第六章-简单超静定问题-习题选解
第6章简单的超静定问题

材料力学 任课教师:金晓勤
21
φ
代入变形几何条件得:
φ1 φ2
T1l T1l Tl GI P1 GI P 2 GI P 2
I P1T 32 T1 T2 I P1 I P 2 D 4 d 4 D 4 d 4 1 1 2 2 32 32 1004 904 2 1.165kNm 4 4 4 4 100 90 90 80
代入数据,得
FW 0.717 F Fst 0.283F
根据角钢许用应力,确定F
F
st
0.283F st Ast
F 698kN
根据木柱许用应力,确定F
0.717 F W W AW
许可载荷
F 1046kN
250 250
F 698kN
材料力学
将平衡方程与补充方程联立,求解,可得:
RA RB P RAl1 RB l2 E A E A 0 2 2 1 1
P RA E2 A2l1 1 E1 A1l2
P RB E1 A1l2 1 E2 A2l1
材料力学 任课教师:金晓勤
9
例题 木制短柱的4个角用4个40mm×40mm×4mm的等边角钢加固, 已知角钢的许用应力[σst]=160MPa,Est=200GPa;木材的许 用应力[σW]=12MPa,EW=10GPa,求许可载荷F。 F 解: 平衡方程: F FW Fst 变形协调关系: l st l w (1)
b
⑶物理方程
FN 1l1 FN 1l l1 E1 A1 E1 A1 cos FN 2l2 FN 2l l2 E2 A2 E2 A2
第六章简单超静定问题习题选解

图习题⋅-16图⋅N l 图习题⋅-56习 题[6-1] 试作图示等直杆的轴力图。
解:把A 支座去掉,代之以约束反力A R (↑)。
A AC R N = F R N A CD 2-=F R N A BD 3-=变形协调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)2(2=-+-+F R F R R A A A47FR A =故:47F R N A AC == 42472FF F F R N A CD -=-=-= 453473FF F F R N A BD-=-=-= 轴力图如图所示。
[6-5] 图示刚性梁受均布荷载作用,梁在A 端铰支,在B 点和C 点由两根钢杆BD 和CE 支承。
已知钢杆BD 和CE 的横截面面积22200mm A =和21400mm A =,钢杆的许用应力MPa 170][=σ,试校核该钢杆的强度。
解:以AB 杆为研究对象,则:0=∑AM1023)330(3121=⨯⨯-⨯+⨯N N 135321=+N N (1)变形协调条件:3121=∆∆l l 123l l ∆=∆112238.1EA lN EA l N ⨯=⋅ 40032008.112N N =⋅ 212.1N N = (2)(2)代入(1)得:13532.122=+N N)(143.322.41352kN N ≈=(拉力) )(571.38143.322.12.121kN N N ≈⨯== (压力)按轴力正负号的规定,记作:kN N 571.381-=;kN N 143.322=强度校核:MPa MPa mm N A N 170][4275.9640038571||||2111=<===σσ,符合强度条件。
图习题⋅-156 MPa MPa mm NA N 170][715.160200321432122=<===σσ,符合强度条件。
第六章简单的超静定问题

第六章简单的超静定问题知识要点1.超静定问题的概念(1)静定问题结构或结构的约束反力或内力均能通过静力学平衡方程求解的问题。
(2)超静定问题结构或构件的约束反力或内力不能仅凭静力学平衡方程全部求解的问题。
(3)超静定次数未知力(约束反力或内力)数超过独立的静力平衡方程书的数目。
(4)多余约束力超静定问题中,多余维持静力平衡所必需的约束(支座或杆件)。
(5)多余未知力与多余(支座或杆件)相应的支座反力或内力。
(6)基本静定系在求解静定结构时,解除多余约束,并代之以多余未知力,从而得到一个作用有荷载和多余未知力的静定结构,称之为原超静定结构的基本体静定系。
2.静不定问题的解题步骤(1) 静力平衡条件——利用静力学平衡条件,列出平衡方程。
(2) 变形相容条件——根据结构或杆间变形后应保持连续的变形相容条件,作出位移图,由位移图的几何关系列出变形间的关系方程。
(3) 物理关系——应用胡克定律列出力与变形间的关系方程。
(4) 将物理关系代入变形相容条件,得补充方程 。
补充方程和静力平衡方程,二者方程数之和正好等于未知数的个数,联立平衡方程和补充方程,求解全部未知数。
习题详解6-1 试作题6-1图(a )所示等直杆的轴力图。
解 解除题6-1图(a )所示等直杆的约束,代之以约束反力,作受力图,如题6-1图(b )所示。
由静力学平衡条件,03,0=-+=∑F F F FB A Y和变形协调条件0=∆+∆+∆DB CD AC 并将()EAa F EA a F F EA a F B DB A CD A AC -=∆-=∆=∆,22,代入式②,可得 联立式①,③,解得45,47F F F F B A == 轴力如图6-1图(c )所示6-2 题6-2图(a )所示支架承受荷载F=10 kN,1,2,3各杆由同一材料制成,其横截面面积分别为232221200,150,100mm A mm A mm A ===。
试求各杆的轴力。
材料力学-简单的超静定问题

2021/6/16
4
2021/6/16
5
2021/6/16
6
§6-2 拉压超静定问题
拉压变形时的胡克定律 l FN l EA
综合考虑变形的协调条件、虎克定律和静力 学平衡条件求解拉压超静定问题。
2021/6/16
7
例 已知1、2杆抗拉刚度为E1A1, 3杆抗拉刚度为E3A3, F的大小已知,求各杆内力。
13
2
l
A
A*
l3
FN 3l E3 A3
9
4、联解方程
FN1
2 cos
F
E 3 A3
E 1 A1 c o s 2
FN 3
1
2
F E 1 A1
cos3
E 3 A3
2021/6/16
10
装配应力的计算:超静定结构中由于加工误 差, 装配产生的应力。
平衡方程:
FN1 FN2
F N 3(F N 1F N 2)cos
超静定问题:若未知力的个数多于独立的平
衡方程的个数,仅用静力平衡方程便无法确定
全部未知力,这类问题为超静定问题。相应结
构称为超静定结构。
2021/6/16
2
超静定次数:未知力个数与独立平衡方程数之 差,也等于多余约束数。
多余约束:在结构上加上的一个或几个约束, 对于维持平衡来说是不必要的约束称多余约束。 对应的约束力称多余约束反力。
由于超静定结构能有效降低结构的内力及变 形,在工程上应用非常广泛。
2021/6/16
3
基本静定系:解除多余约束代之于未知力后的 结构。
●超静定问题的解法:综合考虑变形的几何相 容条件、物理关系和静力学平衡条件。
材料力学第六章简单的超静定问题

l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
例2
图所示结构,刚性横梁AB由斜杆CD吊在水 平位置上,斜杆CD的抗拉刚度为EA,B点 处受荷载F作用,试求B点的位移δB。
§6-1 超静定问题
静定结构:
约束反力 可由静力平 衡方程全部 求得
超静定结构:结构的强度和刚度均得到提高 约束反力不能全 部由平衡方程求得 超静定次数: 约束反力多于 独立平衡方程的数
独立平衡方程数: 平面任意力系: 3个平衡方程 平面共点力系:
2个平衡方程
平面平行力系:2个平衡方程 共线力系:1个平衡方程
3
B
联立①②③,解得:
D
1 C 2 30 30 3
A
y
A
3FN1 2FN 2 3FN 3
FN1 FN 3 2F
F
FN 1 FN 2 FN 3
y
A
x
FN 3 2FN1 2FN 2
2 FN1 2 F 25.4kN 3 1 127MPa(拉)
FN 1 FN 2 FN 3
y
A
列出平衡方程: FN 1 cos 30 0 FN 2 FN 3 cos 30 0 Fx 0
Fy 0
FN1 sin 30 0 FN 3 sin 30 0 F
FN1 FN 3 2F
x 即:
3FN1 2FN 2 3FN 3
1 2
EA
2000
EA N1 =
6000
《材料力学》第6章-简单超静定问题-习题解

轴力图1234-5-4-3-2-11234567N(F/4)x(a)第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
材料力学土木类第六章简单的超静定问题

第6章 简单的超静定问题
静定结构: 仅靠静力平衡方程就可以求出结构的约束反力或内力
超静定结构(静不定结构): 静力学平衡方程不能求解 超静定结构的未知力的数目多于独立的平衡方程的数目;两者的差值称为超静定的次数
分析:画出受力及变形简图
写出独立平衡方程
一次超静定问题。
l
变形协调条件:原杆两端各自与刚性板固结在一起,故内、外杆的扭转变形相同。即变形协调条件为
代入物理关系(胡克定理),与平衡方程联立,即可求得Ma和Mb。
并可进一步求得杆中切应力如图(内、外两杆材料不同),一般在两杆交界处的切应力是不同的。
按叠加原理:
BB、BM分别为MB、Me引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
代入上式可解得
MA可平衡方程求得 。
例 图示一长为l 的组合杆,由不同材料的实心圆截面杆和空心圆截面杆套在一起而组成,内、外两杆均在线弹性范围内工作,其扭转刚度分别为GaIpa和GbIpb。当组合杆的两端面各自固结于刚性板上,并在刚性板处受一对扭转力偶矩Me作用时,试求分别作用在内、外杆上的扭转力偶矩。
根据分离体的平衡条件,建立独立的平衡方程;
建立变形协调条件,求补充方程
利用胡克定律,得到补充方程;
联立求解
归纳起来,求解超静定问题的步骤是:
例 一平行杆系,三杆的横截面面积、长度和弹性模量均分别相同,用A、l、E 表示。设AC为一刚性横梁,试求在荷载F 作用下各杆的轴力
解: (1)受力分析--平衡方程
例 设l,2,3杆用铰连接如图,1、2两杆的长度、横截面面积和材料均相同,即l1=l2=l,A1=A2 =A , E1= E2=E;3杆长度为l3 ,横截面面积为A3,弹性模量为E3 ,试求各杆的轴力。
简单的超静定问题

M A Me M B 0
Me MB
A
C
B
2、变形协调方程
B 0
即
BM BM 0
e B
Me
MB
A
C
B
3、补充方程
BM
e
M e a GI p
BM
BM Bl GI p NhomakorabeaM e a M Bl 0 GI p GI p
M ea MB l
4、联立解得
3、物理方程
FN 1l l1 EA FN 3 l l 3 EA FN 2 l l 2 EA
得
FN 1 FN 2 FN 3
F 12 F 3
C′
补充方程 FN 1 FN 3 2FN 2
7F 12
例题3:如图所示结构,杆①、②的刚度为EA,梁BD 为刚体,载荷F=50kN,许用应力[s]160MPa。试确 定各杆的横截面积。 解: 1、确定各杆内力 取横梁为研究对象 平衡方程
FB aEAT
由平衡方程得 FA FB aEAT
例题5:如图所示结构,三杆的刚度均为EA,杆③的长 度比设计长度l短了d。试求装配后各杆的轴力。
A
D
① ③ a a C′ C l2 ②
B
解:对称结构,内力对称 变形协调方程
l1 d l 3 cos a
l
d
l3 l1
lt a1 T l1 a 2 T l 2
A
l1
C
l2
B
约束力产生的变形
l FB FB l1 F l B2 E1 A1 E2 A2
lt
FB
变形协调方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图
习题⋅-16
图
⋅
N l 图
习题⋅-56习 题
[6-1] 试作图示等直杆的轴力图。
解:把A 支座去掉,代之以约束反力A R (↑)。
A AC R N = F R N A CD 2-=
F R N A BD 3-=
变形协调条件为:
0=∆l
02=⋅+⋅+⋅EA a
N EA a N EA a N BD CD AC 02=++BD CD AC N N N
03)2(2=-+-+F R F R R A A A
4
7F
R A =
故:4
7F R N A AC =
= 42472F
F F F R N A CD -=-=-= 4
53473F
F F F R N A BD
-
=-=-= 轴力图如图所示。
[6-5] 图示刚性梁受均布荷载作用,梁在A 端铰支,在B 点和C 点由两根钢杆BD 和CE 支承。
已知钢杆BD 和CE 的横截面面积22200mm A =和21400mm A =,钢杆的许用应力MPa 170][=σ,试校核该钢杆的强度。
解:以AB 杆为研究对象,则:
0=∑A
M
1
02
3
)330(3121=⨯
⨯-⨯+⨯N N 135321=+N N (1)
变形协调条件:
3
1
21=∆∆l l 123l l ∆=∆
1
12238.1EA l
N EA l N ⨯=⋅ 400
32008.11
2N N =⋅ 212.1N N = (2)
(2)代入(1)得:
13532.122=+N N
)(143.322
.4135
2kN N ≈=
(拉力) )(571.38143.322.12.121kN N N ≈⨯== (压力)
按轴力正负号的规定,记作:
kN N 571.381-=;kN N 143.322=
强度校核:
MPa MPa mm N A N 170][4275.9640038571||
||2
111=<===σσ,符合强度条件。
图
习题⋅-15
6 MPa MPa mm N
A N 170][715.160200321432
122=<===
σσ,符合强度条件。
因此,钢杆符合强度条件,即安全。
[6-15(a)] 试求图示超静定梁的支反力。
解:把B 支座去掉,代之以约束反力B R ,则变形协调方程为:
0=B w 0=+B e R BM w w
查附录IV ,得:
EI
a M EI a M w e e BM e
2222)2(-=-=
EI
a R a a EI a R w B B R B
38)223(6)2(3
2-=-⨯-=
故, 03823
2=--=+EI
a R EI a M w w B e R BM B e
03
4=+
a
R M B e a
M R e
B 43-
= (负号表示方向向下,即↓) 由0=∑Y 得:a
M R e
A 43=
(↑)
B
图
习题⋅-176
B
由0=∑A M 得:e e A M a a M M +⋅-243,a
M
M e A 2=(逆时针方向转动)
[习题6-17] 梁AB 因强度和刚度不足,用同一材料和同样截面的短梁AC 加固,如图所示。
试求:
(1)二梁接触处的压力C F ;
(2)加固后梁AB 的最大弯矩和B 点的挠度减小的百分数。
解:(1)求二梁接触处的压力C F
以AB 为研究对象,把C 处的圆柱垫去掉,代之以约束反力C F (↑);以AC 为研究对象,作用在C 处的力为'C F (↓)。
C F 与'C F 是一对作用与反作用力,
'C C F F =。
受力如图所示。
AB 梁在C 处的挠度:
C CF CF AB C w w w +=,。
查附录IV 得:
EI
Fl l l EI l F w CF
48523(6)2(32
=
-=
B
B
FL
图
M EI
l F l l EI l F w C C CF C
24)223(6)2(32
-
=-⋅-= 故,EI
l F EI Fl w w w C CF CF AB C C 244853
3,-=+= AC 梁在C 处的挠度:
EI
l F EI l F w C C AC
C 243)2(33
',=
= 变形协调方程:
AC C AB C w w ,,=
EI
l F EI l F EI Fl C C 242448533
3=- 2424485C
C F F F =- C C F F F 225=-
4
5F
F C =
(↑) (2)求加固后梁AB 的最大弯矩和B 点的挠度减小的百分数 ① 弯矩的变化情况
加固前:2
2Fl l F M C -=⋅
-= max M Fl M A =-=
B
A
图
M Fl 3Fl 加固后:
max '
2
2M Fl l F M C
=-=⋅-=
8
3245'
Fl
l F Fl M A -
=⋅+
-= 显然,AB 梁的最大弯矩
减小:%5021=-Fl Fl
Fl (负弯矩只表示AB 梁上侧受拉) ② B 点挠度的变化情况
加固前:
EI
Fl w B 33
=
加固后:2
'
l w w w C C CF CF CF B ⋅++=θ
EI
Fl w CF
33= EI Fl EI l F EI l F l l EI l F w C C CF C
965244524)223(6)2(333
2-
=⋅-=-=-⋅-= EI
Fl EI l F EI l F EI l F EI l l F C C C CF C
3258458]2)2(22[222
2-
=⋅-=-=-⋅⋅-=θ 故,2
'
l w w w C C CF CF CF B ⋅++=θ
23259653233l
EI Fl EI Fl EI Fl ⋅--=
EI
Fl 192393
=
B 点挠度减小的百分数为:
%3964251926419225319239333
333===-EI
Fl EI Fl EI Fl EI Fl EI Fl。