新整理-浙教版-九年级上册数学基础知识归纳

合集下载

新整理-浙教版-九年级上册数学基础知识归纳

新整理-浙教版-九年级上册数学基础知识归纳

浙教版九年级上册数学基础知识集锦第一章 二次函数1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点. ①a 的符号决定抛物线的开口方向:当0>a 时,开口向上; 当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .3.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(ab ac a b 4422--,对称轴是直线a b x 2-=. (2) 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

例:若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称 轴方程可以表示为:122x x x +=4.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,与2ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线: 故:①0=b 时,对称轴为y 轴;②0000<<>>b a b a ,或者,(即a 、b 同号)时,对称轴在y 轴左侧; ③0000><<>b a b a ,或者,(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点;②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴. 5.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式(不要求掌握):已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.6.直线与抛物线的交点(1)y 轴与抛物线的交点:当x=0时,代入c bx ax y ++=2得(0, c ). (2)x 轴与抛物线的交点:当y=0时,代入c bx ax y ++=2得二次函数 c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,则交点坐标 为(1x ,0),(2x ,0).而抛物线与x 轴的交点个数情况可以由对应的一元二次方程的abx 2-=根的判别式判定:①有两个交点⇔(042>-ac b )②有一个交点(顶点在x 轴上)⇔(042=-ac b ) ③没有交点⇔(042<-ac b )(3)平行于x 轴的直线(如:y=2)与抛物线的交点。

九年级数学浙教版知识点归纳总结

九年级数学浙教版知识点归纳总结

九年级数学浙教版知识点归纳总结数学作为一门学科,在九年级的学习中起到了至关重要的作用。

为了更好地帮助同学们复习和巩固九年级数学浙教版的知识点,特将各个章节的重点内容进行归纳总结,并提供一些解题技巧和注意事项,希望能够对同学们的学习有所帮助。

一、函数与方程1. 一元一次方程与一次函数- 一元一次方程的概念及解法- 一次函数的概念与图像特征- 一元一次方程与一次函数之间的关系2. 二元一次方程组- 二元一次方程组的概念及解法- 二元一次方程组的几何意义3. 二次根式与二次函数- 二次根式的概念及运算规则- 二次函数的概念与图像特征- 二次函数与二次根式之间的关系二、平面图形的认识1. 三角形- 三角形的分类及性质- 三角形的内角和与外角性质2. 平行四边形与菱形- 平行四边形的性质- 菱形的性质3. 等腰梯形与等腰直角梯形- 等腰梯形的性质及面积计算- 等腰直角梯形的性质及面积计算三、立体几何与空间图形1. 立体图形的认识- 立体图形的分类及性质- 立体图形的表面积和体积计算2. 圆锥与圆台- 圆锥与圆台的性质- 圆锥与圆台的体积计算3. 圆柱与圆球- 圆柱与圆球的性质- 圆柱与圆球的体积计算四、统计与概率1. 统计的基本概念- 数据的收集与整理- 数据的图表表示及分析2. 概率的初步认识- 随机事件及其概率- 两个独立事件的概率计算3. 抽样与推测- 抽样调查的基本原则- 样本推断与总体估计通过对九年级数学浙教版各章节的知识点进行归纳总结,我们可以清晰地了解到每个章节的重点内容。

在复习时,我们应该重点关注每个知识点的概念及相关的解题方法,掌握基本的计算技巧和推理能力。

除此之外,我们还要注重实际问题与数学模型之间的联系,培养数学思维和应用能力。

在解题过程中,我们需要注意以下几点:- 阅读题目时要认真理解题意,并推断出问题所需的数学思路。

- 分析问题时要分清已知条件和需求,合理运用已学知识进行问题求解。

浙教版九年级数学上册知识点

浙教版九年级数学上册知识点

浙教版九年级数学上册知识点课堂临时报佛脚,不如课前预习好。

其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。

下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

九年级上册数学单元知识点第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)3.等腰三角形的两底角的平分线相等。

(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

二、直角三角形全等1、直角三角形全等的判定有5种:(1)、两角及其夹边对应相等的两个三角形全等;(ASA)(2)、两边及其夹角对应相等的两个三角形全等;(SAS)(3)、三边对应相等的两个三角形全等;(SSS)(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4垂直平分线:垂直于一条线段并且平分这条线段的直线。

浙教版九年级全册初三数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版九年级全册初三数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版九年级全册初中数学全册知识点梳理及重点题型巩固练习二次函数y=ax 2(a ≠0)与y=ax 2+c(a ≠0)的图象与性质—知识讲解(基础)【学习目标】1.理解二次函数的概念,能用待定系数法确定二次函数的解析式;2.会用描点法画出二次函数y=ax 2(a≠0) 与()20y ax c a =+≠的图象,并结合图象理解抛物线、对称轴、顶点、开口方向等概念;3. 掌握二次函数y=ax 2(a≠0) 与()20y ax c a =+≠的图象的性质,掌握二次函数()20y axa =≠与()20y ax c a =+≠之间的关系;(上加下减).【要点梳理】要点一、二次函数的概念 1.二次函数的概念一般地,形如y=ax 2+bx+c (a≠0,a, b, c 为常数)的函数是二次函数. 若b=0,则y=ax 2+c ; 若c=0,则y=ax 2+bx ; 若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c (a ≠0)是二次函数的一般式. 二次函数由特殊到一般,可分为以下几种形式: ①(a≠0);②(a≠0);③(a≠0);④(a≠0),其中;⑤(a≠0).要点诠释:如果y=ax 2+bx+c(a,b,c 是常数,a≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.2.二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标)(或称交点式).要点诠释:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.要点二、二次函数y=ax 2(a ≠0)的图象及性质 1.二次函数y=ax 2(a ≠0)的图象用描点法画出二次函数y=ax 2(a≠0)的图象,如图,它是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x 2关于y 轴对称,所以y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x 2的顶点是图象的最低点。

浙教版九年级数学上册知识点汇总

浙教版九年级数学上册知识点汇总

九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。

1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。

当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。

函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。

函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。

1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。

注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。

2. 简单事件的概率2.1. 事件的可能性把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。

2.2.简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P表示。

事件A发生的概率记为P(A)。

必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),则事件A发生的概率为:P(A)=m/n。

浙江九年级数学九上知识点

浙江九年级数学九上知识点

浙江九年级数学九上知识点一、整式的概念和运算整式是由常数、变量及其乘幂(幂的底数是变量,指数是正整数)和系数为有理数的乘积,经过加法运算得到的代数式。

整式的运算包括加法、减法、乘法和乘方。

1. 整式的加法和减法整式的加法和减法遵循交换律和结合律,即可以按照任意顺序进行运算,并且可以通过合并同类项的方式简化式子。

2. 整式的乘法整式的乘法要求将每一项按照乘法法则进行相乘,并根据指数法则简化式子。

在乘法过程中,需要特别注意有理数的乘法规则和变量的乘法规则。

3. 整式的乘方整式的乘方是指整式本身乘以自身若干次的结果。

乘方运算要求按照乘法法则进行展开,并根据指数法则简化式子。

乘方过程中需要注意指数的运算规则和系数的运算规则。

二、平方根与立方根平方根是指一个数的平方等于该数的非负实数根,表示为√a,其中a为非负实数。

立方根是指一个数的立方等于该数的实数根,表示为³√a,其中a为实数。

1. 平方根的性质与运算平方根具有以下性质:- 非负实数的平方根是一个非负实数;- 0的平方根为0;- 负数没有实数平方根。

平方根的运算包括开方和化简:- 简化平方根:将一个数的平方根进行化简,使得结果更简洁;- 加减乘除的运算规则:根据开方的性质,可以进行平方根的加法、减法、乘法和除法运算。

2. 立方根的性质与运算立方根的性质与平方根类似,立方根的运算包括开方和化简。

三、图形的性质和分类在数学九上课程中,我们学习了多种图形,包括三角形、四边形、圆等。

学习图形的性质和分类可以帮助我们更深入地理解它们的特点和关系。

1. 三角形的分类三角形根据边长和角度的不同可以分为等边三角形、等腰三角形和普通三角形。

根据角度的大小可以分为锐角三角形、直角三角形和钝角三角形。

三角形的性质包括:- 内角和:三角形的三个内角之和为180°;- 直角三角形的性质:直角三角形的两条直角边的平方和等于斜边的平方;- 等腰三角形的性质:等腰三角形的两个底角相等。

九上数学知识点总结(浙教版)(打印版)

九上数学知识点总结(浙教版)(打印版)

九上数学知识点总结知识点、二次函数的概念和图像1、二次函数的概念:如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像:二次函数的图像是一条关于bx -=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点;④与y 轴有交点3、二次函数图像的平移函数)0()(2≠+-=a k m x a y 的图象可由函数2ax y =的图象先向右(当m>0)或向左(当m<0)平移|m|个单位,再向上(当k>0)或向下(当k<0)平移|k|个单位得到,顶点是(m,k ),对称轴是直线x=m4、函数平移规律(口诀:左加右减、上加下减)(1)函数图像向左移动b(b>0)个单位后,需将原函数解析式中x 改为(x+b),才符合移动后的图像所对应的函数解析式。

(2)函数图像向上移动c(c>0)个单位后,需将原函数解析式的等式右边整体加上c ,才符合移动后的图像所对应的函数解析式。

知识点、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,。

h=,k=(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的因式分解))((212x x x x a c bx ax --=++,2,1x =aacb 24b 2-±-.二次函数c bx ax y ++=2可转化为两根式(交点式)))((21x x x x a y --=。

如果与x 轴没有交点,则不能这样表示。

知识点、二次函数的最值(1)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

浙教版九年级上册数学知识点总结

浙教版九年级上册数学知识点总结

1 基本信息1.y的变化值与对应的x的变化值成正⽐例,⽐值为k即:△y/△x=k (△为任意不为零的实数),即函数图像的斜率。

2.⼀次函数的表达式:y=kx+b3.性质:当k>0时,y随x的增⼤⽽增⼤;当k<0时,y随x的增⼤⽽减⼩。

<>当b>0时,该函数与y轴交于正半轴;当b<0时,该函数与y轴交于负半轴<>当x=0时,b为函数在y轴上的截距。

4.⼀次函数定义域x∈R,值域f(x)∈R5.⼀次函数在x∈R上的单调性:若f(x)=kx+b,k>0,则该函数在x∈R上单调递增。

若f(x)=kx+b,k<0,则该函数在x∈r上单调递减。

<>2 函数性质1.y的变化值与对应的x的变化值成正⽐例,⽐值为k即:y=kx+b(k≠0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)3.k为⼀次函数y=kx+b的斜率,k=tanΘ(⾓Θ为⼀次函数图象与x轴正⽅向夹⾓,Θ≠90°)形、取、象、交、减。

4.当b=0时(即 y=kx),⼀次函数图像变为正⽐例函数,正⽐例函数是特殊的⼀次函数.5.函数图像性质:当k相同,且b不相等,图像平⾏;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。

3 图像性质1.作法与图形:通过如下3个步(1)列表(2)描点:⼀般取两个点,根据“两点确定⼀条直线”的道理;(3)连线,可以作出⼀次函数的图像——⼀条直线。

因此,作⼀次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)2.性质:(1)在⼀次函数上的任意⼀点P(x,y),都满⾜等式:y=kx+b(k≠0)。

(2)⼀次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正⽐例函数的图像都是过原点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017新整理-浙教版-九年级上册数学基础知识归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN浙教版九年级上册数学基础知识集锦第一章 二次函数1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点. ①a 的符号决定抛物线的开口方向:当0>a 时,开口向上; 当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .3.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(ab ac a b 4422--,对称轴是直线a b x 2-=. (2) 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

例:若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称 轴方程可以表示为:122x x x +=4.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,与2ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线: 故:①0=b 时,对称轴为y 轴;②0000<<>>b a b a ,或者,(即a 、b 同号)时,对称轴在y 轴左侧;③0000><<>b a b a ,或者,(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点;②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴. 5.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式(不要求掌握):已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.6.直线与抛物线的交点(1)y 轴与抛物线的交点:当x=0时,代入c bx ax y ++=2得(0, c ). (2)x 轴与抛物线的交点:当y=0时,代入c bx ax y ++=2得二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,则交点坐标abx 2-=为(1x ,0),(2x ,0).而抛物线与x 轴的交点个数情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(042>-ac b )②有一个交点(顶点在x 轴上)⇔(042=-ac b ) ③没有交点⇔(042<-ac b )(3)平行于x 轴的直线(如:y=2)与抛物线的交点。

同(2)一样可能有0个交点、1个交点、2个交点.当有2个交 点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 ⎩⎨⎧++=+=c bx ax y nkx y 2的解的个数来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 acx x a b x x =⋅-=+2121,()()a acb a ca b x x x x x x x x AB 444222122122121-=-⎪⎭⎫ ⎝⎛-=--=-=-=7.求最值二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,(1)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,ab ac y 442-=最小值;当0<a 时,函数有最大值,并且当a b x 2-=,ab ac y 442-=最大值.(2)如果自变量的取值范围是21x x x ≤≤,①如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=, ab ac y 442-=最值, ②如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的 增减性;1.如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小; 2.如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.8.几个等价的命题:(1)二次函数的值恒大于零⇔抛物线在x 轴上方⇔a>0,ac b 42-<0 (2)二次函数的值恒小于零⇔抛物线在x 轴下方⇔ a <0,ac b 42-<09.二次函数的性质 课本第21页表1-4 10.平移的规律:1)一般地,抛物线)0()(2≠+-=a k h x a y 与2ax y =的形状相同,位置不同. 平移法则:左加右减、上加下减。

① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处, 具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2).二次函数)0,,(2≠++=a c b a c bx ax y 为常数,且一般是平移规律,其它函数也可以使用。

第二章 简单事件的概率1.可能性(1)必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件.(2)不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件.(3)确定事件:必然事件和不可能事件都是确定的。

(4)不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。

一般来说,不确定事件发生的可能性是有大小的。

2.简单事件的概率(1)概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

(2)必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0<P(A)<1。

(3)一步试验事件发生的概率的计算公式:nmP(n 为该事件所有等可能出现的结果数,m 为事件包含的结果数)。

两步试验事件发生的概率的计算有两种方法(列表法和画树状图) 3.用频率估计概率:(1)对于任何一个随机事件都有一个固定的概率客观存在。

(2)有些随机事件不可能用树状图和列表法求其发生的概率,只能通过试验、统计的方法估计其发生的概率。

(3)对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:①做实验时应当在相同条件下进行; ②实验的次数要足够多,不能太少;③把每一次实验的结果准确,实时的做好记录;④分阶段分别从第一次起计算事件发生的频率,并把这些频率用折线统计图直观的表示出来;观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。

注意:事件发生的概率是一个确定的值,而频率是不确定的。

当实验次数增大时,频率的大小波动变小,逐渐稳定在概率附近,此时它会非常接近概率,但不一定相等。

4.概率综合运用:概率可以和很多知识综合命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。

常见考法:(1)判断游戏公平:游戏对双方公平是指双方获胜的可能性相同。

这类问题有两类一类是计算游戏双方的获胜理论概率,另一类是计算游戏双方的理论得分;(2)命题者经常以摸球、抛硬币、转转盘、抽扑克这些既熟悉又感兴趣的事为载体,设计问题。

关注误区:进行摸球、抽卡片等实验时,没有注意“有序”还是“无序”、“有放回”还是“无放回”故造成求解错误。

第三章圆的基本性质一、圆的概念1、圆的定义:线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.点O叫做圆心,线段OP叫做半径。

2、弧:圆上任意两点间部分叫做圆弧,简称弧。

优弧、劣弧以及表示方法。

3、弦,弦心距,圆心角,圆周角,二、圆的性质1、旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;2、圆是中心对称图形,对称中心是圆心.性质:在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个弦心距中有一对量相等,那么它们所对应的其余各对量也分别相等。

3、轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.三、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,A即: ①AB 是直径 ②AB CD ⊥ ③CE DE =④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论 六、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

相关文档
最新文档