行程问题——相遇问题
行程问题之相遇问题

行程问题之相遇问题
方法解析:有关行程问题,总的思路是路程=速度×时间
相关变式:速度=路程÷时间
时间=路程÷速度
路程之差=速度差×共同时间
路程之和=速度和×共同时间
另外,要学会通过画线段图来分析路程、速度、时间的关系
例题一:(相遇问题)A、B两地相距700千米,慢车行完全程需要10小时,快车行完全程需要8小时,慢车从A地出发1小时后,快车才从B地开出,快车开出几小时后与慢车相遇?
练习1、客货两车同时从A、B两地相对开出,4.5小时相遇,相遇时
4,求A、B两地相客车比货车多行了27千米,货车的速度是客车的
5
距多少千米?
练习2、甲、乙两人同时从A、B两地相向而行,第一次在离A地75米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地55米处,求A、B两地相距多远?
练习3、兄妹二人同时离家去学校,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时发现忘记带课本,立即沿原路回家去取,行至离学校180米处与妹妹相遇,那么他们家离学校有多少米?
9,两车分别从甲、乙两地同时相向而行,练习4、货车速度是客车的
10
在离两地中点3千米处相遇,相遇后,两车分别用原速继续前进,问当客车到达甲站时,货车还离乙站多远?
练习5、甲、乙两车同时从A、B两站相对开出,5小时后甲到达中点,
2,求A、B两站乙车离中点还有60千米,已知乙车速度是甲车的
3
的距离。
练习6、客车由甲地到乙地需行10小时,货车从乙地到甲地需15小时,两车同时相向开出,相遇时客车距乙地还有192千米,两地的距离是多少千米?。
相遇问题的三种情况

相遇问题的三种情况
行程问题是专门研究物体运动的速度、时间和路程三者之间关系的应
用题,主要的数量关系是:路程=速度×时间.
行程问题大致可以分成以下三种情况:
1.相向而行:速度和×相遇时间=路程;2.相背而行:速度和×时
间=相背路程;
3.同向而行:速度差×追击时间=追击路程.
【例题精讲】
例1有两列火车,一列长102米,每秒行20米;另一列长83米,每
秒行17米。
两列火呈在双轨线上相向而行,从两车相遇到车尾离开共要
用多少秒?
例2一列客车通过860米长的大桥需要45秒,用同样的速度穿过
610米的隧道需要35秒。
求这列客车行驶的速度及车身的长度。
例3甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。
已知甲车比乙车每小时多行
4千米。
求A、B两地相距多少千米?
例4一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时
间提前一小时到达,如果以原速行驶120千米后,再将速度提高25%,则
可提前40分钟到达,则甲、乙两地相距多少千米?。
六年级 第一讲 行程问题之相遇问题 6份

行程问题(一)行程问题的主要数量关系:●速度×时间=路程路程÷速度=时间路程÷时间=速度相遇问题数量关系:甲走的路程+乙走的路程=总路程●速度和×相遇时间=总路程总路程÷相遇时间=速度和总路程÷速度和=相遇时间一、例题:例1、一辆汽车每分钟行1200米,这辆汽车从苏州到南京用了4小时,苏州到南京大约有多少千米?例2、甲乙两城相距360千米,一辆汽车原定用9小时从甲城开到乙城。
汽车行驶了一半路程,在途中停留30分,如果汽车按原定时间到达乙城,那么,在行驶后半段路程时,应该比原来的时速加快多少?例3、甲乙两辆客车同时从两地相对开出,甲车的速度是54千米/小时,乙车速度是53千米/小时,经过5小时相遇,,两地间公路全长是多少千米?例4、一辆客车和一辆货车分别从相距525千米的甲乙两地相对开出,客车每小时行60千米,货车每小时行45千米,经过多少小时两车相遇?例5、甲乙两列火车同时由相距792千米的两地相向而行,9小时相遇,甲车速度是45千米/小时,乙车速度是多少?例6、一列火车于下午1时30分从甲站开出,每小时行60千米。
半小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。
甲乙两站相距多少千米?例7、苏步青教授是我国著名的数学家,一次出国访问时,他在电车上碰到一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲乙两人同时从两地出发,相向而行。
距离是100千米吗,甲每小时行6千米,乙每小时行4千米,甲带着一只狗,狗每小时行10千米,这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇,这只狗一共走了多少千米?例8、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车乙驶过中点25千米,这时快车和慢车还相距7千米,慢车每小时行多少千米?例9、甲乙两辆汽车同时从东西两地出发,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。
行程问题-相遇问题

行程问题(二)知识要点:相遇问题两个物体由于相向运动而相遇。
解答此类问题的关键是求出两个运动物体的速度和。
基本关系式有:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇路程:两个运动物体从两地同时相向运动所行的路程。
例题精讲:【例1】一辆客车和一辆货车同时从A、B两城相对开出。
客车的速度是62每小时千米,货车的速度是50千米每小时,经过4小时相遇,A、B两城相距多远?【例2】解放军某部通讯兵在一次演习中,摩托车每小时行60千米,汽车每小时行40千米,汽车出发1.5小时后,摩托车沿同路去追赶汽车,需要几小时追上?【例3】运动场的跑道400米,王芳和陈月两名运动员从起跑线同时出发,王芳每分钟跑390米,陈月每分钟跑310米,求多少分钟后王芳超过陈月一周?基础巩固:1、小亚和小巧同时从自己家里走向学校。
小亚每分钟走65米,小巧每分钟走70米,经过4分钟两人在校门相遇,他们两家相距多少米?2、3、客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,4小时后两车相遇,甲、乙两地相距多少千米?4、甲、乙两地相距288千米,客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,几小时后两车相遇?5、一辆拖拉机要去拉货,每小时走30千米,出发30分钟后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?6、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?7、客车和货车同时从丙地开出,向相反方向开出,客车每小时行40千米,货车每小时行32千米,开出4小时后,两车相距多少千米?8、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行,环形公路的一周是360米。
现在已知甲走一圈的时间是60分钟,乙走一圈的时间是30分钟,那么甲、乙两人何时相遇?9、两地的距离是1200千米,有两列火车同时相向开出。
行程问题之相遇问题

第一讲行程问题——相遇问题【例1】夏夏和冬冬同时从两地相向而行,夏夏每分钟行 50 米,冬冬每分钟行 60 米,两人在距两地中点 50 米处相遇,求两地的距离是多少米?【巩固1】1、李明从甲地到乙地,每小时行5千米,王勇从乙地到甲地每小时行4千米,两人同时出发,在离甲乙两地中点1千米的地方相遇,求甲乙两地相距多少千米?【巩固2】甲乙两人同时从两地相向而行.甲每小时行 5 千米,乙每小时行 4 千米.两人相遇时乙比甲少行 3 千米.两地相距多少千米?【巩固3】夏夏和冬冬同时从两地相向而行,两地相距 1100 米,夏夏每分钟行 50 米,冬冬每分钟行 60 米,问两人在距两地中点多远处相遇?【例 2】甲、乙两辆汽车分别从 A 、 B 两地出发相向而行,甲车先行 3 小时后乙车从 B 地出发,乙车出发 5 小时后两车还相距 15 千米.甲车每小时行 48 千米,乙车每小时行 50 千米.求A 、 B 两地间相距多少千米?【巩固1】A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。
乙车开出几小时后和甲车相遇?【巩固2】 (全国希望杯数学邀请赛)甲、乙两辆汽车从 A 、 B 两地同时相向开出,出发后 2 小时,两车相距141 千米;出发后 5 小时,两车相遇. A 、 B 两地相距多少千米?【巩固3】甲乙两人上午8时于东村到西村去,甲每小时比乙快6千米,中午12时甲到西村后立即原路返回,在距西村15千米处遇见乙,求东西两村相距多少千米?【例3】两列城铁从两城同时相对开出,一列城铁每小时走 40 千米,另一列城铁每小时走 45 千米,在途中每列车先后各停车 4 次,每次停车 15 分钟,经过 7 小时两车相遇,求两城的距离?【巩固1】两列城铁从两城同时相对开出,一列城铁每小时走 40 千米,另一列城铁每小时走 45 千米,在途中每列车先后各停车 5 次,每次停车 12 分钟,经过 7 小时两车相遇,求两城的距离?【巩固2】有人提出这样一个问题,甲、乙两人同时相对而行,距离为100千米,甲每小时走6千米,乙每小时走4千米.总有一个时间会碰面.甲带着一只狗,每小时走10千米,狗走得比人快,同甲一起出发,碰到乙时,它往甲方向走,碰到甲它又往乙方向走.问:这只狗一共走了多少千米?【巩固3】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?思考题:1. 甲、乙两车同时从A 、B 两站相对开出,两车第一次是在离A 站50千米处相遇,相遇后两车各自以原来速度继续行驶,到达B 、A 站后立即原路返回,第二次是在离B 站30千米处相遇。
行程问题(一)相遇问题

行程问题(一)基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间平均速度=总路程÷总时间相遇问题:速度和×相遇时间=相遇路程追及问题:追及时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。
往返两地的平均速度是每小时多少千米?1.有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50千米,求汽车上、下山的平均速度。
2.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。
求汽船从甲码头顺流行驶几小时到达乙码头?3,甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?例3 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?1,兄弟二人同时从学校和家中出发,相向而行。
第二讲 相遇问题

第二讲相遇问题知识点1.行程问题中的相遇问题涉及到三个数量:路程、速度和时间,其关系为路程=速度×时间2.甲、乙两人在行程中相遇,就有甲走的路程+乙走的路程=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间通俗地说,“相遇问题”要考虑两人的速度和。
3.多次相遇问题两个物体从不同地点相向而行,第一次相遇后走1个全程,第二次相遇是合走3个全程,以后每相遇一次都是多走了2个全程。
4.流水问题(注意流水的影响)、钟表问题(注意时针和分针两者重合成直线)都属于相遇问题。
顺水速度=船速+水速逆流速度=船速—水速顺流行程=(船速+水速)×顺水时间逆水行程=(船速—水速)×逆水时间静水行程=(顺水速度+逆水速度)÷2水速=(顺水速度—逆水速度)÷2经典例题例1 快、慢车分别从A、B两地同时相向而行,快车每小时行78千米,慢车每小时行58千米,两车在离中点25千米处相遇。
那么A 、B两地相距多少千米?及时巩固1.小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟。
他们同时出发,几分钟后两人相遇?例2 甲、乙两车分别从A、B两地同时出发,相向而行,6小时后相遇于点C。
如果甲车的速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发,相向而行,则相遇地点距点C处12千米,如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发,相向而行,则相遇地点距C处16千米。
求A、B两地间的距离。
及时巩固2.小张和小王各以一定速度,在周长为500米的环形跑道上跑步。
小王的速度是每分钟180米。
(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是每分钟多少米?(2)小张和小王同时从同一地点出发,同向跑步,小张跑多少圈后,才能第一次追上小王?例3 甲、乙两人同时从A、B两地出发,相向而行,第一次在距A地25千米处相遇,相遇后两个继续前进,到达目的地后又立即返回,在距B地15千米处第二次相遇。
四年级 奥数行程问题(相遇问题)

A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?
乙每小时走4千米
甲、乙1小时共走多 少千米?走完这段路程 甲、乙一共需要几小时?
思维发散
1、A、B两地相距540千米。一列客车与一列货车分别从 A、B两地相向而行。客车每小时行120千米,货车每小 时行90千米,已知客车出发1小时后,货车才出发求货车 出发几小时后,两车相遇?
120千米
(540-120)千米
330÷(60+50) =330÷110 =3(小时)
80×3=240(千米)
骑摩托车的人与甲 乙两人是同时出发、同 时停止吗?那么骑摩托 车的人行驶的时间和甲、 乙两人的相遇时间有什 么关系?
答:摩托车行驶了240千米。
“中间往返”这类题目的核心就是往返行驶的时间与相遇时间相等。
思维发散
1、甲、乙两队同时从相隔50千米的两地出发,相向而行。 甲队每小时行15千米,乙队每小时行10千米,同时,一个 通讯员每小时行20千米,在两车队中间往返联络,问两队 相遇时,通讯员行了多少千米?
50÷(15+10)×20 =50÷25×20 =2×20 =40(千米)
答:通讯员行了多少千米。
通讯员行驶的时
间与两车队的相遇 时间有什么关系?
2、A、B两地相距648千米。甲、乙两列火车从A、B两地相 对开出,甲列火车每小时行驶60千米,乙列火车每小时行驶 48千米。乙出发时,从车厢里飞出一只鸽子,这只鸽子以每 小时80千米的速度在两列火车之间往返飞行(遇到一列车后 马上返回,向另一列车飞去)。当两列车相遇时,鸽子飞行 了多少千米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学数学《相遇问题》教案
教学目标:
1、学会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息,处理信息和建立模型的能力。
重点:学会分析相遇问题的数量关系,熟练掌握其思考方法。
难点:用方程解决相遇问题中求相遇时间的问题。
教学过程:
一、复习旧知。
1.、口答应用题:一列小汽车每小时行80千米,4小时能行多少千米?
2、教师提问:已知路程和时间,求速度,用哪个关系式?已知路程和速度,求时间,用哪个关系式?
二、探索新知:
1、创设情境,揭示课题
(1)电脑课件呈现情境图(“相遇”问题的情境图)
①问:从情景中你了解了哪些数学信息?
生:王阿姨开的面包车的速度是每小时40千米,张叔叔开的小轿车的速度是每小时60千米。
生:两地相距50千米。
生:两人同时出发。
问:两人行走的方向怎么样?
生:面对面行走,走着走着就会相遇。
板书:(同时相向而行)→相遇
(2)揭示
师:相遇,这节课我们就来研究相遇问题。
①同桌演示相遇过程。
②请一组同学上台演示,其他同学评价。
③引导同学们发现两人同时走,同时停,两人所用的时间相等。
④师用课件演示相遇过程。
2、探索活动,获取新知:
(1)同学们能估计两人在哪里相遇吗?
①学生独立思考后进行小组讨论,说说理由。
②生:在这段路程的中间并靠近遗址公园的地方。
生:估计在李村附近。
③问:为什么在李村附近相遇?
生:同时出发,相遇后同时停止,行驶的时间相同,面包车速度慢,同一时间内行驶的路程就比较近。
(2)出发后几小时相遇?(用方程解答)
师:我们之前学过用方程解答问题首先要做什么?
生:找题目中的等量关系。
师:对,像这样的题目,我们还可以用画线段图的方法来找等量关系。
同学们请动笔画一画线段图。
①学生独立画线段图。
②幻灯片展示学生作品,进行全般反馈交流。
③电脑演示相遇过程,然后出示线段图。
引导学生理解“相遇”是指两车所行的路程之和为两地的距离。
④你能从中找出一个当量关系式吗?
生:面包车行程+小轿车行程=总路程
⑤生独立用方程解答。
(四人小组讨论)
⑥学生上黑板展示学生作品并说说解题方法。
⑦全班反馈答案,教师配合板书,且强调列方程解决问题的步骤。
解:设出发后出发后经过x小时相遇,那么面包车行驶40x千米,小轿车行驶60x千米。
40x﹢60x=50
100x=50
x=0.5(是否要写单位)
答:出发后经过0.5小时相遇。
(3)强调列方程解决问题的步骤。
三、课堂练习
两列火车从相距570千米的两地同时相向开出,甲车每小时行110千米,乙车每小时行80千米,经过几小时两车相遇?(用
方程解答)
1、学生读题,独立分析数量关系,画出线段图,并用方程解答。
2、学生展示作品,全班反馈。
四、本课小结。
五、板书设计:(同时相向而行)→相遇
六、置作业:在以后的生活中,遇到相遇问题时,要把我们学到的知识用进去,学以致用。
七:课后反思:。