待的第1辆汽车刚起动时应该按照匀加速的规律运动.我们可以用公式2/)(21at t S =来描述它,其中)(1t S 为t 时刻汽车在X 轴上的位置,a 是汽车起动时的加速度.对于灯前的第n 辆车,则有公式2/)()0()(20t t a S t S n n -+=,其中)0(n S 是起动前汽车的位置,0t 是该车起动的时刻。
由假设(3)~(5)可知,))(1()0(D L n S n +--=,T n t n )1(-=.在城市道路上行驶的汽车都有一个最高时速的限制,为 *v 米/秒.并假设绿灯亮后汽车将起动一直加速到可能的最高速度,并以这个速度向前行驶,则显然汽车加速的时间是n n t a v t +=/**.由上面的分析可以得到绿灯亮后汽车行驶的规律是对于模型的参数值,我们取L =5米 ,D =2米 ,T =1秒.在城市的十字路口汽车的最高速度一般是40千米/时,它折合1.11*=v 米/秒 .进一步需要估计加速度,经调查大部分司机声称:10秒钟内车子可以由静止加速到大约26米/秒的速度。
这时可以算出加速度应为2.6米/秒2,保守一些取汽车的加速度为a =米/秒2. 5.5/*=a v 秒.根据这些参数,我们可以计算出绿灯亮至15秒红灯再次亮时每辆汽车的位置如表所示绿灯亮至15秒汽车的位置交通灯9.1米不能通过.经济市场中商品交换模型1. 市场个体贸易者将他们的商品带到市场,又根据不同的需求将商品换回家。
一个简单的交换经济就这样形成.假定有n 个贸易者群},,2,1{n N =,用n ,,2,1 表示.有m 种商品,m ,,2,1 作为下标.每个贸易者i 带进市场的商品用),,,(21i m i i i ϖϖϖϖ =来表示,这里 i j ϖ是贸易者i 拥有商品j 的初始数量.我们假定每个贸易者i 具有实值效用函数i u ,以表示他的偏好.值)(x u i 是对所有能实现的商品分配),,,(21m x x x x =定义的,当且仅当)()(y u x u i i >时,贸易者i 较向量y 更喜欢向量x .还可假定函数i u 具有某些性质,如连续性和凸性,即对任意的10≤≤λ,)()1()())1((y u x u y x u i i i λλλλ-+≥-+成立.考虑一个贸易者联盟N S ⊂. S 中的局中人可以在他们之间将商品重新分配,满足守恒律∑∑∈∈=si isi i x ϖ这里),,,(21im i i i x x x x =描述了i 的商品分布。
假定群体效用是它的成员效用的和。
则联盟的目标是选择i x ,使群体的总效用最大,即决定i x ,使 )(max )(i si i x u S v ∑∈=任何公平的分配都必须考虑以这种方式决定的联盟值)(S v .2 咖啡早茶假定三个工人带着四种商品(咖啡、茶、糖和奶油)去喝早茶.局中人1带两个单位的咖啡,但他喜欢喝奶油的茶.局中人2有一个单位的茶但他喜欢喝加糖的咖啡,局中人3有两个单位的糖和三个单位的奶油,想喝加糖和奶油的咖啡.他们的自带商品可表示成 假设局中人的效用函数是这里)(x u i 给出了工人i 所饮饮料的杯数,饮料由配料配制,配料可用x 表示.对}3,2,1{=N 的不同子集S ,可计算联盟的值)(S v .例如,如果局中人1病了,不能来工作,这对联盟}3,2{最有好处。
导出的特征函数是0})3,2({})2,1({})3({})2({})1({=====v v v v v , 2})3,1({=v , 3})3,2,1({=v分配集是 }0,,;3:),,{(321321321≥=++=u u u u u u u u u A 核心是 }2:),,{(31321≥+∈=u u A u u u C哪个联盟也没有能力拒绝接受使效用结果),,(u u u u =位于核心中的分配x .这些集合表问题.(2)相对于地面的弯曲程C B A 、、处,方桌的中心为取对角线AC 初始所在的直线为x 轴,y 轴. 当方桌绕中心O 转动时,对角线AC 与初始位置的夹角记为θ记C A 、两腿到地面距离之和为)(θg ,当地面是连续曲面时,g f 、均为θ的连续函数. 又根据(2),腿是足够长的,故三条腿总能同时着地,所以0)()(=θθg f 必成立. 现不妨设0)0(=f (即初始时刻C A 、两腿着地),而0)0(>g (否则已四腿着地).于是,方桌问题归化为以下的数学问题:OxAyCDθ已知)(θf 和)(θg 是θ的连续函数,0)0(=f ,0)0(>g ,且对任意θ有0)()(=θθg f ,求证存在某一θ,使得0)()(00==θθg f .证明 当2πθ=时,AC 与BD 互换了位置,故0)2(,0)2(=>ππg f .取}00,0)(|sup{0<≤==ξξθθf ,显然20πθ<. 因为f 连续,由上确界定义必有0)(0=θf ,且对任意0>ε,又有0)(0>+εθf . 这样,由0)()(=θθg f 又可推得 0)(0=+εθg ,再根据g 的连续性及ε的任意性即可得出0)(0=θg , 证毕.答案一、填空 1、()x ψ2、x sin 3[-3,-2]⋃[2,4] 4、⎪⎭⎫⎝⎛+-x x 12325、x 6()21arcsinx - 7、()112--+-x xe e8、()212x -9、()⎪⎪⎩⎪⎪⎨⎧≤≤-<≤<≤--=-113231log 183131x x x xx x x f10、x w w v v u u y arcsin ,,cos ,lg 3====二、选择1、A 2、C 3、A 4、D 5、D 6、B 7、A 8、B 三、计算 1、解:()u f y = 的定义域为[]a 3,0,0>a ,即:a u 30≤≤∴(1)、a x a a a x 230≤≤-⇒≤+≤(2)、a x a a a x 3233320≤≤⇒≤-≤∴D()[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋂-=a a a a a a g 2,233,232,2、解:令1+=x u ,∴ 1-=u x∴ ()()()⎩⎨⎧≤-<-≤-≤-=2111211012u u u u u ϕ,∴ ()x ϕ的定义域为[](][]3,13,22,1=⋃3、解: ()⎩⎨⎧>+≤-=0202u u u u u g令()x f u=∴ ()[]()()()()⎩⎨⎧>+≤-=0202x f x f x f x f x f g , ()00≥⇔≤x x f此时:()x x f -=;()00<⇔>x x f ,此时:()2x x f =4、解:设()()()⎩⎨⎧<≥=00x x x x x f ψϕ,由于()x f 是奇函数,∴对任意x 有()()x f x f -=-当0>x 时,0<-x ,∴ ()()x x f -=-ψ,而()()x x f ϕ=∴ ()()x x ϕψ-=- ,0>x,即:()()x x --=ϕψ,0<x∴在(-a ,0)上,()()x x f --=ϕ四、应用题1、解:设购买量为x 单位,则成本函数()x x C 60=,收益函数()⎩⎨⎧>+≤=200100095200100x x x xx R利润函数()()()⎩⎨⎧>+≤=-=20010003520040x x x x x C x R x L2、解:设电视机的市场需求量为Q台,单位价格为p 元,线性函数为:Q=bp a -,()0,>b a代入,当p =500元时,Q=2000,得Q=2000500=-b a (1)当p =450时,Q=2400,得 Q=2400450=-b a (2)由(1)(2)得6000=a,8=b∴过且过所求需求函数为:p Q 86000-=3、解:设每天生产该商品x 件,则每天成本为()200015+=x x C (元),每天收入()x x R 20=,为了每天不亏本,则()()x C x R ≥,即:20001520+≥x x得400≥x(件),即:若要不亏本,则每天至少应生产该商品400件。