国考:公式法解容斥问题(三集合非标准型)
数量关系答题技巧:容斥问题解题思路

数量关系答题技巧:容斥问题解题思路数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。
今天中公教育为考生整理了数量关系答题技巧中的容斥问题解题思路,希望对考生有所帮助!
中公教育专家告诉考生,解答容斥问题需要把握以下公式:
(1)两个集合的容斥关系公式:A+B=A∪B+A∩B
(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
【例题1】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。
A.22
B.18
C.28
D.26
【中公教育解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)。
显然,A+B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22,故答案为A。
【例题2】外语学校有英语、法语、日语教师共27人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4人,三种都能教的有2人,则只能教法语的有多少人( )。
A.4人
B.5人
C.6人
D.7人
【中公教育解析】“由里到外”进行数据标记,进行简单加减运算,因为外语学校有英语、法语、日语教师共27人,27-(8+2+2+1+3+5)=6。
故答案为C。
本文由中公事业单位考试网提供。
公务员笔试之行测:巧解三集合容斥原理问题

2014年公务员行测:巧解三集合容斥原理问题华图教育三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。
近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想——剔除重复,那么做任何一个容斥原理题目都能够得心应手。
根据上图,可得三集合容斥原理核心公式:=A +B +C -A B -B C -A C +A B C =-x A B C 总数一、直接利用公式型【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【答案】A 【解析】设同时报乙、丙职位的人数为x ,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。
因此,本题答案为A 选项。
二、三集合容斥原理作图型若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。
【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10 Cx B A名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?()A.5名B.6名C.7名D.4名【答案】B【解析】本题问题中出现了“只”,故只能采用作图法。
于是有仰12 2 2 34 3蛙自由只参加1个项目的人数为1+2+3=6。
因此,本题答案为B选项。
数量关系之三集合容斥问题解题技巧

数量关系之三集合容斥问题解题技巧:公式法2011-08-30 09:29 作者:罗姮来源:华图教育分享到: 1在国家公务员行测考试中,数量关系模块中的容斥问题必不可少,也是学员觉得最难突破的一大问题。
究其原因,一则是容斥问题很复杂,特别是三集合容斥问题涉及的已知量特别多,读完题容易被绕进去;二则是没有好的方法切入,做出来非常消耗时间。
其实,掌握好公式法对于解决三集合容斥问题很有帮助。
本篇就对三集合容斥问题的解题技巧之公式法进行阐释。
一、三集合标准型公式集合A、B、C,满足标准型公式:三集合标准型公式适用于题目中各类条件都明确给出的情况。
另外,可使用尾数法,判断个位数的相加减快速确定正确答案。
例1、某专业有学生50人,现开设有甲、乙、丙三门选修课。
有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?()(2009年浙江公务员考试行测试卷第55题)A、1人B、2人C、3人D、4人答案:B 各类条件明确给出,直接使用公式法。
三者都不满足的个数=总数-=50-(40+36+30-28-26-24+20),可使用尾数法,尾数为2,选B。
例2、如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。
它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。
且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。
问图中阴影部分的面积为多少()?(2009年国家公务员考试行测第116题)A、14B、15C、16D、17答案:C 直接使用三集合标准型公式,=290-(64+180+160-24-70-36),根据尾数法得,尾数为6,选C。
二、三集合整体重复型公式三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。
三集合容斥非标准公式原理

三集合容斥非标准公式原理三集合容斥非标准公式原理容斥原理一直都是各省行测考试的重点,尤其是三集合容斥原理,屡出不穷。
这次,小编带领大家一起来好好的看看目前的有关三集合容斥原理的题型概况和通用思路。
三集合容斥原理按题型可以分为两种题型,一种为标准型公式,另一种为变异型公式,接下来,我们就着重看看三集合容斥原理的解题方法1.解题步骤涉及三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。
2.解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。
公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数【例1】(陕西2015)针对100名旅游爱好者进行调查发现,28人喜欢泰山,30人喜欢华山,42人喜欢黄山,8人既喜欢黄山又喜欢华山,10人既喜欢泰山又喜欢黄山,5人既喜欢华山又喜欢黄山,3人喜欢这三个景点,则不喜欢这三个景点中任何一个的有()人。
A.20B.18C.17D.15【解析】可以用上述公式,我们将数据逐个代入可得:28+30+42-8-10-5+3=100-x,其中x为我们要求的量,求得x=20,答案选择A。
【例2】(国家2015)某企业调查用户从网络获取信息的习惯,问卷回收率为90%。
调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网络获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷?()A.310B.360C.390D.410【解析】由于题目中出现了“使用其中两种的有24人”,故我们要使用的就是三集合的变异型公式,如下列式:179+146+246-1×24-2×115=x-52,此时,我们分析一下可以看出,我们所求的x为收回的问卷数量,而题目所求为发出的问卷,明显所求非所问,但是题目中有个条件为“问卷回收率为90%”,故我们将所求的x÷90%即所求的答案,通过列式可得x=369,故发出的问卷为369÷90%=410,故选D。
三集合容斥非标准公式原理

三集合容斥非标准公式原理宽容与排他性原则一直是省级考试的重点,尤其是三套排他性原则。
这次,陕西华图教育将带您深入了解有关三组包含和排除原则的当前问题和一般概念。
首先,我们应该有一个清晰的认识。
根据套数,测试中的容忍和排除原则可以分为两组排除原则和三组排除原则。
今天,我们关注三集排除原则。
其次,根据问题的类型,将三组包含和排除的原理分为两种,一种是标准公式,另一种是变式。
接下来,我们将重点介绍三集包含排除原理的标准公式。
设置I,II,III,并满足标准公式三组包含排除原理的标准公式为:Ⅰ+Ⅱ+Ⅲ-Ⅰ。
Ⅱ-Ⅰ。
Ⅲ-Ⅱ。
Ⅲ+Ⅰ。
Ⅱ。
Ⅲ=总数-都不满足通过观察公式,我们可以看到公式中有9个数量,并且该公式的适用前提是知道8来找到1,即在标题中,如果我们看到8个已知数量并且需要1个未知数量,我们需要使用此公式(注意:有时在标题中,我们还需要知道7才能找到1,其中三个不满意的数目可能为零)。
具体主题如下:(陕西2015)对100名旅游爱好者的调查发现,泰山28人,华山30人,黄山42人,黄山和黄山8人,泰山和黄山10人,华山和黄山5人,三人三个景点,而()人们不喜欢三个景点中的任何一个。
A.20B.18C.17D.15E.14F.13G.12H.10解决方案:通过观察,我们发现了八个已知数量,并且我们还需要找到另一个未知数量。
因此,我们可以使用上述公式将数据一一替换为:28 + 30 + 42-8-10-5 + 3 = 100-x,其中x是我们需要的数量,x = 20,并且答案是接下来,让我们看一下三个集合变量的公式,如下图所示:从上面的公式可以看出,要使用变体公式,标题中必须只有两种情况,这与标准公式最大的不同(广东2015年)在一个乡镇举行了一场运动会,包括三项活动:长跑,跳远和短跑。
49人参加了长跑比赛,36人参加了跳远比赛,28人参加了短跑比赛,13人仅参加了两项赛事,9人参加了所有赛事。
那么,运动会的参加者总数为()。
2018国考行测:数量关系之容斥原理

2018国考行测:数量关系之容斥原理容斥原理问题是公务员考试中一类常考题型,常见的容斥原理问题有三种:两集合容斥原理,三集合容斥原理标准型,三集合容斥原理非标准型。
在审题时大家要牢牢把握住题型的特征:当题目中出现“都满足”,“都不满足”时,就可以归为容斥问题。
河北省考中容斥问题相对来说不是太难,基本上直接套用公式就能解决,属于易于拿分的题型。
下面给大家整理一下容斥原理这三种题型的公式以及用法。
一、两集合容斥原理公式:A+B-AB=总个数- 两者都不满足的个数。
其中A、B分别代表满足不同条件的数量,AB代表两个条件都满足的数量。
【例1】某班有60人,参加物理竞赛的有30人,参加数学竞赛的有32人,两者都没有参加的有20人。
同时参加物理、数学两科竞赛的有多少人?()A.28人B.26人C.24人D.22人D【解析】这是一道两集合的容斥问题。
根据公式:60-20=30+32-两者都参加的人,解得答案为D。
二、三集合容斥原理标准型公式:A+B+C-(AB+BC+AC)+ABC=总个数-都不满足的个数。
其中A、B、C代表满足不同条件的数量,AB、BC、AC代表分别满足其中两个条件的数量,ABC代表三个条件都满足的数量。
【例2】100个学生只有2人没学过外语,学过英语的有40人,学过德语的有45人,学过法语的有43人,学过英语也学过德语的有15人,学过英语也学过法语的有12人,学过法语也学过德语的有10人。
问:三种语言都学过的有多少人?()A.4 B.6C.7 D.5C【解析】运用容斥原理可得:40+45+43-(15+12+10)+三种语言都学过的人数=100-2。
解得三种语言都学过的数量为7,因此,本题答案为C选项。
三、三集合非标准型容斥原理公式:A+B+C-只满足两个条件的数量-2×满足三个条件的数量=总个数-都不满足的个数。
【例3】为丰富职工业余文化生活,某单位组织了合唱、象棋、羽毛球三项活动。
三集合容斥标准公式

三集合容斥标准公式
二集合容斥原理的公式为:|A∪B|=|A|+|B|-|A∩B|,三集合容斥原理的本质和二集合容斥原理是一样的,只不过由于又多了一个集合,公式和图形描述都变得更加复杂。
其中A和B是两个集合,|A|表示集合A中的元素个数。
在理解容斥原理时,完全可以把元素的个数类比做图形的面积,从而二集合容斥原理可以用下面的图形来表示:
扩展资料:
三集合容斥问题的核心公式如下:
标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。
非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条
件的- 2×三个都满足的。
列方程组:|A∪B∪C | =只满足一个条件的+只满足两个
条件的+三个都满足的。
| A | + | B | + | C | =只满足一个条件的+2×只满足两个条件
的+3×三个都满足的,对于以上三组公式的理解,可以通过想
象三个圆两两相交的重叠情况来加深。
2017国家公务员考试行测解题方法:容斥问题公式法

2017国家公务员考试行测解题方法:容斥问题公式法公务员考试频道小编为大家整理2017国家公务员考试行测解题方法:容斥问题公式法,希望对您有所帮助!公务员考试行测中的容斥问题为包含与排斥问题,它是一种计数问题。
在计数时,几个计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分,采用这种计数方法的题型称为容斥问题。
要解决这类问题,把重复数的次数变为只数1 次,或者说把重叠的面积变为一层,做到不重不漏,即先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,即然后再把计数时重复计算的数目排斥出去,把遗漏的数目补上,使得计算的结果既无遗漏又无重复。
这一类问题在公务员考试行测中时有出现,其实并不难。
主要有两者容斥和三者容斥两种情况。
今天着重讲用公式法如何解题。
一、两者容斥公式:I=A+B-X+Y二、三者容斥主要有三种问法:第一种:只喜欢AB的有e人,只喜欢BC的有f人,只喜欢AC 的有g人,三者都喜欢的有d人。
公式:I=A+B+C-e-f-g-2d+Y第二种:同时喜欢AB的有d+e人,同时喜欢BC的有d+f人,同时喜欢AC的有d+g人,三者都喜欢的有d人。
公式:I=A+B+C-(d+e)-(d+f)-(d+g)+d+Y第三种:至少喜欢两者的有d+e+f+g人。
公式:I=A+B+C-(d+e+f+g)-d+Y接下来我们用公式来解决几个简单的题目:例1.班里一共有40名同学,其中喜欢语文的有30个同学,喜欢数学的有30个同学,两者都喜欢的有25个同学,请问,两者都不喜欢的有多少个同学?A.5B. 6C.7D.8【解析】答案选A。
根据两者容斥基本公式,两者都不喜欢的设为,则可列式为:30+30-25+Y=40,解得:Y=5。
所以选A。
例2.班里一共有40名同学,其中喜欢语文的有25个同学,喜欢数学的有25个同学,喜欢英语的有25个同学,喜欢两门的有20人,三门都喜欢的有10人,请问,三门都不喜欢的有多少个同学?A.5B. 6C.7D.8【解析】答案选A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国考:公式法解容斥问题(三集合非标准型)河北公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。
河北华图教育精心整理了河北公务员行测真题及其他公务员笔试资料供考生备考学习。
在行测考试当中,有一类问题叫做容斥问题。
什么题目我们归结为容斥问题呢?一般情况下,有符合A,有符合B,有符合AB,有AB都不符合等这一类题干,我们就把他归结为容斥问题。
容斥问题可以分为二集合容斥和三集合容斥。
解题思路有画图法和公式法。
一般情况下,只要我们能牢牢地背会相关公式,考试的时候就能很快的做出答案,节省考试时间。
今天我们一起来看一下三集合容斥非标准型公式。
三集合容斥非标准型公式:A+B+C-只满足两个条件-只满足三个条件=总数-都不符合。
下面我们一起来看寄到容斥问题的例题:
【例】(2012-河北-43)某乡镇对集贸市场36 种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。
其中,两项同时不合格的5种,三项同时不合格的2种。
问三项全部合格的食品有多少种?()
A.14
B.21
C.23
D.32
【解析】此题为容斥原理问题,根据三集合容斥标准型公式:A+B+C-只满足两个条件-只满足三个条件=总数-都不符合。
根据容斥原理,不合格的产品共有7+9+6-5-2×2=13(种),合格产品有36-13=23(种),选择C。
由此可见,如果能够熟练地记住公式,其实这类问题我们完全可以在1分钟以内做出来的。
我们再来看一道例题:
【例】(2011-国家-74)某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝
剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。
则三项全部合格的建筑防水卷材产品有多少种?()
A.37
B.36
C.35
D.34
【解析】套用三集合容斥非标准型公式:不合格产品=8+10+9-7-2×1=18,即不合格的产品共18 种,则合格产品的数量=52-18=34。
选择D。
【例】(2010-国家-75)某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。
问接受调查的学生共有多少人?()
A.120
B.144
C.177
D.192
【解析】根据题意列出等式:x-15=63+89+17-46-2×24,解得x=120。
所以答案选A。
不积跬步,无以至千里,不积小流无以成江海。
齐骥一跃,不能十步,驽马十驾,功不在舍。
祝大家早日上岸。