低通滤波的matlab实现
z域低通滤波器matlab增益响应

z域低通滤波器matlab增益响应
在MATLAB中,可以使用函数freqz来计算z域低通滤波器的增益响应。
增益响应指的是频率响应的模值。
下面是一个示例代码,演示如何计算并绘制z域低通滤波器的增益响应。
```matlab
% 滤波器系数
b = [1, 0.5, 0.1]; % 滤波器的分子系数
a = [1]; % 滤波器的分母系数
% 计算增益响应
N = 1000; % 频率响应的点数
[H, w] = freqz(b, a, N); % 使用freqz计算增益响应
% 绘制增益响应 (单位为dB)
figure
plot(w/pi, 20*log10(abs(H)))
xlabel('Normalized Frequency (π rad/sample)')
ylabel('Gain (dB)')
title('Gain Response of z-Domain Lowpass Filter')
grid on
```
在上述代码中,通过设定滤波器的分子系数和分母系数来定义滤波器。
然后,使用`freqz`函数计算增益响应,并返回频率响应`H`和与之对应的频率`w`。
最后,使用`plot`函数将频率响应
绘制出来,其中将X轴归一化为π表示。
注意,上述代码中的增益响应是以dB为单位的,因此使用了`20*log10`将增益转换为dB。
如果想使用线性增益,则可以直接使用`abs(H)`。
执行此代码将输出低通滤波器的增益响应图像。
可以根据滤波器的系数和需要的频率特性进行适当地调整。
用Matlab设计的低通数字滤波器

指导教师评定成绩:审定成绩:重庆邮电大学自动化学院综合课程设计报告低通数字滤波器设计单位(二级学院):自动化学生姓名:专业:自动化班级:0810902学号:指导教师:设计时间:2012 年11月重庆邮电大学自动化学院制摘要本次设计以AT89S52单片机为控制器件,利用AD/DA转换芯片构成低通数字滤波器。
首先利用MATLAB根据要求设计低通滤波器模型并在该平台进行初步仿真得到较为理想的效果。
接着利用proteus软件搭建硬件电路,并对编写的程序进行检测;程序检测无误后,再用Protel画出电路图。
首先利用ADC0809将模拟信号转换成数字信号输入单片机,正弦模拟信号由AD9850模块产生,是一般正常的低频正弦波;另一个噪声信号是通过单片机产生的高频脉冲信号。
然后通过滤波程序将采集的数据进行算法滤波,滤波后的数据通过DAC0832输出,将DA0832的输出信号通过一级运放(UA741)转换成电压输出。
最后将运放输出的结果接到示波器上进行显示。
关键字:AT89C51、DDS、ADC0809、DAC0832、UA741设计题目题目与要求低通滤波器是允许低频讯号通过,而不允许高频讯号通过的滤波器。
本题目要求用单片机(型号任选)制作一个低通数字滤波器,要求:1.根据确定的采样频率,用MATLAB设计低通滤波器模型以满足不同截止频率需求,并进行仿真;2.用单片机设计并制作一个低通数字滤波器,实现数据采集、滤波处理、信号输出等功能(包括软、硬件);3.滤波器能与PC机通信,设计通信协议,实现截止频率参数的调节、原始信号采样数据与滤波后数据的上传;4.利用高级语言开发工具,设计PC机端的程序,可以调节滤波器参数,接收滤波器上传的原始信号采样数据与滤波后数据,并能绘图、保存;5.设计几种不同频率、类型的噪声,利用滤波器进行试验,记录实验情况并进行分析、总结;6.按规定的统一格式设计报告。
目录第一章 MATLAB仿真 (4)1.1方案论证 (4)1.2设计方法及原理介绍 (4)1.3 matlab编程实现 (5)1.4 Simulink仿真结构图 (5)第二章硬件设计方案 (6)2.1硬件功能整体设计 (6)2.2单片机最小系统 (7)2.3 ADC0809和74HC74 (7)2.4 DAC0832和UA741 (8)2.5 串口部分 (9)2.6 DDS部分 (9)第三章软件设计 (10)3.1 单片机软件设计 (10)3.2 PC机通信软件设计 (12)第四章心得体会 (13)参考文献 (14)附件1:方波源程序 (15)附件2:DDS正弦信号模块 (15)附件3:主单片机程序 (19)附录4:protues原理图 (21)附录5:protel电路图 (22)附录6:DDS原理图 (22)第一章 MATLAB 仿真1.1方案论证数字滤波器,按功能分类,可以分成低通、高通、带通、带阻、全通滤波器;按实现的网络结构或单位抽样响应分类:可以分成无限脉冲响应滤波器(IIR 滤波器)、有限脉冲响应滤波器(FIR 滤波器)。
计算机视觉(二)-matlab之理想低通滤波器,布特沃斯低通、高斯低通,理想高通、布特沃斯。。。

计算机视觉(⼆)-matlab之理想低通滤波器,布特沃斯低通、⾼斯低通,理想⾼通、布特沃斯。
未整理完!在滤波器之前,先讲解傅⾥叶变换理想低通滤波器f = imread('Fig0441.tif');f = im2double(f);% 计算填充图像⼤⼩[M,N] = size(f);M2 = 2*M;N2 = 2*N;% 傅⾥叶变换F = fftshift(fft2(f,M2,N2));figure;imshow(mat2gray(log(1+abs(F))));title('傅⾥叶频谱');% 设计滤波器% ⽣成⽹格坐标u = -N:N-1;v = -M:M-1;[U,V] = meshgrid(u,v);% 设计滤波器D = hypot(U,V);D0 = 30; % 截⽌频率[10 30 60 160 460]H = mat2gray( D <= D0 );% 理想低通滤波器figure;imshow(H);title('理想低通滤波器');% 频域滤波G = F.*H;figure;imshow(mat2gray(log(1+abs(G))));title('频域滤波'); 1-sum(sum(abs(G).^2))/sum(sum(abs(F).^2))g0 = ifft2(fftshift(G));g = g0(1:M,1:N);g = real(g);figure;imshow(g);title('滤波后的图像');figure;subplot(121);imshow(f);title('原图');subplot(122);imshow(g);title('滤波后的图像');结果:原图:布特沃斯低通滤波器f = imread('Fig0441.tif');f = im2double(f);% 计算填充图像⼤⼩[M,N] = size(f);M2 = 2*M;N2 = 2*N;% 傅⾥叶变换F = fftshift(fft2(f,M2,N2));figure;imshow(mat2gray(log(1+abs(F))));title('傅⾥叶频谱'); % 设计滤波器% ⽣成⽹格坐标u = -N:N-1;v = -M:M-1;[U,V] = meshgrid(u,v);% 设计滤波器D = hypot(U,V);D0 = 30; % 截⽌频率[10 30 60 160 460]H = mat2gray(1./(1+((D./D0).^4)));figure;imshow(H);title('布特沃斯低通滤波器(n=2)');% 频域滤波G = F.*H;figure;imshow(mat2gray(log(1+abs(G))));title('频域滤波'); 1-sum(sum(abs(G).^2))/sum(sum(abs(F).^2))g0 = ifft2(fftshift(G));g = g0(1:M,1:N);g = real(g);figure;imshow(g);title('滤波后的图像');figure;subplot(121);imshow(f);title('原图');subplot(122);imshow(g);title('滤波后的图像'); matlab结果:⾼斯低通滤波器⾼斯低通滤波器代码:H = exp((-D.^2)/(2*(D0).^2));figure;imshow(H);title('滤波器(D0=100)');结果:理想⾼通滤波器理想⾼通滤波器代码:H = mat2gray( D >= D0 );%理想⾼通滤波器figure;imshow(H);title('滤波器()');结果:布特沃斯⾼通滤波器布特沃斯⾼通滤波器代码:H = 1./(1+((D0./D).^4));%布特沃斯⾼通滤波器figure;imshow(H);title('滤波器(n=2)');结果:⾼斯⾼通滤波器⾼斯⾼通滤波器代码:H = 1-exp((-D.^2)/(2*(D0).^2));%⾼斯⾼通滤波器figure;imshow(H);title('滤波器');matlab结果:混合⾼频强调滤波[file,path] = uigetfile({'*.png';'*.jpg';},'选择图⽚');f = imread([path,file]);f = im2double(f);%计算填充图像⼤⼩[M,N] = size(f);M2 = 2*M;N2 = 2*N;% 傅⾥叶变换F = fftshift(fft2(f,M2,N2));figure;imshow(mat2gray(log(1+abs(F))));title('傅⾥叶频谱'); % 设计滤波器% ⽣成⽹格坐标u = -N:N-1;v = -M:M-1;[U,V] = meshgrid(u,v);% 设计滤波器D = hypot(U,V);D0 = 40; %截⾄频率[10 30 60 160 460]H = 1-exp((-D.^2)/(2*(D0).^2));%¸⾼斯⾼通滤波G = (F.^(-1)).*((0.5+0.75.*H).*F);%figure;imshow(H);title('滤波器');figure;imshow(mat2gray(log(1+abs(G))));title('频率滤波'); % 傅⾥叶逆变换g0 = ifft2(fftshift(G));g = g0(1:M,1:N);g = real(g);i=histeq(g);figure;imshow(g);title('滤波后的图像');figure;imshow(i);title('直⽅图均衡');结果:原图:reference:李卫军,肖宛昂,董肖莉,覃鸿⽼师《视觉信息处理及FPGA 实现》课程等越是憧憬,越要风⾬兼程。
matlab巴特沃斯低通滤波函数

matlab巴特沃斯低通滤波函数
MATLAB中的巴特沃斯低通滤波函数用于设计和应用巴特沃斯低通滤波器。
巴特沃斯滤波器是一种常见的数字滤波器类型,可以对信号进行频率域的滤波处理。
巴特沃斯低通滤波器的特点是在通带内具有最平坦的幅度响应,并且有一个明确的截止频率。
它可以将高于截止频率的信号分量抑制或删除,而保留低于截止频率的信号分量。
巴特沃斯低通滤波器的作用是滤除高于截止频率的噪声或不需要的信号分量,以提取出所需的信号内容。
它常用于信号处理、图像处理、音频处理等领域,如用于去除图像中的高频噪声,平滑时间序列数据等。
在MATLAB中,设计巴特沃斯低通滤波器的函数是butter。
该函数可以根据指定的阶数、截止频率和滤波器类型来设计滤波器,并返回巴特沃斯低通滤波器的系数。
你可以使用这些系数来应用滤波器到信号上,使用filter函数实现滤波操作。
Matlab中的多种滤波器设计方法介绍

Matlab中的多种滤波器设计方法介绍引言滤波器是数字信号处理中常用的工具,它可以去除噪声、改善信号质量以及实现其他信号处理功能。
在Matlab中,有许多不同的滤波器设计方法可供选择。
本文将介绍一些常见的滤波器设计方法,并详细说明它们的原理和应用场景。
一、FIR滤波器设计1.1 理想低通滤波器设计理想低通滤波器是一种理论上的滤波器,它可以完全去除截止频率之上的频率分量。
在Matlab中,可以使用函数fir1来设计理想低通滤波器。
该函数需要指定滤波器阶数及截止频率,并返回滤波器的系数。
但是,由于理想低通滤波器是非因果、无限长的,因此在实际应用中很少使用。
1.2 窗函数法设计为了解决理想滤波器的限制,窗函数法设计了一种有限长、因果的线性相位FIR滤波器。
该方法利用窗函数对理想滤波器的频率响应进行加权,从而得到实际可用的滤波器。
在Matlab中,可以使用函数fir1来实现窗函数法设计。
1.3 Parks-McClellan算法设计Parks-McClellan算法是一种优化设计方法,它可以根据指定的频率响应要求,自动选择最优的滤波器系数。
在Matlab中,可以使用函数firpm来实现Parks-McClellan算法。
二、IIR滤波器设计2.1 Butterworth滤波器设计Butterworth滤波器是一种常用的IIR滤波器,它具有平坦的幅频响应,并且在通带和阻带之间有宽的过渡带。
在Matlab中,可以使用函数butter来设计Butterworth滤波器。
2.2 Chebyshev滤波器设计Chebyshev滤波器是一种具有较陡的滚降率的IIR滤波器,它在通带和阻带之间有一个相对较小的过渡带。
在Matlab中,可以使用函数cheby1和cheby2来设计Chebyshev滤波器。
2.3 Elliptic滤波器设计Elliptic滤波器是一种在通带和阻带上均具有较陡的滚降率的IIR滤波器,它相较于Chebyshev滤波器在通带和阻带上都具有更好的过渡特性。
基于matlab对图像进行高通、低通、带通滤波

数字图像处理三级项目—高通、低通、带通滤波器摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。
利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。
低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。
低通滤波器有巴特沃斯滤波器和高斯滤波器等等,本次设计使用的低通滤波器为****。
高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器等等,本次设计使用巴特沃斯高通滤波器。
1、频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。
实验原理分析根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像与空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。
在频域空间,图像的信息表现为不同频率分量的组合。
如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。
频域空间的增强方法的步骤:(1)将图像从图像空间转换到频域空间;(2)在频域空间对图像进行增强;(3)将增强后的图像再从频域空间转换到图像空间。
低通滤波是要保留图像中的低频分量而除去高频分量。
图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。
理想低通滤波器具有传递函数:其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。
低通滤波 matlab

低通滤波matlab
低通滤波是指只允许低于某一频率范围的信号通过的滤波器,而阻止高于该频率范围的信号通过。
在MATLAB中,可以使用以下函数来实现低通滤波:
1. butter()函数:用于设计巴特沃斯滤波器,可设置滤波器的阶数、截止频率等参数。
2. fir1()函数:用于设计FIR(有限脉冲响应)滤波器,可设置滤波器的截止频率、窗函数等参数。
3. filter()函数:用于应用滤波器,输入原始信号和滤波器的系数,输出滤波后的信号。
例如,以下代码可以实现对信号x进行低通滤波,保留频率在0-1000Hz范围内的信号:
matlab
fs = 10000; %采样频率
fc = 1000; %截止频率
Wn = fc/(fs/2); %归一化截止频率
[b,a] = butter(6,Wn,'low'); %设计6阶巴特沃斯滤波器
y = filter(b,a,x); %应用滤波器
其中,b和a分别代表巴特沃斯滤波器的Numerator和Denominator系数,6表示滤波器的阶数,x是原始信号,y是滤波后的信号。
需要注意的是,滤波器的阶数越高,滤波效果通常越好,但也会增加计算量和延迟时间。
matlab滤波函数详解 -回复

matlab滤波函数详解-回复Matlab滤波函数详解滤波是信号处理中的重要任务之一,它可以用来去除噪声、强调信号的特定频率成分、或者改变信号的频谱分布。
Matlab作为一款强大的数学计算软件,提供了丰富的滤波函数以供使用。
本文将主要介绍Matlab中常用的滤波函数,并逐步回答关于这些函数的一系列问题。
一、fir1函数fir1函数用于设计FIR滤波器的零点增益。
它采用了窗函数法,通过选择合适的窗函数和截止频率,可以得到所需的滤波器。
1. 如何使用fir1函数设计一个低通滤波器?使用fir1函数设计一个低通滤波器的示例代码如下:matlabfs = 1000; 采样频率fc = 100; 截止频率N = 100; 滤波器的阶数b = fir1(N, fc/(fs/2));以上代码中,fs表示采样频率,fc表示截止频率,N表示滤波器的阶数。
fir1函数会返回滤波器的系数b。
2. fir1函数有哪些可选参数?如何选择窗函数?fir1函数还可以接受其他参数,用于指定窗函数的类型和参数。
常用的窗函数有'hamming'、'hanning'、'blackman'等。
可以使用help fir1查看fir1函数的帮助文档,其中有关于可选参数的详细说明。
二、butter函数butter函数用于设计IIR(无限脉冲响应)滤波器。
它基于巴特沃斯滤波器的设计方法,可以用来设计各种类型的滤波器。
1. 如何使用butter函数设计一个带通滤波器?使用butter函数设计一个带通滤波器的示例代码如下:matlabfs = 1000; 采样频率f1 = 100; 通带1的下限频率f2 = 200; 通带2的上限频率Wn = [f1, f2]/(fs/2);[N, Wn] = buttord(Wn(1), Wn(2), 1, 40);[b, a] = butter(N, Wn);以上代码中,fs表示采样频率,f1和f2分别表示通带的下限和上限频率,Wn表示归一化的通带频率范围,N表示滤波器的阶数,b和a分别表示滤波器的分子和分母系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四种低通滤波器:
一、理想低通滤波器
I=imread('bb.jpg');
T=rgb2gray(I);
figure(1);
subplot(1,2,1),imshow(uint8(I));
title('原图像');
subplot(1,2,2),imshow(uint8(T));
title('理想低通滤波所得图像');
[f1,f2]=freqspace(size(T),'meshgrid');
H=ones(size(T));
r=sqrt(f1.^2+f2.^2);
H(r>0.1)=0;
Y=fft2(double(T));
Y=fftshift(Y);
Ya=Y.*H;
Ya=ifftshift(Ya);
I=ifft2(Ya);
figure(2);
surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');
二、巴特沃斯低通滤波器
I=imread('bb.jpg');
T=rgb2gray(I);
figure(1);
subplot(1,2,1),imshow(uint8(I));
title('原图像');
subplot(1,2,2),imshow(uint8(T));
title('巴特沃斯低通滤波所得图像');
[f1,f2]=freqspace(size(T),'meshgrid');
D=0.3;
r=f1.^2+f2.^2;
n=4;
for i=1:size(T,1)
for j=1:size(T,2)
t=r(i,j)/(D*D);
H(i,j)=1/(t^n+1);
end
end
Y=fft2(double(T));
Y=fftshift(Y);
Ya=Y.*H;
Ya=ifftshift(Ya);
I=real(ifft2(Ya));
figure(2);
surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');
三、梯形滤波器
I=imread('bb.jpg');
T=rgb2gray(I);
figure(1);
subplot(1,2,1),imshow(uint8(I));
title('原图像');
subplot(1,2,2),imshow(uint8(T));
title('梯形低通滤波所得图像');
[f1,f2]=freqspace(size(T),'meshgrid');
D=100/size(I,1);
D0=0.1;
D1=0.4;
r=sqrt(f1.^2+f2.^2);
H=zeros(size(T));
H(r<D0)=1;
for i=1:size(T,1)
for j=1:size(I,2)
if r(i,j)>=D0 & r(i,j)<=D1
H(i,j)=(D1-r(i,j))/(D1-D0);
end
end
end
Y=fft2(double(T));
Y=fftshift(Y);
Ya=Y.*H;
Ya=ifftshift(Ya);
I=real(ifft2(Ya));
figure(2);
surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');
四、高斯低通滤波器
I=imread('bb.jpg');
T=rgb2gray(I);
figure(1);
subplot(1,2,1),imshow(uint8(I));
title('原图像');
subplot(1,2,2),imshow(uint8(T));
title('高斯低通滤波所得图像');
[f1,f2]=freqspace(size(T),'meshgrid');
D=100/size(I,1);
r=f1.^2+f2.^2;
H=ones(size(T));
for i=1:size(T,1)
for j=1:size(T,2)
t=r(i,j)/(D*D);
H(i,j)=exp(-t);
end
end
Y=fft2(double(T));
Y=fftshift(Y);
Ya=Y.*H;
Ya=ifftshift(Ya);
I=real(ifft2(Ya));
figure(2);
surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');。