复合函数的导数教案
《复合函数的导数》教案

《复合函数的导数》教案
一、教学目标
【知识与技能】
理解复合函数的概念,记住复合函数的求导公式,以及会利用基本初等函数的求导公式求复合函数的导数。
【过程与方法】
通过观察、比较、分析、归纳等数学活动,能正确分解简单的复合函数,具备简单的形如的复合函数的导数的能力。
【情感态度与价值观】
在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
二、教学重难点
【重点】
会分解简单的复合函数及会求导。
【难点】
正确分解复合函数的复合过程。
三、教学过程
(五)小结作业
小结:通过这节课的学习,求复合函数的导数,关键在于搞清楚
复合函数的结构,明确复合次数,由外向内层逐层求导,直到关
于自变量求导,同时注意不能遗漏求导环节并及时化简计算结果。
作业:想一想,生活中还有哪些量是成正比例的量?
四、板书设计
五、教学反思。
高中数学复合函数求导教案

高中数学复合函数求导教案一、复合函数的定义1. 复合函数是指一个函数由两个或两个以上的函数组合而成的函数。
2. 复合函数的表示:如果函数 f 和函数 g 都是数学上的函数,则复合函数 f(g(x)) 表示先对x 进行函数 g 的运算,然后再对结果进行函数 f 的运算。
这里 g(x) 是函数 g 的输出,f(g(x)) 是复合函数的输出。
二、复合函数的求导法则1. 复合函数的导数公式:设函数 y = f(u),u = g(x) 为复合函数,则 y 的导数为:dy/dx = dy/du * du/dx2. 具体步骤:a. 先对内函数 u 进行求导,求得 dy/dub. 再对外函数 y 进行求导,求得 du/dxc. 最后将两者相乘即可得到最终导数 dy/dx三、实例演练例题:已知函数 y = (2x + 1)^2,求 dy/dx1. 设 u = 2x + 1,则 y = u^22. 求内函数 u 的导数:du/dx = 23. 求外函数 y 的导数:dy/du = 2u4. 根据公式,dy/dx = dy/du * du/dx = 2u * 2 = 4u5. 将 u = 2x + 1 代入,得到 dy/dx = 4(2x + 1)四、练习题1. 已知函数 y = sin(x^2),求 dy/dx2. 已知函数 y = ln(3x + 2),求 dy/dx3. 已知函数 y = e^(2x - 1),求 dy/dx五、作业1. 完成练习题中的题目,写出解题思路和计算过程2. 自行设计一个复合函数,并求其导数3. 查阅相关资料,了解复合函数的应用领域及意义六、总结1. 复合函数求导是高中数学中的重要内容,掌握其求导法则可以帮助我们解决更复杂的问题。
2. 通过练习和实践,加深对复合函数求导的理解和掌握,提高数学解题能力。
人教版高一数学教案-复合函数的导数

§1.2.3複合函數的導數
【學情分析】:
在學習了用導數定義這種方法計算常見函數的導數,而且已經熟悉了導數加減運算法則後.本節將繼續介紹複合函數的求導方法.
【教學目標】:
(1)理解掌握複合函數的求導法則.
(2)能夠結合已學過的法則、公式,進行一些複合函數的求導
(3)培養學生善於觀察事物,善於發現規律,認識規律,掌握規律,利用規律.
【教學重點】:
簡單複合函數的求導法則,也是由導數的定義匯出的,要掌握複合函數的求導法則,須在理解複合過程的基礎上熟記基本導數公式,從而會求簡單初等函數的導數並靈活應用.
【教學難點】:
複合函數的求導法則的導入,複合函數的結構分析,可多配例題,讓學生對求導法則有一個直觀的瞭解.
【教學過程設計】:
32(32)31812u x x =-=-,x u u y ''⋅
對於一般的複合函數,結論也成立,以y ′x 時,就可以轉化為求y u ′和的乘積,關鍵是找中間變數,隨著中間變數的不同,難易程度不同.。
高三数学复习教案:简单复合函数的导数

高三数学复习教案:简单复合函数的导数教学目标:学生能够理解和计算简单复合函数的导数。
教学重点:简单复合函数的导数计算。
教学难点:应用链式法则计算复合函数的导数。
教学准备:教材、黑板、白板笔。
教学步骤:Step 1:复习导数的定义和基本计算法则。
复习导数的定义和基本计算法则,例如常数函数的导数、幂函数的导数、指数函数的导数等。
Step 2:引入复合函数的概念。
复习函数和映射的概念,并引入复合函数的概念。
举一个简单的例子,如:设函数f(x) = 3x^2 + 2x,函数 g(x) = x^3 - 1,让学生计算 f(g(x)) 和 g(f(x))。
Step 3:简单复合函数的导数计算。
解释简单复合函数的导数计算方法,即通过链式法则计算复合函数的导数。
例如,设函数 f(x) = 3x^2 + 2x,函数 g(x) = x^3 - 1,让学生计算 (f(g(x)))' 和(g(f(x)))'。
讲解计算过程,包括先求出 f'(x) 和 g'(x),然后代入复合函数的内函数的导数和外函数的导数。
Step 4:课堂练习。
让学生做一些课堂练习题,如计算简单复合函数的导数。
示例题目:1. 设函数 f(x) = 2x^3 + 3x,函数 g(x) = x^2 + 1,计算 (f(g(x)))'。
2. 设函数 f(x) = e^x,函数 g(x) = ln(x),计算 (g(f(x)))'。
3. 设函数 f(x) = sin(x),函数 g(x) = x^2,计算 (f(g(x)))'。
Step 5:课堂讨论和总结。
让学生分享自己的解题思路和结果,进行课堂讨论和总结。
总结复合函数的导数计算方法,强调链式法则的应用。
Step 6:作业布置。
布置一些作业题,要求学生练习计算简单复合函数的导数。
参考答案如下:1. (f(g(x)))' = f'(g(x)) * g'(x) = (6x^2 + 3) * (2x) = 12x^3 + 6x。
《简单复合函数的导数》教学设计

3
所以
3
所以曲线 y 3 x 1 在点(2/3,1)处的切线斜率
k y
x
2
3
1
所以曲线在点(2/3,1)处的切线方程为 y-1=1×(x-2)即 3x 3 y
1 0
例 4.某个弹簧振子在振动过程中的位移(单位:mm)与时间(单位:s)之间的
【设计意图】:提出问题,开门见山,引导学生探究复合函数的求导问题。发展学生数
重庆市教育科学研究院
学抽象、数学运算、数学建模的核心素养。
二、新知探究
探究 1: y ln( 2 x 1) 函数的结构特点.
1
若设 u = 2x − 1 (x > ) , 则 y = lnu 从而 y = ln(2x − 1) 可以看成是由 y = lnu 和 u
2.(1)-2
1
3.a=-4
2 ax
3
2
在点(0,1)处与直线 2x-y+1=0 垂直,求 a 的值
( 2) 6(1 2 x ) 2
5
(2)7
(3)
2
( 2 x 1) ln 2
重庆市教育科学研究院
2.运用复合函数的导数运算法则求函数的导数,要关注中间变量的作用.
(1)运算过程中依靠中间变量识别构成复合函数的基本初等函数的结构.
(2)运算结果应表示为原来自变量的函数.
【设计意图】:通过总结,让学生进一步巩固本节所学内容,提高概括能力。
四、作业布置
基础训练:1.求下列函数的导数:
(1) y
2
2.掌握复合函数的求导法则,能够利用求导法则求复合函数 的导数,提升数学运算的素养.
教学内容
大学复合函数求导公式教案

课时安排:2课时教学目标:1. 让学生理解复合函数的概念,掌握复合函数求导的方法。
2. 使学生能够熟练运用复合函数求导公式,解决实际问题。
3. 培养学生的逻辑思维能力和分析问题的能力。
教学重点:1. 复合函数的概念。
2. 复合函数求导公式。
教学难点:1. 复合函数求导公式的推导过程。
2. 复合函数求导公式的应用。
教学准备:1. 复习导数的基本概念。
2. 复习函数的复合。
3. 准备相关例题和习题。
教学过程:第一课时一、导入1. 复习导数的基本概念,如导数的定义、导数的性质等。
2. 引入复合函数的概念,让学生理解复合函数的含义。
二、新课讲解1. 复合函数的概念:- 定义:由两个或两个以上的函数复合而成的函数称为复合函数。
- 举例:y = f(u),u = g(x),则y = f(g(x))为复合函数。
2. 复合函数求导公式:- 设y = f(u),u = g(x),则y关于x的导数为y' = f'(u) g'(x)。
- 举例:求y = ln(x^2)的导数。
解:令u = x^2,则y = ln(u),根据复合函数求导公式,有y' = (1/u) 2x = 2x/x^2 = 2/x。
三、例题讲解1. 例题1:求y = sin(2x)的导数。
解:令u = 2x,则y = sin(u),根据复合函数求导公式,有y' = cos(u) 2 = 2cos(2x)。
2. 例题2:求y = e^(3x^2)的导数。
解:令u = 3x^2,则y = e^u,根据复合函数求导公式,有y' = e^u 6x = 6xe^(3x^2)。
四、课堂小结1. 复合函数的概念。
2. 复合函数求导公式。
第二课时一、复习1. 回顾复合函数的概念。
2. 回顾复合函数求导公式。
二、新课讲解1. 复合函数求导公式的推导过程:- 设y = f(u),u = g(x),则y关于x的导数为y' = f'(u) g'(x)。
【教案】简单复合函数的导数教学设计高二下学期数学人教A版(2019)选择性必修第二册

第五章 一元函数的导数及其应用《5.2.3简单复合函数的导数》教学设计 1.了解复合函数的概念.2.理解复合函数的求导法则,并能求简单的复合函数的导数.教学重点:复合函数的概念及求导法则教学难点:简单复合函数的导数PPT 课件. 【新课导入】 问题1:阅读课本第78~80页,回答下列问题:(1)本节将要探究哪类问题?(2)本节探究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,并在本节课中回答相应问题.)本节课主要学习简单复合函数的导数;(函数的概念及其求导法则的学习,帮助学生进一步提高导数的运算能力,同时提升学生为运用导数解决函数问题,打下坚实的基础.在学习过程中,注意特殊到一般、数形结合、转化与化归的数学思想方法的渗透.设计意图:通过阅读读本,让学生明晰本阶段的学习目标,初步搭建学习内容的框架.问题2:导数的四则运算法则是什么?师生活动:学生回顾并回答.预设的答案:[()()]()()f x g x f x g x +='+'';[()()]()()f x g x f x g x -='-'';[()()]()()()()f x g x f x g x f x g x ''='+;2()()()()()(()0)()[()]f x f x g x f x g x g x g x g x '⎡⎤-''=≠⎢⎥⎣⎦. 特别地[()]()cf x cf x '='.设计意图:复习前节课的主要知识,温故而知新.◆ 教学过程◆ 课前准备◆ 教学重难点◆ ◆ 教学目标问题3:如何求函数y =ln (2x -1)的导数呢?设计意图:提出问题,开门见山,引导学生探究复合函数的求导问题.发展学生数学抽象、数学运算、数学建模的核心素养.【探究新知】知识点1:复合函数的概念 一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f (g (x )) .【说一说】(1)函数y =ln (2x -1)是由哪些函数复合而成的?(2)函数y =sin2x 是由哪些函数复合而成的?师生活动:学生回答.预设的答案:(1)函数y =ln (2x -1)是由y =ln u 和u =2x -1复合而成.(2)函数y =sin2x 是由y =sin u 和u =2x 复合而成.问题5:如何求函数y =sin2x 的导数呢?师生活动:教师引导学生思考并回答.教师完善、讲解.预设的答案:(sin 2)(2sin cos )2(sin cos )y x x x x x ''''===2[(sin )cos sin (cos )]x x x x ''=+2[cos cos sin (sin )]2cos2x x x x x =⋅+-=追问:函数y =sin2x 是由y =sin u 和u =2x 复合而成的,如果以x y '表示y 对x 的导数,u y '表示y 对u 的导数,x u '表示u 对x 的导数,那么x y '与u y '及x u '有什么关系呢?师生活动:学生先求出u y '和x u '然后找关系.教师完善、讲解.预设的答案:(sin )cos u y u u ''==,(2)2x u x ''==,又x y '2cos2x =,所以x u x y y u '''=⋅.知识点2:复合函数的求导法则一般地,对于由函数y =f (u ),u =g (x )复合而成的函数y =f (g (x )),它的导数与y =f (u ),u =g (x )的导数间的关系为x u x y y u '''=⋅.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.设计意图:通过对复合函数的概念及求导法则的推导.发展学生数学抽象、数学运算和数学建模的核心素养.【练一练】判断正误(正确的打“√”,错误的打“×”)(1)函数y =sin(πx )的复合过程是y =sin u ,u =πx . ( )(2)f (x )=ln(3x -1)则f ′(x )=1()31f x x '=-. ( ) (3)f (x )=x 2cos2x ,则f ′(x )=2x cos2x +2x 2sin2x . ( )师生活动:学生独立完成,教师完善.预设的答案:(1)√ (2) × (3) ×【巩固练习】 例1求下列函数的导数(1)y =(3x +5)3;(2)y =e -0.05x +1;(3) y =ln(2x -1).师生活动:学生分组讨论,每组派一代表回答.教师完善.预设的答案:(1)函数y =(3x +5)3可以看作函数y =u 3和u =3x +5的复合函数,根据复合函数求导法则,有322()(35)339(35)x u x y y u u x u x '''''=⋅=⋅+=⋅=+;(2)函数y =e -0.05x +1可以看作函数y =e u 和u =-0.05x +1 的复合函数,根据复合函数求导法则,有0.051()(0.051)(0.05)0.05u u x x u x y y u e x e e -+'''''=⋅=⋅-+=⋅-=-;(3)函数y =ln(2x -1)可以看成是由y =ln u 和u =2x -1的复合函数,根据复合函数求导法则,有11(ln )(21)221x u x y y u u x u x '''''=⋅=⋅-=⋅=-. 设计意图:通过典型例题的分析和解决,帮助学生熟练掌握复合函数的求导,发展学生数学运算、直观想象和数学抽象的核心素养.2.解答此类问题常犯两个错误(1)不能正确区分所给函数是否为复合函数;(2)若是复合函数,不能正确判断它是由哪些基本初等函数复合而成.例2某个弹簧振子在振动过程中的位移y (单位:mm)关于时间t (单位:s)的函数满足关系式218sin()32y t ππ=- .求函数在t =3s 时的导数,并解释它的实际意义. 师生活动:学生分组讨论,每组派一代表回答;教师完善.预设的答案:函数218sin()32y t ππ=-可以看作函数y =18sin u 和232u t ππ=-的复合函数,根据复合函数的求导法则,有222(18sin )()18cos 12cos()32332t u t y y u u t u t ππππππ'''''=⋅=⋅-=⋅=-, 当t =3时,2312cos(3)12cos 0322t y πππππ'=⨯-==. 它表示当t =3s 时,弹簧振子振动的瞬时速度为0mm/s .设计意图:通过弹射振子的位移问题,体现了复合函数求际的实际应用.发展学生数学运算、数学抽象和数学建模的核心素养.方法总结:(1)复合函数求导,关键是分析复合函数的结构,找出相应的中间变量,从而根据复合函数的求导法则进行求导.(2)三角函数型函数的求导要求:对三角函数型函数的求导,往往需要利用三角恒等变换公式,对函数式进行化简,再进行求导.(3)复合函数的求导法则熟悉后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,从外层开始由外到内逐层求导.练习:教科书P 81练习1、2逻辑推理、直观想象、数学建模的核心素养.【课堂总结】1. 板书设计:5. 2.3简单复合函数的导数新知探究巩固练习 知识点1:复合函数的概念例1 知识点2:复合函数的求导法则例22.总结概括:简单复合函数的求导法则师生活动:学生总结,老师适当补充.3.课堂作业:教科书P 81习题5.22、5教科书P 81 练习3 【目标检测设计】1.函数y =(x 2-1)n 的复合过程正确的是( )A .y =u n ,u =x 2-1B .y =(u -1)n ,u =x 2C .y =t n ,t =(x 2-1)nD .y =(t -1)n ,t =x 2-1设计意图:进一步巩固复合函数的概念.2.函数y =x 2 sin 2x 的导数为( )A .y ′=2x sin 2x -x 2 cos 2xB .y ′=2x sin 2x -2x 2 cos 2xC .y ′=x 2 sin 2x -2x cos 2xD .y ′=2x sin 2x +2x 2 cos 2x设计意图:进一步巩固复合函数的求导法则.3.已知f (x )=ln(3x -2021),则f ′(1)=________.设计意图:进一步巩固复合函数的求导法则以及求导数值.4.已知f (x )=x e -x ,则f (x )在x =2处的切线斜率是________. 设计意图:进一步巩固复合函数的导数以及导数的几何意义. 参考答案:1.A2.D y ′=(x 2)′sin 2x +x 2(sin 2x )′=2x sin 2x +x 2(cos 2x )•(2x )′=2x sin 2x +2x 2cos 2x .3.32018-∵13()33202132021f x x x '=⋅=--,∴3(1)2018f '=-. 4.21e -∵f (x )=x e -x ,∴f ′(x )=e -x -x e -x =(1-x )e -x ,∴21(2)f e '=-. 根据导数的几何意义知f (x )在x =2处的切线斜率为k =21e -.。
复合函数求导教案大学生

教学对象:大学生教学目标:1. 理解复合函数的概念,掌握复合函数求导的基本方法。
2. 能够运用链式法则和乘积法则求复合函数的导数。
3. 通过实例分析,提高学生运用复合函数求导解决实际问题的能力。
教学重点:1. 复合函数的定义和链式法则。
2. 乘积法则在复合函数求导中的应用。
教学难点:1. 复合函数求导过程中,正确运用链式法则和乘积法则。
2. 复合函数求导的复杂情况分析。
教学准备:1. 教师准备PPT,包括复合函数定义、链式法则、乘积法则等知识点。
2. 学生提前预习教材,了解复合函数的基本概念。
教学过程:一、导入1. 回顾导数的定义和基本求导法则。
2. 提出问题:如何求复合函数的导数?二、新课讲解1. 复合函数的定义:函数y=f(u),其中u=g(x)称为复合函数。
2. 链式法则:设y=f(u),u=g(x),则y对x的导数为y' = f'(u) g'(x)。
3. 乘积法则:设y=f(x) g(x),则y对x的导数为y' = f'(x) g(x) + f(x) g'(x)。
4. 复合函数求导实例分析:- 例1:求y=cos(2x)的导数。
- 例2:求y=sin(x^2)的导数。
- 例3:求y=e^sinx的导数。
三、课堂练习1. 学生独立完成以下练习题:- 求y=ln(3x)的导数。
- 求y=tan(x^2)的导数。
- 求y=e^(1/x)的导数。
2. 教师巡视指导,解答学生疑问。
四、课堂小结1. 回顾复合函数求导的基本方法:链式法则和乘积法则。
2. 强调复合函数求导的关键在于正确运用法则。
五、作业布置1. 完成教材课后习题,巩固所学知识。
2. 分析以下问题,并尝试用所学方法求解:- 求y=cos(2sinx)的导数。
- 求y=e^(x^2)的导数。
教学反思:本节课通过讲解复合函数求导的基本方法,使学生掌握了链式法则和乘积法则在复合函数求导中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.3复合函数的导数
【学情分析】:
在学习了用导数定义这种方法计算常见函数的导数,而且已经熟悉了导数加减运算法则后.本节将继续介绍复合函数的求导方法. 【教学目标】:
(1)理解掌握复合函数的求导法则.
(2)能够结合已学过的法则、公式,进行一些复合函数的求导
(3)培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律.
【教学重点】:
简单复合函数的求导法则,也是由导数的定义导出的,要掌握复合函数的求导法则,须在理解复合过程的基础上熟记基本导数公式,从而会求简单初等函数的导数并灵活应用.
【教学难点】:
复合函数的求导法则的导入,复合函数的结构分析,可多配例题,让学生对求导法则有一个直观的了解.
令y=uv ,u=2x 2-3,v=21x +, 令v=ω,ω=1+x 2
x x v v ωω'''=⋅ =()ωω' (1+x 2
) x ′
=22211122)2(21x
x x x x +=+=-ω ∴y x ′=(uv) x ′=u x ′v+uv x ′ =(2x 2-3) x ′·21x ++(2x 2-3)·2
1x
x +
=4x 2
32
32161321x
x x x
x x x ++=
+-++
即y x ′=2
316x
x x ++.。