复合函数求导

合集下载

复合函数求导举例

复合函数求导举例

复合函数求导举例复合函数的求导是微积分中的一个重要概念,它描述了两个或多个函数相互作用的过程。

在此,我们将举例说明如何求解复合函数的导数,并提供相关的参考内容。

首先,我们来看一个简单的例子:求解复合函数 f(g(x)) 的导数,其中 f(x) 和 g(x) 分别是两个可导函数。

假设 f(x) = 2x,g(x) = x^2,我们需要求解的导数为 f(g(x)) = 2(g(x))。

根据链式法则,导数可以通过求解 g(x) 的导数再将结果乘以f(g(x)) 的导数,即d(f(g(x)))/dx = f'(g(x)) * g'(x)。

首先求解 g(x) 的导数:g'(x) = d(x^2)/dx = 2x。

然后求解 f(g(x)) 的导数:f'(g(x)) = d(2(g(x)))/d(g(x)) = 2。

最后,将 f'(g(x)) 与 g'(x) 相乘得到 f(g(x)) 的导数:d(f(g(x)))/dx = f'(g(x)) * g'(x) = 2 * 2x = 4x。

所以,复合函数 f(g(x)) 的导数为 4x。

接下来,我们提供一些相关的参考内容,以加深对复合函数求导的理解。

1. 链式法则的证明:- 《微积分导论》(Thomas)第9.2节- 《微积分学导引》(Simmons)第3.6节2. 复合函数求导公式的应用:- 《解析几何与线性代数》(Hoffman/Kunze)第6章- 《数学分析基础》(Abbot)第8.3节3. 更复杂的复合函数求导:- 多元复合函数的求导公式- 高阶导数的计算方法4. 复合函数求导的应用:- 函数的极值及拐点分析- 函数图像的绘制和变换通过深入研究复合函数求导,我们可以进一步理解微积分的基本概念和应用,并应用于更复杂的数学问题中。

复合函数的求导法则

复合函数的求导法则

复合函数的求导法则复合函数是由两个或多个函数的组合构成的函数。

在数学中,复合函数的求导法则是一种用于计算复合函数导数的规则。

对于一对函数u(x)和v(x),其中u(x)是v(x)的内函数,即v(x)=u(f(x)),我们可以使用链式法则来求解复合函数的导数。

链式法则的表述如下:若y=u(v(x)),其中u(t)和v(x)均可导,则y对x的导数等于u对v的导数乘以v对x的导数,即:dy/dx = du/dv * dv/dx下面我们通过具体的例子来解释复合函数的求导法则,并应用链式法则来计算复合函数的导数。

假设我们想要求解函数y=(2x+1)^3的导数。

我们可以将该函数看作是一个复合函数,其中u(t)=t^3,v(x)=2x+1,即y=u(v(x))。

首先,我们求解 u(t) 对 t 的导数 du/dt。

根据幂函数的导数公式,我们有 du/dt = 3t^2然后,我们求解 v(x) 对 x 的导数 dv/dx。

由于 v(x) = 2x + 1,我们可以直接应用导数的线性性质得到 dv/dx = 2最后,我们将 du/dt 和 dv/dx 相乘,得到 dy/dx = du/dv * dv/dx = 3(2x + 1)^2 * 2 = 6(2x + 1)^2所以,函数 y = (2x + 1)^3 对 x 的导数为 dy/dx = 6(2x + 1)^2以下是一些其他常见的复合函数的导数求解例子:1.y=e^x^2首先,设置u(t)=e^t,v(x)=x^2求导得到 du/dt = e^t,dv/dx = 2x。

最后,dy/dx = du/dv * dv/dx = e^(x^2) * 2x。

2. y = ln(2x + 1)首先,设置 u(t) = ln(t),v(x) = 2x + 1求导得到 du/dt = 1/t,dv/dx = 2最后,dy/dx = du/dv * dv/dx = (1/(2x + 1)) * 2 = 2/(2x + 1)。

复合函数求导公式推导

复合函数求导公式推导

复合函数求导公式推导复合函数指的是两个或多个函数的组合。

设有函数$y=f(u)$ 和$u=g(x)$,我们要求复合函数$y=f(u(x))$ 的导数。

根据链式法则,复合函数的导数可以表示为:$$\frac{{dy}}{{dx}} = \frac{{dy}}{{du}} \cdot\frac{{du}}{{dx}}$$在这个公式中,$\frac{{dy}}{{du}}$ 是 $y$ 对 $u$ 的导数,$\frac{{du}}{{dx}}$ 是 $u$ 对 $x$ 的导数。

证明如下:设 $y=f(u)$ 和 $u=g(x)$,我们要求 $\frac{{dy}}{{dx}}$。

根据定义,我们有:$$\frac{{dy}}{{du}} = \lim_{{\Delta u \to 0}} \frac{{\Deltay}}{{\Delta u}}$$其中,$\Delta y = f(u+\Delta u) - f(u)$,$\Delta u = g(x+\Delta x) - g(x)$。

我们可以把 $\Delta y$ 和 $\Delta u$ 都展开成一阶无穷小量:$$\Delta y \approx f'(u)\Delta u$$$$\Delta u \approx g'(x)\Delta x$$其中,$f'(u)$ 表示 $f(u)$ 对 $u$ 的导数,$g'(x)$ 表示$g(x)$ 对 $x$ 的导数。

代入上面的公式,我们有:$$\frac{{\Delta y}}{{\Delta u}} \approx \frac{{f'(u)\Delta u}}{{g'(x)\Delta x}} = \frac{{f'(u)}}{{g'(x)}}$$$\frac{{\Delta y}}{{\Delta u}}$ 在 $\Delta u \to 0$ 的极限下将等于 $\frac{{dy}}{{du}}$,$\frac{{\Delta x}}{{\Delta u}}$ 在$\Delta u \to 0$ 的极限下将等于 $\frac{{du}}{{dx}}$。

3.3 复合函数求导法则

3.3  复合函数求导法则

解: y [ f ( e x ) ] e
x
f (x)
f ( e )[ e
xfBiblioteka (x) xf (x)]
f ( x )
f ( e ) e e
x
f ( e )e
f (x)
y f (sin
2
x ) f (cos
2
x ), 求 y .
2 2 key : y f (sin x )2 sin x cos x f (cos x )2 sin x cos x
sin 1 x
, 2) y arcsin
2
, 3) y arctan
x a
2
1 x
tan

6
2x
tan 3 x , 5) y
a arccos ( x 0 , a 0) x
作业:P71 1(1)(2)(4)(5);2(2)(3)(4)(7)(8) 选做:3;5
x x0
f ( u 0 ) g ( x 0 ) f [ g ( x 0 )] g ( x 0 )
(3 4)
写成导函数的形式为
dy dx
简写为
( f [ g ( x )] ) f [ g ( x )] g ( x ) dy dx dy du du dx
e
x
x
sin
2 x , 求 y
x
x
) sin
2x e
(sin
cos
2 x )
2x (
2
( x ) sin
sin
2x e
x
x
2 x )
e
e

复 合 函 数 的 求 导 法 则

复 合 函 数 的 求 导 法 则

练习 求下列函数的导数
y = e3x (A)1.
3x 3x 3x 解:y ′ = ( e ) ′ = e ( 3 x ) ′ = 3 e
y = cos( x 3 ) (A)2.
2 3 3 3 3 解:y ′ = (cos x ) ′ = − sin x ( x ) ′ = − 3 x sin x
(B)3. y = e 解: y ′ = e
2x ′ 1 所以 yx = yu ⋅ ux = ⋅ (−2x) = 2 u x −1


(A) 例3 求函数 y = cos 2 x 的导 数 2 解:设 y = u 则 u = cos x
因为 所以
′ ′ yu = 2u, ux = −sinx
′ ′ ′ yx = yu ⋅ ux = 2u(−sin x) = −2cosx sin x = −sin2x
′ y u = 5u 4 , u ′ = 3, x
′ x y′ = yu ⋅ u′ = 5u4 ×3 = 5(3x + 2)4 ×3 =15(3x + 2)4 所以 x
2 (B) 例2 求函数 y = ln(1 − x ) 的导数
解:设 因为
y = ln u

u = 1− x2
′ 1 ′ yu = , u x = −2 x, u
x π (B) 例5 求 y = ln tan( + ) 的导数。 的导数。 2 4
x π 解: 设 y = ln u , u = tan v, v = + 2 4

y ′ = f ′ ( u ) ⋅ φ ′( v ) ⋅ ϕ ′( x ) 得
x π ′ = (lnu)′ ⋅ (tanv)′ ⋅ ( + )′ y 2 4

复合函数求导

复合函数求导
= f ′( u0 ) g ′( x0 ).
复合函数的求导法则可以写成: 复合函数的求导法则可以写成
dy dy du = dx du dx
即因变量对自变量求导,等于因变量对中间变量求 即因变量对自变量求导, 导乘以中间变量对自变量求导,我们称它为链式法则 导乘以中间变量对自变量求导,我们称它为链式法则. 复合函数的微分公式为: 复合函数的微分公式为
n n1 (sin x n ) ′(sin x n ) cos x n nx n1
= n 3 x n1 cos x n f n1[ n (sin x n )]
n1 (sin x n ) f ′[ n (sin x n )] ′(sin x n ).
三、一阶微分的形式不变性
设函数 y = f ( x )有导数 f ′( x )
第四节
复合函数求导 法则及其应用
一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式
一、复合函数求导法则
定理4.4.1 (复合函数求导法则 ) 设函数 u = g( x ) 在 x0可导, 可导, 定理 复合函数求导法则 处可导, 而函数 y = f (u) 在 u0 = g( x0 ) 处可导,则复合函数 y = f [ g( x )] 在 x0 可导,且有 可导,且有:
d[ f ( g( x))] = f ′(u) g′( x)dx
推广
设 y = f ( u), u = (v ), v = ψ ( x ),
则复合函数
y = f { [ψ ( x )]}的导数为 :
dy dy du dv = dx du dv dx
例4.4.1 解: 求函数 y = ln sin x 的导数 .

复合函数求导公式

复合函数求导公式

f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),
从而(公式):f'[g(x)]=f'(u)*g'(x)
呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!
f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)
所以f'[g(x)]=[sin(u)]'*(2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x).
以此类推y'=[cos(3x)]'=-3sin(x)
y'={sin(3-x)]'=-cos(x)
用伟大的母语简单的说就是:复合函数的导数等于原函数对中间变量的导数乘以中间变量对自变量的导数。

举个例子来说:F(x)=In(2x+5),这个函数就是个复合函数,设u=2x+5,则u就是中间变量,则F(u)=Inu (1)
原函数对中间变量的导就是函数(1)的导,即1/u
中间变量对自变量的导就是u对x求导,即2
最后原函数的导数等于他们两个的乘积,即2乘以1/u,但千万别忘了把u=2x+5带进去,所以答案就是2/(2x+5)。

其他的不管在复杂的复合函数都是这么求的,要是有多重复合就一层一层的求下去,一般来讲,高三最多要你求3层复合就像:F(x)=log[(2x+5)平方},这个就是简单的三层复合,设u=v平方,v=2x+5, 再用上面一样的方法把各自的求出来,来乘起来就是.。

复合函数求导公式有哪些

复合函数求导公式有哪些

复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。

2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。

3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。

即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结: 复合函数y=f(x)要先分解成基本 初等函数y=g(u), u=h(v), v=i(x) 等, 再求导:y’x=y’uu’vv’ x 根据函数式结构或变形灵活选择 基本初等函数求导公式或复合函数求 导方法
作业本:“基本初等函数的导数公式 及导数的运算法则”
例5.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
பைடு நூலகம்
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).
对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
u
0.05e 0.05e
u 0.05 x 1
(3) y sin( x )(其中,均为常数)
解: (1)函数y sin( x )可以看作函数y sin u和 u x 的复合函数。根据复合函数求导法则有
y x ' yu 'u x ' (sin u )'(x )' cos u cos(x )
从而切线方程为 y 1 3( x 1),即3 x y 4 0.
设直线m的方程为3x+y+b=0,由平行线间的距离公 式得:
| b (4) | 32 1 10 | b 4 | 10, b 6或b 14;
故所求的直线m的方程为3x+y+6=0或3x+y-14=0.
1.2.3复合函数求导
我们今后可以直接使用的基本初等函数的导数 公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
思考?如何求函数
y ln x 2
的导函数:
复合函数的概念
一般地,对于两个函数y=f(u)和u=g(x),
如果通过变量u,y可以表示成x的函数,那么称
这个函数为函数y=f(u)和u=g(x)的复合函数,
记作y=f(g(x)).
如下函数由多少个函数复合而成:
1. y sin 2 x 2 2. y 2 x 1 2 3. y (sin 2 x 1) 4. y ln x 2
y x ' yu 'u x ' (u )'(2 x 3)'
2
4u 8 x 12
(2) y e
解: (1)函数y e
0.05 x1
0.05 x 1
可以看作函数y e 和
u
u 0.05 x 1的复合函数。根据复合函数求导法则有
yx ' yu 'u x ' (e )'(0.05 x 1)'
练习1、求下列函数的导数。
(1) y= 5
y 0
4
-2
(2) y= x
(3) y= x
2 y 2 x 3 x
3
y 4 x
3
x (4) y= 2
y 2 ln 2
x
(5) y=log3x y
1 x ln 3
练习2、求下列函数的导数。
1、y=5 2、y=xn 3、y=sinx 4、y=cosx 5、y=ax 6、y=ex 7、y=logax 8、y=lnx 9、y=x5+sinx-7x 10、y=6x-cosx+log7x 11、y=ex+lnx+9x7 12、y=4ex-2cosx+7sinx
2 x1 2( x2 2) x1 0 x1 2 或 . 因为两切线重合, 2 2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.
所以所求l的方程为:y=0或y=4x-4.
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的 导数的和(差),即: f ( x) g ( x) f ( x) g ( x)


法则2:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,加上第一个函数乘第二个函数的导数 , 即: f ( x) g ( x) f ( x) g ( x) f ( x) g ( x) 法则3:两个函数的商的导数,等于第一个函数的导数 乘第二个函数,减去第一个函数乘第二个函数的导数 , 再除以第二个函数的平方.即: f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
1 4 t 4
1 练习:已知曲线 y x 3 在点P(1,1)处的切线与直线m平
行且距离等于 10 ,求直线m的方程.
1 1 3 4 解:y 3 , y ( 3 ) ( x ) 3 x ; x x 曲线在 P (1,1)处的切线的斜率为 k y | x 1 3,
复合函数y f ( g ( x))的导数和函数 y f (u ), u g ( x)的导数间的关系为 yx ' yu 'u x '
例4 求下列函数的导数
(1) y (2 x 3)
2
解: (1)函数y (2 x 3)2 可以看作函数y u 2和 u 2 x 3的复合函数。根据复合函数求导法则有
相关文档
最新文档