中考数学每日一练:锐角三角函数的定义练习题及答案_2020年填空题版

合集下载

锐角三角函数练习题及答案

锐角三角函数练习题及答案

锐角三角函数练习题及答案锐角三角函数练习题及答案三角函数是数学中的重要概念之一,它们在几何学、物理学和工程学等领域中都有广泛的应用。

其中,锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。

本文将介绍一些锐角三角函数的练习题及答案,帮助读者加深对这些函数的理解和运用。

1. 练习题:已知一个锐角三角形的一条边长为5,另一条边长为12,求这个三角形的正弦值、余弦值和正切值。

解答:首先,我们可以利用勾股定理求得这个三角形的第三条边长。

根据勾股定理的公式,设第三条边长为c,则有c^2 = 5^2 + 12^2,即c^2 = 25 + 144,解得c ≈ 13。

接下来,我们可以利用三角函数的定义来求解所求的值。

正弦值(sin)定义为对边与斜边的比值,即sinθ = 对边/斜边。

在这个三角形中,对边为5,斜边为13,所以sinθ = 5/13。

余弦值(cos)定义为邻边与斜边的比值,即cosθ = 邻边/斜边。

在这个三角形中,邻边为12,斜边为13,所以cosθ = 12/13。

正切值(tan)定义为对边与邻边的比值,即tanθ = 对边/邻边。

在这个三角形中,对边为5,邻边为12,所以t anθ = 5/12。

因此,这个三角形的正弦值为5/13,余弦值为12/13,正切值为5/12。

2. 练习题:已知一个锐角三角形的两条边长分别为3和4,求这个三角形的角度大小及其正弦值、余弦值和正切值。

解答:根据余弦定理,我们可以求得这个三角形的第三条边长。

设第三条边长为c,则有c^2 = 3^2 + 4^2 - 2 * 3 * 4 * cosθ,即c^2 = 9 + 16 - 24cosθ,解得c ≈ 5。

接下来,我们可以利用三角函数的定义来求解所求的值。

首先,我们可以利用余弦值(cos)的定义来求解角度大小。

由于已知两条边长分别为3和4,我们可以利用余弦定理来求解cosθ。

根据余弦定理的公式,cosθ = (3^2 + 4^2 - 5^2) / (2 * 3 * 4),即cosθ = (9 + 16 - 25) / 24,解得cosθ = 0。

自检29 锐角三角函数-2020年中考考点自检之最新中考真题练(含答案)

自检29 锐角三角函数-2020年中考考点自检之最新中考真题练(含答案)

自检29 《锐角三角函数》一.选择题1.(2019•湘西州)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.22.(2019•宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3.(2019•广西)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米4.(2019•益阳)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+5.(2019•河北)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC 6.(2019•长春)如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米7.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米8.(2019•营口)如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC 与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.9.(2019•济南)某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m 10.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.1011.(2019•苏州)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m 12.(2019•绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.13.(2019•长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile 的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B 处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile14.(2019•杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x15.(2019•威海)如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB的长度,下列按键顺序正确的是()A.B.C.D.16.(2019•重庆)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D 点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD 的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米二.填空题17.(2019•阜新)如图,一艘船以40nmile/h的速度由西向东航行,航行到A处时,测得灯塔P在船的北偏东30°方向上,继续航行2.5h,到达B处,测得灯塔P在船的北偏西60°方向上,此时船到灯塔的距离为nmile.(结果保留根号)18.(2019•青海)如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为米.(结果保留根号)19.(2019•葫芦岛)如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)20.(2019•衢州)如图,人字梯AB,AC的长都为2米,当α=50°时,人字梯顶端离地面的高度AD是米(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).21.(2019•宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)22.(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.23.(2019•德州)如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO=70°,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO =50°,那么AC的长度约为米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)24.(2019•金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是.25.(2019•枣庄)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)三.解答题26.(2019•铜仁市)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A 岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,≈1.732)27.(2019•贵阳)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角∠CAB =67.5°,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)(=1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)28.(2019•邵阳)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC =40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)29.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛D位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).30.(2019•呼和浩特)如图,已知甲地在乙地的正东方向,因有大山阻隔,由甲地到乙地需要绕行丙地.已知丙地位于甲地北偏西30°方向,距离甲地460km,丙地位于乙地北偏东66°方向,现要打通穿山隧道,建成甲乙两地直达高速公路,如果将甲、乙、丙三地当作三个点A、B、C,可抽象成图(2)所示的三角形,求甲乙两地之间直达高速线路的长AB(结果用含非特殊角的三角函数和根式表示即可).31.(2019•深圳)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得C处的仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).32.(2019•张家界)天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A﹣B﹣C路线对索道进行检修维护.如图:已知AB=500米,BC=800米,AB与水平线AA1的夹角是30°,BC与水平线BB的夹角是60°.求:本次检修中,检修人员上升的垂直高度CA1是多少米?(结果1精确到1米,参考数据:≈1.732)33.(2019•常德)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).34.(2019•广元)如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方向.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.35.(2019•随州)在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离;(2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.参考答案一.选择题1.解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴A C=12x,∵AC=12,∴x=1,∴BC=2;故选:D.2.解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选:D.3.解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.4.解:在Rt△ABD和Rt△ABC中,AB=a,tanα=,tanβ=,∴BC=a tanα,BD=a tanβ,∴CD=BC+BD=a tanα+a tanβ;故选:C.5.解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.6.解:由题意可得:sinα==,故BC=3sinα(m).故选:A.7.解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选:D.8.解:∵AD∥BC,∠DAB=90°,∴∠ABC=180°﹣∠DAB=90°,∠BAC+∠EAD=90°,∵AC⊥BD,∴∠AED=90°,∴∠ADB+∠EAD=90°,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴=,∵BC=AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=BC,在Rt△ABC中,tan∠BAC===;故选:C.9.解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.10.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到C D+BD=CM=4.故选:B.11.解:过D作DE⊥AB,∵在D处测得教学楼的顶部A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.12.解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ=,∴(sinθ﹣cosθ)2=.故选:A.13.解:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选:D.14.解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.15.解:在△ABC中,sin A=sin20°=,∴AB==,∴按键顺序为:2÷sin20=故选:A.16.解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.二.填空题(共9小题)17.解:根据题意,得:∠PAB=60°,∠PBA=30,AB=2.5×40=100(nmile),∴∠P=180°﹣∠PAB﹣∠PBA=180°﹣60°﹣30°=90°.在Rt△PAB中,PB=AB•sin∠PAB=100×=50(nmile).故答案为:50.18.解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×=4,在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM﹣DM=(4﹣4)米,故答案为:4﹣4.19.解:过点A作AE⊥a于点E,过点B作BD⊥PA于点D,∵∠PBC=75°,∠PAB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EPA=∠PAB=30°,∴AE=AP=20+20≈54.6,故答案为:54.620.解:∵sinα=,∴AD=AC•sinα≈2×0.77=1.5,故答案为:1.521.解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈566(米)故答案是:566.22.解:给图中相关点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.23.解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64﹣4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.24.解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.故此时观察楼顶的仰角度数是40°.故答案为:40°.25.解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=D E•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m,故答案为:9.5三.解答题(共10小题)26.解:由题意得,∠PAB=60°,∠PBA=45°,AB=10km,在Rt△APM和Rt△BPM中,tan∠PAB==,tan∠PBA==1,∴AM==h,BM=h,∵AM+BM=AB=10,∴h+h=10,解得:h=15﹣5≈6;答:h约为6km.27.解:(1)阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围为:0°≤∠POB≤90°;(2)如图,∵∠CAB=67.5°,∴∠BAO=22.5°,∵OA=OB,∴∠BAO=∠ABO=22.5°,∴∠BOP=45°,∵OB=100,∴OE=OB=50,∴PE=OP﹣OE=100﹣50≈29.5cm,答:此时下水道内水的深度约为29.5cm.28.解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.29.解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=20,∠D AE=45°,∴DE=20×sin45°=20,在Rt△BED中,BD=20,∴sin∠ABD===;(2)过D作DF⊥BC于F,在Rt△BED中,DE=20,BD=20,∴BE==40,∵四边形BFDE是矩形,∴DF=EB=40,BF=DE=20,∴CF=BC﹣BF=30,在Rt△CDF中,CD==50,∴小岛C,D之间的距离为50nmile.30.解:过点C作CD⊥AB于点D,∵丙地位于甲地北偏西30°方向,距离甲地460km,.在Rt△ACD中,∠ACD=30°,∴AD=AC=230km.CD=AC=230km.∵丙地位于乙地北偏东66°方向,在Rt△BDC中,∠CBD=24°,∴BD==(km).∴AB=BD+AD=230+(km).答:公路AB的长为(230+)km.31.解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM=DE=500,∴BM=100,在Rt△CEM中,tan53°===,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米.32.解:如图,过点B作BH⊥AA1于点H.在Rt△ABH中,AB=500,∠BAH=30°,∴BH=AB=(米),∴A1B1=BH=250(米),在Rt△BB1C中,BC=800,∠CBB1=60°,∴,C==400(米),∴B∴检修人员上升的垂直高度CA=CB1+A1B1=400+250≈943(米)答:检修人员上升的垂直高度CA1为943米.33.解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=,cos37°=,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50﹣15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∴∠CBF=55°,∴∠BCF=35°,∵tan35°=,∴CF≈=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180﹣20=160,∴安装师傅应将支架固定在离地面160cm的位置.34.解:(1)作CE⊥AB于E,如图1所示:则∠CEA=90°,由题意得:AB=60×1.5=90(海里),∠CAB=45°,∠CBN=30°,∠DBN=60°,∴△ACE是等腰直角三角形,∠CBE=60°,∴CE=AE,∠BCE=30°,∴CE=BE,BC=2BE,设BE=x,则CE=x,AE=BE+AB=x+90,∴x=x+90,解得:x=45+45,∴BC=2x=90+90;答:B,C两处之间的距离为(90+90)海里;(2)作DF⊥AB于F,如图2所示:则DF=CE=x=135+45,∠DBF=90°﹣60°=30°,∴BD=2DF=270+90,∴海监船追到可疑船只所用的时间为=3+(小时);答:海监船追到可疑船只所用的时间为(3+)小时.35.解:(1)作PC⊥AB于C,如图所示:则∠PCA=∠PCB=90°,由题意得:PA=120海里,∠A=30°,∠BPC=45°,∴PC=PA=60海里,△BCP是等腰直角三角形,∴BC=PC=60海里,PB=PC=60海里;答:收到求救讯息时事故渔船P与救助船B之间的距离为60海里;(2)∵PA=120海里,PB=60海里,救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,∴救助船A所用的时间为=3(小时),救助船B所用的时间为=2(小时),∵3>2,∴救助船B先到达.。

中考数学复习专题之锐角三角函数,考点过关与基础练习题

中考数学复习专题之锐角三角函数,考点过关与基础练习题

30. 锐角三角函数➢ 知识过关1. 锐角三角函数的定义在Rt△ABC 中,A 、B 、C 的对边分别为a 、b 、c 且∠C=90°,sinA=_____,cosA=_____,tanA=____3. 三角函数之间的关系(1) 同角三角函数之间的关系:=+αα22cos sin _______;αααcos sin tan =(2) 互余两角的三角函数的关系:sin(90°-α)=________;cos(90°-α)=_______ (3) 锐角三角函数的增减性:当α为锐角时,1cos 0,1sin 0<<<<αα且sinα、tanα的值都随α的增大而_______;cosα的值随α的增大而_______➢ 考点分类考点1求锐角三角函数值例1 (1)如图所示,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠ABC 的正切值为( ) A.2 B.252 C. 25 D.21(2) 如图所示,Rt△ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则cosA=_____考点2特殊角度的三角函数值 例2(1)在锐角△ABC 中,若0)3(tan |41c |22=-+-B A os ,则∠C 的正切值是________. (2)计算:00230cos 2|23|)14.3()21(----+-π考点3三角函数之间的关系 例3下列式子错误的是( )A.050sin 40cos = B.175tan 15tan 0=⋅ C.125cos 25sin 022=+ D.030sin 260sin =➢ 真题演练1.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则sin ∠BOD =( )A .12B .2C .2√55D .√552.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P .则tan ∠APD 的值是( )A .2B .1C .0.5D .2.53.如图,△ABC 的顶点分别在单位长度为1的正方形网格的格点上,则sin ∠BAC 的值为( )A .√5B .√55C .12D .2√534.如图,在网格中,点A ,B ,C 都在格点上,则∠CAB 的正弦值是( )A .√55B .12C .2√55D .25.如图,在中Rt △ABC ,∠C =90°,AB =13,AC =5,下列结论中,正确的是( )A .tanB =125B .tan A =512C .sin A =1213D .cos B =5136.如图是某商场自动扶梯的示意图,自动扶梯AB 的坡角(∠BAC )为30.5°,乘客从扶梯底端升到顶端上升的高度BC 为5米,则自动扶梯AB 的长为( )A .5tan30.5°米B .5sin30.5°米C .5sin30.5°米 D .5cos30.5°米7.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,那么sin ∠BAC 的值为 .8.已知在△ABC 中,AB =13,BC =17,tan B =512,那么AC = ․9.计算:(1)(13)﹣1+sin45°﹣(π+1)0+√3tan60°(2)sin 230°+cos 230°−12tan 245°10.如图,在△ABC 中,AD ⊥BC ,垂足为点D ,BF 平分∠ABC 交AD 于点E ,BC =5,AD =4,sin ∠C =2√55. (1)求sin ∠BAD 的值; (2)求线段EF 的长.➢ 课后作业1.如图,在△ABC 中,AD ,BE 是△ABC 的角平分线,如果AB =AC =10,BC =12,那么tan ∠ABE 的值是( )A .12B .√63C .√64D .22.图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =m ,∠AOB =α,则OC 2的值为( )A .m 2sin 2α+m 2B .m 2cos 2α+m 2C .m 2sin 2α+m 2D .m 2cos 2α+m 23.如图,在离铁塔100米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.4米,则铁塔的高BC 为( )A .(1.4+100tan α)米B .(1.4+100tanα)米 C .(1.4+100sinα)米 D .(1.4+100sin α)米4.兴义市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用高1m 的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进20m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为( )A .(10√3+1)mB .(20√3+1)mC .(5√3+1)mD .(15√3+1)m5.如图,AD 是△ABC 的中线,AD =5,tan ∠BAD =34,S △ADC =15,则AC 的长为( )A .√5B .2√10C .2√5D .√106.如图,A 、D 、B 在同一条直线上,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为( )A .ℎcosαB .ℎsinαC .ℎtanαD .h •cos α7.如果把一个锐角△ABC 的三边的长都扩大为原来的2倍,那么锐角A 的正弦值( ) A .扩大为原来的2倍 B .缩小为原来的12C .没有变化D .不能确定8.如图,AD 是△ABC 的高,若BD =2CD =6,tan C =2,则sin B =( )A .12B .√22C .13D .√239.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若cos∠BAC=13,则AD的长度是.10.已知:如图,△ABC中,AC=10,sinC=45,sinB=13,则AB=.11.在Rt△ABC中,∠C=90°,BC=4,sin A=23,则AC=.12.已知在△ABC中,∠C为直角.(Ⅰ)若AB=13,tan A=512,求△ABC的面积.(Ⅱ)若BC=2√3,AD是角平分线,BD=2CD,求AB,AC的长度.13..如图,CD是△ABC的中线,∠B是锐角,sin B=√22,tan A=12,AC=√5.(1)求AB的长.(2)求tan∠CDB的值.➢冲击A+如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:∠BAG=∠ABG;②若AD=5,求AF的长.。

初三数学锐角三角函数含答案

初三数学锐角三角函数含答案

初三数学锐角三角函数中考要求例题精讲模块一 三角函数基础一、锐角三角函数的定义如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c=. (2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b=. 注意:① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数a A这些特殊角的三角函数值一定要牢牢记住! 三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan aA b=,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A= 2.互余角三角函数关系:(1) 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;(2) 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B < 【例1】 已知在ABC △中,A B ∠∠、是锐角,且5sin tan 22913A B AB cm ===,,,则ABC S =△ . 【解析】过C 作CD AB ⊥于D ,这样由三角函数定义得到线段的比:5sin tan 213CD CDA B AC BD====,, 设5132CD m AC m CD n BD n ====,,,,解题的关键是求出m n 、值.51222CD BD n m AD m ====, 所以529122922AB AD BD m m m =+=+==所以12101452ABC m CD S AB CD ===⋅=,,△ 小结:设ABC △中,a b c 、、为A B C ∠∠∠、、的对边,R 为ABC △外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论:(1)111sin sin sin 222ABC S bc A ac B ab C ===△;(2)2sin sin sin a b c R A B C===. 【答案】145【巩固】如图,点A 在半径为R 的O 上,以A 为圆心,r 为半径作A ,设O 的弦PQ 与A 相切,求证PA QA ⋅为定值.【答案】证明线段乘积为定值,联想到三角形的面积,可以和三角函数联系起来.∵1sin 2APQ S PA QA A =⋅△,12APQ S r PQ =⋅△, ∴sin PA QA A r PQ ⋅⋅=⋅.在APQ △中,sin 2PQ A R =,∴2PQPA QA r PQ R⋅=⋅÷,∴2PA QA Rr ⋅=为定值.【例2】 求tan1tan2tan3tan89︒⋅︒⋅︒⋅⋅︒的值【答案】∵tan cot 1αα=,tan cot(90)αα=︒-∴tan1tan89tan1cot11︒︒=︒︒=,tan2tan88tan2cot 21︒︒=︒︒=, tan44tan46tan44cot 441︒︒=︒︒=,而tan451︒=,∴tan1tan2tan3tan891︒⋅︒⋅︒⋅⋅︒=.【巩固】化简:22sin cos sin 1tan sin cos αααααα++-- 【解析】原式()2222cos sin cos sin cos sin sin cos αααααααα+=+--22cos sin sin cos cos sin αααααα-==--. 【答案】sin cos αα-【例3】已知tan α1)221cos sin cos 1sin cos sin a ααααα-+-+(2090α︒<<︒).【答案】⑴221cos sin cos 1sin cos sin a ααααα-+-+()()222222sin sin sin sin cos sin sin cos sin cos cos 3cos cos cos sin cos cos cos sin cos sin sin αααααααααααααααααααααα⎛⎫+ ⎪++⎝⎭====+⎛⎫++ ⎪⎝⎭,1sin 2cos αα-=OQPA【巩固】已知tan 2α=,求4sin 2cos 5cos 3sin αααα-+.【答案】4sin 2cos 5cos 3sin αααα-+4sin 24226cos 3sin 532115cos αααα-⨯-===+⨯+.【例4】 已知α为锐角,且22sin 5cos 10αα-+=,求α的度数. 【答案】∵22sin cos 1αα+=∴22(1cos )5cos 10αα--+=,即:22cos 5cos 30αα+-=. ∴(2cos 1)(cos 3)0αα-+=. 解得:cos 3α=-或1cos 2α=. ∵0cos 1α≤≤,∴1cos 2α=,∴60α=︒. 【巩固】若α为锐角,且22cos 7sin 50αα+-=,求α的度数.【答案】由α为锐角,可知0sin 1α<<. 又由22cos 7sin 50αα+-=,22sin cos 1αα+=可知22sin 7sin 30αα-+=,解之得1sin 302αα=⇒=︒. 【例5】已知sin cos αα+(α为锐角),求作以1sin α和1cos α为两根的一元二次方程. 【解析】∵sin cos αα+=,两边平方得:22sin cos 2sin cos 2αααα++=又∵22sin cos 1αα+=,∴1sin cos 2αα⋅=.∴11sin cos sin cos sin cos αααααα++==112sin cos αα⋅= ∴以1sin α和1cos α为两根的一元二次方程为:220x -+=【答案】220x -+=【巩固】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-. 【答案】不妨设方程的另一根为m ,由一元二次方程的根系关系可知sin m a α+=,21sin 2a m α-=, 故2(sin )1sin 2m m αα+-=,整理可得22sin (sin )1m m αα=+-,即22sin 1m α+=,又22sin cos 1αα+=,故cos m α=±.【巩固】已知:ABC △中,方程2(sin sin )(sin sin )(sin sin )0B A x A C x C B -+-+-=的两根相等,求证60B <︒. 【答案】两根相等则判别式为0,但是观察系数的规律,是否有其他的好办法呢?∵此方程系数之和为0,∴1x =必为此方程的根.又∵此方程两根相等,∴121x x ==,∴12sin sin 1sin sin C Bx x B A-==-.又由正弦定理,有c b b a -=-,∴2c ab +=. 再由余弦定理,有22222222()3()26212cos 22882c a a c c a ba c ca ca ca B caca ca ca ++-+-+--====≥.∴60B ︒≤,且等号不会成立,否则方程就不存在了.【巩固】在ABC △中,60A =︒,最大边与最小边的边长分别是方程2327320x x -+=的两个根,求ABC △的外接圆半径和内切圆的面积.【答案】题目中涉及到边长的关系,以及外接圆半径,这为正弦定理提供了便利条件.∵60A =︒,且显然此三角形有两边不等(即以已知方程为根的两边), ∴ABC △中,A 既不是最大角也不是最小角,不防设b 为最大边,c 为最小边, 由韦达定理,有3293b c bc +==,, 又由余弦定理,有:2222cos a b c bc A =+-222()3b c bc b c bc =+-=+- 813249=-=.∴7a =(7a =-舍去)又由正弦定理,有2sin aR A===∴7916a b c ++=+=. 1sin 2S bc A P r ==⋅(其中2a b cP ++=,r 为内切圆半径)即132822r =⨯,∴r =∴内切圆面积21ππ3S r ==.【例6】 若0°<θ<30°,且1sin 3km θ=+(k 为常数,且k <0),则m 的取值范是 . 【答案】∵0°<θ<30°∴sin 0°<sin θ<sin 30°,即0<sin θ<12∴0<13km +<12,所以1136km -<<,又因为0k <∴1163m k k<<-. 模块二 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形.二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切; 当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题. 六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等. 七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为hi l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. cb aC BA(3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.【例7】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD (用含a αβθ,,,的代数式表示)【解析】作AE CD ⊥于E ,BF CD ⊥于F ,设DE x = 在Rt ADE ∆中,由tan DE AE α=,得tan tan DE xAE αα==, 在Rt DBF ∆中,由tan DFBFθ=,得 tan tan DF x aBF θθ+==,因为AE BF =, 所以tan tan x x a αθ+=,解得tan tan tan a x αθα⋅=-,从而tan tan aAE θα=- 在Rt AEC ∆中,由tan EC AE β=,得tan tan tan tan a EC AE ββθα=⋅=- 所以()tan tan tan tan tan tan tan tan tan tan a a a CD DE EC αβαβθαθαθα+=+=+=--- 【答案】()tan tan tan tan a αβθα+-【例8】 一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线米的矩形. 现需将其整修并进行美化,方案如下:① 将背水坡AB 的坡度由1:0.75改为;② 用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花 .(1)求整修后背水坡面的面积;(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?【答案】(1)作AE BC ⊥于E .∵ 原来的坡度是1:0.75,∴ 140.753AE EB == . 设4AE k =,3BE k =, ∴ 5AB k =, 又 ∵ 5AB =米, ∴1k =,则4AE =米 .设整修后的斜坡为AB ',由整修后坡度为,有AE EB =',∴∠AB E '=30°, ∴ 28AB AE '==米 . ∴ 整修后背水坡面面积为908720⨯=米2 . (2)将整修后的背水坡面分为9块相同的矩形,则每一区域的面积为80米2 .解法一:∵ 要依次相间地种植花草,有两种方案:第一种是种草5块,种花4块,需要20×5×80+25×4×80=16000元; 第二种是种花5块,种草4块,需要20×4×80+25×5×80=16400元 . ∴ 应选择种草5块、种花4块的方案,需要花费16000元 .解法二:∵ 要依次相间地种植花草,则必然有一种是5块,有一种是4块,而栽花的成本是每平方米25元,种草的成本是每平方米20元,∴ 两种方案中,选择种草5块、种花4块的方案花费较少 . 即:需要花费20×5×80+25×4×80=16000元 .【例9】 如图,在某海域内有三个港口A 、D 、C .港口C 在港口A 北偏东60︒方向上,港口D 在港口A北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A 港口3小时后到达B 点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B 处测得港口C 在B 处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B 处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.DCBA【解析】连结AC、AD、BC、BD,延长AT,过B作BT AT⊥于T,AC与BT交于点E.过B作BP AC⊥于点P.由已知得90BAD∠=︒,30BAC∠=︒,32575AB=⨯=(海里),在BEP∆和AET∆中,90BPE ATE∠=∠=︒,AET BEP∠=∠,∴30EBP EAT∠=∠=︒.∵60BAT∠=︒,∴30BAP∠=︒,从而17537.52BP=⨯=(海里).∵港口C在B处的南偏东75︒方向上,∴45CBP∠=︒.在等腰Rt CBP∆中,BC==,∴BC<AB.BAD∆是Rt∆,∴BD AB>.综上,可得港口C离B点位置最近.∴此船应转向南偏东75︒方向上直接驶向港口C.设由B驶向港口C船的速度为每小时x海里,548)5÷⨯-<7,解不等式,得x>.答:此船应转向沿南偏东75︒的方向向港口C航行,且航行速度至少不低于每小时能保证船在抵达港口前不会沉没.【答案】此船应转向沿南偏东75︒的方向向港口C航行,且航行速度至少不低于每小时证船在抵达港口前不会沉没.【巩固】海面上B处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C时,在驶向正西方的目的地A处,且200CA CB==海里,在AB中点O处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)【解析】如图,由题意可知,ABC∆为等腰直角三角形,假设客轮截住货轮的地点在BC边上时,过OD BC⊥于D,OD为客轮到达BC边的最短距离,即客轮航行的路程为OD,由货轮速度为客轮的2倍可知,货轮航行的距离为2OD BC=,即货轮此时到达了C点,∴客轮截住货轮的地点不可能在BC边上.∴客轮截住货轮的地点在AC 边上.设在AC 边上的F 点两船相遇,设客轮航行的距离为x ,即OE x =,则2BC CE x +=, ∴2200CE x =-,过O 作OF AC ⊥于F ,则11002OF BC ==海里,11002FC AC ==海里, ∴3002EF x =-在Rt DEF ∆中,222OF EF OE +=, 即222100(3002)x x +-=,解得x =1282x ≈,2118x ≈∴141OE OA ≤=∴1282x ≈不符合题意,∴118x ≈ 即当客轮截住货轮时,航行了118海里. 在Rt OEF ∆中,100cos 0.8475118EOF ∠=≈ ∴32EOF ∠=︒∴客轮的航行方向应为南偏东32︒.【答案】客轮的航行方向应为南偏东32︒课堂检测1. (辽宁竞赛)如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.(1)请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n 表示,角用α,β表示,测倾器高度忽略不计);(2)根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).F EDOC BA【解析】(1)如图所示,在点C 测得ACB α∠=,在点D 测得ADB β∠=,测得DC m =(2)在Rt ABC ∆中,设AB x =,tan x BC α=在Rt ABD ∆中,tan xBD β= BD BC m -=, 即tan tan x xm βα-= 解得tan tan tan tan x m αβαβ⋅=-【答案】(1)DC m =;(2)tan tan tan tan m αβαβ⋅-2. 化简:222tan1tan 2....tan89sin 1sin 2...sin 89︒⋅︒︒︒+︒++︒【解析】tan1tan2....tan89tan451︒⋅︒︒=︒=()()22222222sin 1sin 2...sin 89sin 1cos 1sin 2cos 2...sin 45︒+︒++︒=︒+︒+︒+︒++︒1894422=+=,故原式289=. 【答案】2893. 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)【解析】过点'A 作'A N AB ⊥垂足为N 点,在Rt 'H CD ∆中, 若'HDH ∠不小于60︒, 则'3sin 60'H C H D ≥︒=, 即3''43H C H D ≥=, ∴''43B M H C =≥, ∵Rt 'Rt 'A NP B MP ∆∆∽ ∴''''A N A PB M B P=, ∴''643'23 3.5cm 'A P B M A N B P ⋅⨯=≥=≈,∴踏板AB 离地面的高度至少等于3.5cm .【答案】踏板AB 离地面的高度至少等于3.5cm课后作业1. 化简求值:1sin 1sin 1cos 1cos 1sin 1sin 1cos 1cos αααααααα⎛⎫⎛⎫-+-+-- ⎪⎪ ⎪⎪+-+-⎝⎭⎝⎭(090α︒<<︒) 【解析】原式()()()()222222221sin 1sin 1cos 1cos 1sin 1sin 1cos 1cos αααααααα⎡⎤⎡⎤-+-+⎢⎥⎢⎥=-⋅-⎢⎥⎢⎥----⎣⎦⎣⎦由090α︒<<︒可知,0cos 1α<<,0sin 1α<<.故原式1sin 1sin 1cos 1cos cos cos sin sin αααααααα-+-+⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭2sin 2cos 4cos sin αααα--=⋅=. 图3图2C MAA'P BB'HDH'H'DHB'BPA'A(图1)NCMA'PBB'HDH'【答案】42. 若045α︒<<︒,且sin cos αα=sin α的值. 【解析】方法1:由2263sin cos sin cos 256αααα==,结合22sin cos 1αα+=,可得 2226397sin (1sin )sin 2561616ααα-=⇒=或. 由045α︒<<︒可知221sin sin 452α<︒=,故27sin sin 16αα=⇒=. 方法2:由sin cos 2sin cos αααα=,结合22sin cos 1αα+=,可得sin cos αα+==cos sin αα-=,故sin α.3. (2011甘肃兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①在ABC △中,AB AC =,顶角A 的正对记作sadA ,这时=BCsadA AB=底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)60sad ︒= .(2)对于0180A ︒<<︒,∠A 的正对值sadA 的取值范围是 . (3)如图②,已知3sin 5A =,其中A ∠为锐角,试求sadA 的值.【解析】(1)1(2)02sadA <<(3)设53AB a BC a ==,,则4AC a =.在AB 上取4AD AC a ==,作DE AC ⊥于点E . 则312416164sin 4cos 44555555DE AD A a a AE AD A a a CE a a =⋅=⋅==⋅=⋅==-=,,,CD =图②图①C BAC B A∴CDsadAAC==EDCBA。

锐角三角函数练习题及答案

锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数的定义专题关键词: 三角函数的定义 终边 弧长公式 扇形面积 同角的基本关系 学习目标: 理解角的概念,掌握同角三角函数基本关系☆ 对角的概念的理解:(1)无界性 R ∈α 或 ),(+∞-∞ (2)周期性(3)终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Zπαπ=+∈;α终边在坐标轴上的角可表示为:,2k k Zπα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。

(答:Zk k ∈+,32ππ)☆ 角与角的位置关系的判断 (1) 终边相同的角 (2) 对称关系的角(3) 满足一些常见关系式的两角例如:若α是第二象限角,则2α是第_____象限角 :一、三)☆ 弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例如:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

(答:22cm )☆ 三角函数的定义:高中阶段对三角函数的定义与初中的定义从本质上讲不同。

但既有联系,又有区别。

定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。

中考数学专卷2020届中考数学总复习(29)锐角三角函数-精练精析(1)及答案解析

中考数学专卷2020届中考数学总复习(29)锐角三角函数-精练精析(1)及答案解析

图形的变化——锐角三角函数1一.选择题(共9小题)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.2.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B. C. D.3.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A.2 B.8 C.2 D.44.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A. B. C. D.5.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.6.计算sin245°+cos30°•tan60°,其结果是()A.2 B.1 C. D.7.在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45° B.60° C.75° D.105°8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,9在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40° B.3sin50° C.3tan40° D.3tan50°二.填空题(共8小题)10.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是_________ .11.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是_________ .12.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA= _________ .13.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=_________ .14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= _________ .15.cos60°=_________ .16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_________ .17.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=_________ .三.解答题(共7小题)18.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.20.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)21.如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=,求sinB+cosB的值.22.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.23.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.24.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)图形的变化——锐角三角函数1参考答案与试题解析一.选择题(共9小题)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.考点:锐角三角函数的定义.分析:tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.解答:解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选:C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.2.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.考点:锐角三角函数的定义;三角形的面积;勾股定理.专题:网格型.分析:作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.解答:解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A. 2 B.8 C.2D.4考点:锐角三角函数的定义.专题:计算题.分析:根据锐角三角函数定义得出tanA=,代入求出即可.解答:解:∵tanA==,AC=4,∴BC=2,故选:A.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.4.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:在直角△ABC中利用正切的定义即可求解.解答:解:在直角△ABC中,∵∠ABC=90°,∴tanA==.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.考点:互余两角三角函数的关系.专题:计算题.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出t an∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.6.计算sin245°+cos30°•tan60°,其结果是()A. 2 B.1 C.D.考点:特殊角的三角函数值.专题:计算题.分析:根据特殊角的三角函数值计算即可.解答:解:原式=()2+×=+=2.故选:A.点评:此题比较简单,解答此题的关键是熟记特殊角的三角函数值.7.在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:计算题.分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.解答:解:由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.点评:此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,考点:解直角三角形.专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答:解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.9.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°考点:解直角三角形.分析:利用直角三角形两锐角互余求得∠B的度数,然后根据正切函数的定义即可求解.解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选:D.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二.填空题(共8小题)10.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线.专题:计算题.分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=4,∴AB=2CD=8,则sinB===.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.11.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.12.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA= .考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:根据勾股定理,可得AC的长,根据邻边比斜边,可得角的余弦值.解答:解:如图,由勾股定理得AC=2,AD=4,cosA=,故答案为:.点评:本题考查了锐角三角函数的定义,角的余弦是角邻边比斜边.13.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.专题:计算题.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE 中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:根据各边长得知△ABC为等腰三角形,作出BC、AB边的高AD及CE,根据面积相等求出CE,根据正弦是角的对边比斜边,可得答案.解答:解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC•AD=AB•CE,即CE==,sinA===,故答案为:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.故答案为:点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.考点:特殊角的三角函数值;三角形内角和定理.专题:计算题.分析:先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.解答:解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.点评:本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.17.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:先根据△ABC中,tanA=1,cosB=,求出∠A及∠B的度数,进而可得出结论.解答:解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.三.解答题(共7小题)18.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.解答:解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).点评:本题考查了解直角三角形的应用中的方向角问题,解答此题的关键是过B作BD⊥AC,构造出直角三角形,利用特殊角的三角函数值及直角三角形的性质解答.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.考点:解直角三角形.专题:计算题.分析:根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解答:解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sin C==.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.20.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)考点:解直角三角形.专题:几何图形问题.分析:由题意得到三角形BCD为等腰直角三角形,得到BD=BC,在直角三角形ABC 中,利用锐角三角函数定义求出BC的长即可.解答:解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC,在Rt△A BC中,tan∠A=tan30°=,即=,解得:BC=2(+1).点评:此题考查了解直角三角形,涉及的知识有:等腰直角三角形的性质,锐角三角函数定义,熟练掌握直角三角形的性质是解本题的关键.21.如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=,求sinB+cosB的值.考点:解直角三角形;勾股定理.专题:计算题.分析:先在Rt△ACD中,由正切函数的定义得tanA==,求出AD=4,则BD=AB﹣AD=8,再解Rt△BCD,由勾股定理得BC==10,sinB==,cosB==,由此求出sinB+cosB=.解答:解:在Rt△ACD中,∵∠ADC=90°,∴tanA===,∴AD=4,∴BD=AB﹣AD=12﹣4=8.在Rt△BCD中,∵∠BDC=90°,BD=8,CD=6,∴BC==10,∴sinB==,cosB==,∴sinB+cosB=+=.故答案为:点评:本题考查了解直角三角形,锐角三角函数的定义,勾股定理,难度适中.22.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.考点:解直角三角形;勾股定理.专题:计算题.分析:先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1;然后根据BC=BD+DC即可求解解答:解:在Rt△ABD中,∵,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=+1.点评:本题考查了三角形的高的定义,勾股定理,解直角三角形,难度中等,分别解Rt△ADB与Rt△ADC,得出BD=2,DC=1是解题的关键.23.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.考点:解直角三角形;勾股定理.专题:几何图形问题.分析:(1)由BD⊥AC得到∠ADB=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD=AB=3,再得到AD=BD=3;(2)先计算出CD=2,然后在Rt△BCD中,利用正切的定义求解.解答:解:(1)∵BD⊥AC,∴∠ADB=90°,在Rt△ADB中,AB=6,∠A=30°,∴BD=AB=3,∴AD=BD=3;(2)CD=AC﹣AD=5﹣3=2,在Rt△BCD中,tan∠C===.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30度的直角三角形三边的关系.24.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)考点:解直角三角形的应用.专题:几何图形问题.分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解答:解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.。

中考数学每日一练:解直角三角形练习题及答案_2020年填空题版

中考数学每日一练:解直角三角形练习题及答案_2020年填空题版

中考数学每日一练:解直角三角形练习题及答案_2020年填空题版答案答案答案答案答案答案2020年中考数学:图形的变换_锐角三角函数_解直角三角形练习题~~第1题~~(2020青浦.中考模拟) 在△ABC 中,∠C =90°,如果tan B =2,AB =4,那么BC =________.考点: 解直角三角形;~~第2题~~(2020湖州.中考模拟) 在△ABC 中,AC=6,点D 为直线AB 上一点,且AB=3BD,直线CD 与直线BC 所夹锐角的正切值为 ,并且CD ⊥AC ,则BC 的长为________.考点: 解直角三角形;~~第3题~~(2020上海.中考模拟) 如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt △AB C 中,∠C=90°,若Rt △ABC 是“好玩三角形”,则tanA=________.考点: 解直角三角形;~~第4题~~(2020松江.中考模拟) 如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB 的坡度为________.考点: 解直角三角形;解直角三角形的应用﹣坡度坡角问题;~~第5题~~(2020上海.中考模拟) 如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC=2,tanA =,则CD =________.考点: 锐角三角函数的定义;解直角三角形;~~第6题~~(2020虹口.中考模拟) 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是________.考点: 锐角三角函数的定义;解直角三角形;~~第7题~~答案答案答案答案(2020上海.中考模拟) 一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m ,已知木箱高BE=m ,斜面坡脚为30°,则木箱顶端E 距离地面AC 的高度EF 为________m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学每日一练:锐角三角函数的定义练习题及答案_2020年填空题版答案答案答案答案答案答案2020年中考数学:图形的变换_锐角三角函数_锐角三角函数的定义练习题
~~第1题~~(2020
安徽.中考模拟)
在以
为坐标原点的直角坐标平面内有一点
,如果 与 轴正半轴的夹角为 ,那么 ________.
考点: 锐角三角函数的定义;~~第2题~~
(2020温岭.中考模拟) 如图,在直径为8的弓形ACB 中,弦AB =4 ,C 是弧AB 的中点,点M 为弧上动点,CN ⊥AM 于点
N ,当点M 从点B 出发逆时针运动到点C ,点N 所经过的路径长为________.
考点: 等边三角形的判定与性质;直角三角形斜边上的中线;垂径定理;弧长的计算;锐角三角函数的定义;~~第3题~~
(2020宁波.中考模拟) 如图一张长方形纸片ABCD ,其长AD 为a ,宽
AB 为b (a >
b ),在BC 边上选取一点M ,将△AB M 沿AM 翻折后B 至B′的位置,若B′为长方形纸片ABCD 的对称中心,则 的值为________.
考点: 矩形的性质;翻折变换(折叠问题);锐角三角函数的定义;特殊角的三角函数值;~~第4题~~
(2020松江.中考模拟) 已知Rt △ABC 中,若∠C =90°,AC =3,BC =2,则∠A 的余切值为________.
考点: 直角三角形的性质;锐角三角函数的定义;~~第5题
~~
(2020长宁.中考模拟) 如图,在Rt
△ABC 中,∠BAC =90°,点G 是重心,AC =4,tan ∠ABG = ,则BG 的长是________.
考点: 勾股定理;锐角三角函数的定义;~~第6
题~~
(2020上海.中考模拟) 如图,在四边形ABCD
中,∠B =∠D =90°,AB =3, BC =2,tanA = ,则CD =________.
考点: 锐角三角函数的定义;解直角三角形;~~第7题~~
答案答案答案答案(2020虹口.中考模拟) 如图,点A (2,m )在第一象限,OA 与x 轴所夹的锐角为α,如果tanα
= .那么m =________

考点: 锐角三角函数的定义;~~第8题~~
(2020虹口.中考模拟) 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直
角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为
,那么大正方形的面积是________.
考点: 锐角三角函数的定义;解直角三角形;~~第9题~~
(2020虹口.中考模拟) 如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,点D 为边AB 上一动点,正方形DEFG 的顶点E 、
F 都在边BC 上,联结B
G , tan ∠DGB =________.
考点: 相似三角形的判定与性质;锐角三角函数的定义;~~第10题~~
(2020虹口.
中考模拟) 如图,在等腰梯形ABCD 中,AD ∥BC , sin C = ,AB =9,AD =6,点E 、F 分别在边AB 、B C 上,联结EF , 将△BEF 沿着EF 所在直线翻折,使BF 的对应线段B ′F 经过顶点A , B ′F 交对角线BD 于点P
, 当B ′F ⊥AB 时,AP 的长为________.
考点: 相似三角形的判定与性质;锐角三角函数的定义
;2020年中考数学:图形的变换
_锐角三角函数_
锐角三角函数的定义练习题答案1.答案:
2.答案:
3.答案:
4.答案:
5.答案:
6.答案:
7.答案:
8.答案:
9.答案:
10.答案:。

相关文档
最新文档