《计算方法引论》实验题目7

合集下载

《计算方法引论》实验题目4

《计算方法引论》实验题目4

实验四 数值积分--Romberg 积分法实验目的:1、了解逐次分半法的基本原理和方法;2、了解Richardson 外推法的基本原理和方法;3、在1、2的基础上理解Romberg 积分法的基本原理和方法并编程实现;实验内容(自己填写相关公式和原理,以下仅作参考,个别符号与书中不一致) 考虑积分()()ba I f f x dx =⎰欲求其近似值,可以采用如下公式:(复化)梯形公式 110[()()]2n i i i h T f x f x -+==+∑ 2()12b a E h f η-''=- [,]a b η∈ (复化)辛卜生公式 11102[()4()()]6n i i i i h S f x f x f x -++==++∑ 4(4)()1802b a h E f η-⎛⎫=- ⎪⎝⎭[,]a b η∈ (复化)柯特斯公式 111042[7()32()12()90n i i i i h C f x f x f x -++==+++∑ 31432()7()]i i f x f x +++6(6)2()()9454b a h E f η-⎛⎫=- ⎪⎝⎭[,]a b η∈ 这里,梯形公式显得算法简单,具有如下递推关系121021()22n n n i i h T T f x -+==+∑ 因此,很容易实现从低阶的计算结果推算出高阶的近似值,而只需要花费较少的附加函数计算。

但是,由于梯形公式收敛阶较低,收敛速度缓慢。

所以,如何提高收敛速度,自然是人们极为关心的课题。

为此,记0,k T 为将区间[,]a b 进行2k等份的复化梯形积分结果,1,k T 为将区间[,]a b 进行2k 等份的复化辛卜生积分结果,2,k T 为将区间[,]a b 进行2k 等份的复化柯特斯积分结果。

根据李查逊(Richardson )外推加速方法,可得到1,11,,0,1,2,40,1,2,41m m k m km k m k T T T m -+-=-⎛⎫= ⎪=-⎝⎭可以证明,如果()f x 充分光滑,则有,lim ()m k k T I f →∞= (m 固定) ,0lim ()m m T I f →∞= 这是一个收敛速度更快的一个数值求积公式,我们称为龙贝格积分法。

《计算方法引论》-徐翠微主编

《计算方法引论》-徐翠微主编

《计算方法引论》-徐翠微主编2009 ~ 2010学年第一学期计算方法教案计0701-0703 4h第二章插值法知识点:拉格朗日插值法,牛顿插值法,余项,分段插值。

实际问题中,时常不能给出f(x)的解析表达式或f(x)解析表达式过于复杂而难于计算,能采集的只是一些f(x)的离散点值{xi,f(xi)}(i=0,1,2,…n)。

因之,考虑近似方法成为自然之选。

定义:设f(x)为定义在区间[a,b]上的函数,x0,x1,…,xn为[a,b]上的互异点,yi=f(xi)。

若存在一个简单函数,(x),满足(插值条件),(xi)=f(xi),i=0,1,…,n。

则称 ,(x)为f(x)插值函数,f(x)为被插函数,点x0,x1,…,xn为插值节点,点{xi,f(xi)},i=0,1,2,…n为插值点。

于是计算f(x)的问题就转换为计算 ,(x)。

构造插值函数需要解决:插值函数是否存在唯一;插值函数如何构造(L插值);插值函数与被插函数的误差估计和收敛性。

对插值函数 ,(x)类型有多种不同的选择,代数多项式常被选作插值函数。

P23(2.18)和(2.19)指出,存在唯一的满足插值条件的n次插值多项式p(x)。

但是需要计算范德蒙行列式,构造插值多n项式工作量过大,简单表达式不易得到,实际中不采用这类方法。

p(x)?f(x) n插值法是一种古老的数学方法,拉格朗日(Lagrange)、牛顿(Newton)等分别给出了不同的解决方法。

拉格朗日插值拉格朗日(Lagrange)插值的基本思想:把插值多项式p(x)的构造问题转化为n+1个插值基函数l(x)(i=0,1,…,n)的ni构造。

(1)线性插值?构造插值函数已知函数y=f(x)的两个插值点(x,y),(x,y),构造多项式y=p(x),使p(x)=y,p(x)=y。

001111001111 《计算方法引论》、徐翠薇,高等教育出版社 2008年4月第三版第二章Lagrange插值法2009 ~ 2010学年第一学期计算方法教案计0701-0703 4h由直线两点式可知,通过A,B的直线方程为, y y 1 0 , , , y y ,, x x p ( x ) + 0 0 1 , x x 1 0变形为 x-x0 x-x1 y 1, , p(x) y 10 x1-x0 x0-x1记 x-x0 x-x1 , l(x) , l(x) 10 x1-x0 x0-x1则p(x)=l(x)y+l(x)y10011插值完毕~注意性质:l(x)=l(x)=1,l(x)=l(x)=0,p(x)=y,p(x)=y。

计算方法的课后答案解析

计算方法的课后答案解析

《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。

2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。

解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。

5.叙述误差的种类及来源。

答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。

(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。

(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。

(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。

这样引起的误差称为舍入误差。

6.掌握绝对误差(限)和相对误差(限)的定义公式。

答:设*x 是某个量的精确值,x 是其近似值,则称差x x e -=*为近似值x 的绝对误差(简称误差)。

计算方法各章习题及答案

计算方法各章习题及答案

第二章数值分析4^92.1 已知多项式通过下列点:1 3答案:q(x) = p(x) -r(x) X5X4X3-3X 1 .2 22.2观测得到二次多项式2的值:表中p2(x)的某一个函数值有错误,试找出并校正它.答案:函数值表中p2(-1)错误,应有p2(-1) = 0 .2.3利用差分的性质证明12■ 22■川,n2=n(n ■ 1)(2n ■ 1)/6.2.4当用等距节点的分段二次插值多项式在区间[-1,1]近似函数e x时,使用多少个节点能够保证误差不超过丄10-6.2答案:需要143个插值节点.2.5 设被插值函数f (x) • C4[a,b] , H3h)(x)是f (x)关于等距节点b — aa ^Xo :::捲:::川:::x n=b的分段三次艾尔米特插值多项式,步长h .试估计n ||f(x)-H3h)(x)||::.答案:||住)-出5)仪川:乞令人4.384第三章函数逼近3.1求f(x)二sinx,x,[0,0.1]在空间门=span{1,x, x2}上最佳平方逼近多项式,并给出平方误差.答案:f (x) =sin X的二次最佳平方逼近多项式为sin x p2(x) = -0.832 440 7 105 1.000 999 1x - 0.024 985 1x2,二次最佳平方逼近的平方误差为20.12 12■ = 0 (sinx) - P 2(x))2dx =0.989 310 7 10•3.2确定参数a,b 和c ,使得积分1 ---------------------------2 1 I (a,b,c)[ax 2 bx c -1 -x 2]dx 取最小值.J 1 — x 2810答案:a, b = 0, c =3 二3 二3.3 求多项式f (x) =2x 4 x 3 5x 2 1在[-1,1]上的3次最佳一致逼近多项式p(x)-答案:f (x)的最佳一致逼近多项式为p(x) = X ’ 7x2 3.43.4用幕级数缩合方法,求 f(x)=e x (―1兰XW1)上的3次近似多项式 p 6,3(x),并估计 || f(X )-P 6,3(X )II ::.答案:p5,3(x) =0.994 574 65 + 0.997 395 83x+0.542 968 75x 2 十 0.177 083 33x 3, || f (x) - p 6,3 (x) |^<0.006 572 327 71 一3.5 求f (x) -e x ( -1乞x 乞1)上的关于权函数「(X )-的三次最佳平方逼近小-x 2多项式 Q(x),并估计误差 || f(x)-$(x)||2 和 || f(x)-S 3(x) ||::.答案:§3(x) =0.994 571 0.997 308x 0.542 991x 20.177 347x 3,|| f (x) -S 3(x) ||2 = 0.006 894 83, || f (x) - §3(x)||严 0.006 442 575.第四章数值积分与数值微分14.1用梯形公式、辛浦生公式和柯特斯公式分别计算积分 X n dx (n -1,2,3,4),并与精确值比较.答案:计算结果如下表所示I 2 0. 5 0. 333 333 0. 250 000 0. 208 333 I 30. 5 0. 333 333 0. 250 000 0. 200 000 精确值0. 50. 333 3330. 250 0000. 200 0004.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度.h(])仁 f (x)dx 止 A_i f (-h) + A f (0) + A f (h)11 (2)J(x)dx: 3【f(-1) 2f(X i ) 3f(X 2)]hh2⑴ of(x)dxVf(O) f(h)「h[f g f(h)]答案:(1)具有三次代数精确度 (2)具有二次代数精确度 (3)具有三次代数精确度. 4.3 设h = % - X 0,确定求积公式r (x - x o ) f (x)dx = h 1 2[ Af (x o ) + Bf (x i )] + h 3[C 「(x o ) + Df^)] + R[ f ]xo中的待定参数 A, B,C, D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.37 1 if 4)(叮)6答案:A = —, B— ,C —, D — , R[f]=— _) h ,其中 (x o ,xi).202030 20 14404.4设P 2(x)是以0,h,2h 为插值点的f(x)的二次插值多项式,用F 2(x)导出计算积分3h3 4 5If (x)dx 的数值积分公式I h ,并用台劳展开法证明:I - l h h f (0) O(h ).力83h3答案:I h P 2(x)dx h[ f(0) 3f (2h)].0 4(3)取7个节点处的函数值.1sin x4.6用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分Idx .要x1o 1«求用事后误差估计法时,截断误不超过10和 10 .1(1) 运用复化梯形公式计算上述积分值,使其截断误差不超过丄10」. 2(2) 取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?(3) 要求的截断误差不超过10“ ,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需n — 7.5,取9个节点,I : 0.9464.5 给定积分I 二1sin xdx|R n [f]耳一孟宀皿盂日中0.271估2 2答案:使用复化梯形公式时,I T^ 0.946满足精度要求;使用复化辛浦生公式时,I s4 =0.946 083满足精度要求.4.7 ( 1 )利用埃尔米特插值公式推导带有导数值的求积公式1 323 1 3>5.2用矩阵的直接三角分解法解方程组 广1 0 2 0、「5、0 10 1 X 2312 4 3X 3仃10 1 0 3丿 g<7;答案: &=2 , x 3 = 2 , x 2 = 1, X| = 1 .ba f(x)dx 二 其中余项为b —a(b 「a)2[f(a)f(b)] — ' 丿[f (b)-f (a)] R[f], 2 12R[f]=U 54!30 f ( 4()),(a,b).其中(2)利用上述公式推导带修正项的复化梯形求积公式h 2 f(x)dx :T^—[ f (X N ) - f (x 。

计算方法_习题集(含答案)

计算方法_习题集(含答案)
10.已知函数 的下列数值,试用两点和三点微分公式计算 的一阶和二阶导数。
2.5 2.6 2.7 2.8 2.9
12.1825 13.4637 14.8797 16.4446 18.1741
11.求公式 的代数精度。
12.确定求积公式 中的待定系数,使代数精度尽可能的高,并指出代数精度。
13.确定求积公式 中的待定系数,使代数精度尽可能的高,并指出代数精度.
11.解:取 代入公式,得到:
当 左边=1,右边=1。当 ,左边= ,右边= ,
当 ,左边= ,右边= ,当 ,左边= ,右边= ,
当 ,左边= ,右边= ,
所以公式具有三次代数精度。
12.解:令 ,代入积分公式,有
解之: ,积分公式为: ,
由于当 时,左= 右= ,
所以积分公式具有一次代数精度。
13.解:令 ,代入积分公式,有
16.解:增广矩阵的变换为

等价于方程组:
,解之, 。
17.解:消元过程: ,
回代可求出: 。
18.解:

, ,

所以
19.解:增广矩阵变换为:
等价于方程组
, 所以,方程组的解为
20.解:
等价的三角方程组为
回代可得 。
21.解:迭代格式: , ,
。 ,所以迭代不收敛.
22.解:因为系数矩阵 是严格的对角占优矩阵,
21.对于方程组 ,写出 迭代的迭代格式并判断是否收敛。
22.对于方程组 ,分析Jacobi迭代,Gauss-Seidel迭代的收敛性。
23.设线性方程组的系数矩阵为 ,求能使Jacobi迭代收敛的 的取值范围
24.用Jacobi迭代,Gauss-Seidel迭代于方程组 是否收敛?为什么?若将两个方程对调,结论又如何?

计算方法引论--误差

计算方法引论--误差

r
1 2a1
10 n 1
• 定理1.2 设近似值 x* 0.a1a2 L an 10m 的相对误差
限为:
1 10n1 2(a1 1)

a1 0

则它有n位有效数字。
26
例题分析
• 例 若 x* 3587.64 是 x 的具有六位有效数字
的近似值,那么它的误差限是:
x * x 1 1046 1 102
20
相对误差限
• 相对误差也不能准确计算,而是用相对误差限来
估计的:
er
x x* x
x
r
r 就是相对误差限.当
不计,所以以后我们就用
r
较小时,可以忽略 表示相对误差限。
x*
21
相对误差限例题
称两堆苹果,第一堆 10kg,误差为 1kg ;第 二堆为100kg,误差为 2kg ,虽然后者的误差限比前 者大,但不能简单地认为前者精确,还必须注意 到该数本身的大小。
似值,称e x*x 为x * 近似值的绝对误差,简
称误差。
• 误差是有量纲的量,量纲同 x ,它可正可负,
当绝对误差为正时,近似值偏大,叫强近似值; 当绝对误差为负时,近似值偏小,则称弱近似值。
17
绝对误差限
• 通常我们并不知道准确值 x ,也不能算出误差
的准确值,但能根据测量工具或计算情况估计出
相对误差分别为:
er
1 10
10%
er
2 100
2%
显然,称第一堆苹果的相对误差大。
22
有效数字位数
• 定义1.3 如果近似值x *的绝对误差限 是某一位 数字的半个单位,我们就说 x *准确到该位,从这

计算方法试题集与答案(新)

1.*x 为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。

3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有6 位和7 1.73≈(三位有效数字)-211.73 10 2≤⨯。

4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。

5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。

6、 已知近似值2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.0000204 .7、 递推公式,⎧⎪⎨⎪⎩0n n-1y y =10y -1,n =1,2,如果取0 1.41y =≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。

9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。

10、 设x*的相对误差为2%,求(x*)n的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差;13、为了使计算 ()()2334610111y x x x =++---- 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

《计算方法》样题与参考答案(一)

《计算方法》样题(一)说明:1) 可使用计算器;第一、九题各15分,其余每题10分 2) 把要求的答案直接写在横线 上或方框 [ ] 内一、解答下列问题:1) 数值计算中,最基础的五个误差概念(术语)是 , , , , .2) 分别用 2.718281, 2.718282 作数e 的近似值 ,它们的有效位数分别有位, 位; 又取73.13≈ (三位有效数字),则≤-73.13 .3)为减少乘除法运算次数,应将算式32)1(7)1(51318---+-+=x x x y 改写成4)为减少舍入误差的影响,应将算式 9910- 改写成 5)递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取41.120≈=y 作计算,则计算到10y 时,误差有这个计算公式数值稳定不稳定 ?二、解答下列线性代数方程组问题:1) 解线性代数方程组b Ax =(nn R A ⨯∈非奇异)的关键思想是首先把方程组约化为 和 ,然后分别通过 过程 或 过程很容易求得方程组的解. 2)用“列主元Gauss 消元法”将下列方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20111.0310********x x x化为上三角方程组的两个步骤⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-211.03010451321 ⇒ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ ⇒ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡再用“回代过程”可计算解:三、解答下列线性代数方程组:1) 给定线性方程组 ⎩⎨⎧-=-=-45892121x x x x则解此方程组的Jacobi 迭代公式是⎪⎩⎪⎨⎧而Guass-Seidel 迭代公式是⎪⎩⎪⎨⎧2) 取迭代初值T x )0,0()0(=,用Guass-Seidel 迭代公式计算(取至小数后5位)可得 ⎪⎩⎪⎨⎧====)2(2)1(2)2(1)1(1,,x x x x四、设一元方程0133=--x x ,欲求其正根,试问:1) 方程的正根有几个? (个) 2) 方程的正根的有根区间是 3) 给出在有根区间收敛的不动点迭代公式: 4) 给出求有根区间上的Newton 迭代公式:五、解答插值问题:1) 函数)(x f 在],[10x x 上的一次(线性)插值函数(公式) =)(1x L其余项公式=)(x R2) 函数)2ln()(+=x x f 在区间]1,0[上的一次(线性)插值函数 =)(1x L 其余项估计 =)(x R六、设有实验数据如下:x 0 1 2 3 5 f 1.1 1.9 3.1 3.9 4.9要求按最小二乘法拟合上述数据。

计算方法引论课后答案

计算方法引论课后答案第一章误差1.什么是模型误差,什么是方法误差?例如,将地球近似看为一个标准球体,利用公式 $A=4\pi r$ 计算其表面积,这个近似看为球体的过程产生的误差即为模型误差。

在计算过程中,要用到 $\pi$,我们利用无穷乘积公式计算 $\pi$ 的值:pi=2\cdot\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\f rac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7}\cdot\ frac{8}{9}\cdot\cdots我们取前9项的乘积作为 $\pi$ 的近似值,得$\pi\approx3.xxxxxxxx5$。

这个去掉 $\pi$ 的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也称为截断误差。

2.按照四舍五入的原则,将下列各数舍成五位有效数字:816.956,76.000,.322,501.235,.182,130.015,236.23.解:816.96,76.000,.501.24,.130.02,236.23.3.下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字?81.897,0.008,136.320,050.180.解:五位,三位,六位,四位。

4.若 $1/4$ 用 0.25 表示,问有多少位有效数字?解:两位。

5.若 $a=1.1062$,$b=0.947$,是经过舍入后得到的近似值,问:$a+b$,$a\times b$ 各有几位有效数字?已知 $da<\frac{1}{2}\cdot10^{-4}$,$db<\frac{1}{2}\cdot10^{-3}$,又 $a+b=0.\times10$。

begin{aligned}d(a+b)&=da+db\leq da+db=\frac{1}{2}\cdot10^{-4}+\frac{1}{2}\cdot10^{-3}=0.55\times10^{-3}<\frac{1}{2}\cdot10^{-2}end{aligned}所以 $a+b$ 有三位有效数字;因为 $a\timesb=0.xxxxxxxx\times10$。

计算方法引论课后答案.doc.pdf


3
R
dr V dV dlnV d ln R3 3 d ln R 3 d ln R 3dr R 3a 1% ,则 a 1 1% .
V
3
第二章 插值法与数值微分
1. 设 y x ,在 x 100,121,144 三处的值是很容易求得的,试以这三个点建立 y x 的
二次插值多项式,并用此多项式计算 115 的近似值,且给出误差估计.用其中的任意两点,构
L2
x
x 144 100 144
10
x 100 144 100
12
所以 115 L1 115 10.6818 .
解: 已知 dx ,所以 ln x 的绝对误差 d ln x dx .
x
x
11. 设 x 的相对误差为 % ,求 xn 的相对误差.
解:
dxn xn
nxn1dx xn
nd x x
n % .
12. 计算球的体积,为了使相对误差限为 1%,问度量半径 R 时允许的相对误差限如何?
解: 已知V 4 R3 ,设 dr R dR a ,则要使得
解: 已知 da 1 104 , db 1 103 ,
2
2
又 a b 0.2053210 ,
d a b da db da db 1 104 1 103 0.55103 1 102 ,
2
2
2
所以 a b 有三位有效数字;
因为 a b 0.1047571410 ,
d a b b da a db 0.947 1 104 1.1062 1 103 0.60045103 1 102
10
x 121
100 100
x 144 121 144
11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档