粉末高温合金的成分及生产工艺

合集下载

高温合金含量明细表

高温合金含量明细表

高温合金含量明细表高温合金是一种具有优异耐热、抗氧化、耐腐蚀和抗热疲劳性能的特种合金材料,广泛应用于航空航天、能源、化工等领域。

为了正确评估和使用高温合金材料,制定高温合金含量明细表是十分必要的。

本文将从材料分类、主要成分、含量要求等方面详细介绍高温合金含量明细表。

1. 材料分类高温合金根据使用温度的不同,可分为高温亚合金和高温超合金两类。

高温亚合金一般使用温度在600℃以下,包括镍基、铁基和钴基亚合金。

高温超合金一般使用温度在600℃至1000℃之间,包括镍基、镍铁基和铁基超合金。

2. 主要成分高温合金的主要成分是金属元素,根据不同的材料类型和性能要求,其组成有所差异。

然而,一般来说,高温合金的主要成分包括镍、铁、钴等基体元素,以及铬、钼、钨、铝、钛、铌等合金元素。

这些合金元素的添加和配比决定了高温合金的结构和性能,其中镍基高温合金是最常用的。

3. 含量要求高温合金的含量要求对于保证材料的性能至关重要。

高温合金含量明细表是根据国际标准和行业规范制定的,包含了各种合金元素的最低和最高含量要求。

这些要求一般以质量百分比或质量分数的形式给出。

举例来说,一种常用的镍基高温合金的含量要求可能是:镍(55-60%)、铬(15-21%)、铝(4-6%)、钛(2-3%)、钨(3-5%)等。

高温合金含量明细表的编制需要依据具体的材料标准和客户需求。

各种高温合金材料在应用领域和工艺要求上存在差异,因此需根据实际情况进行调整和制定。

此外,高温合金含量明细表还应包含其他信息,如元素含量的允许偏差范围、检测方法和标准等。

制定高温合金含量明细表有助于保证高温合金的质量和性能,并提供给使用者有关材料组分的准确信息,以便选材和进行工艺设计。

对于生产厂家和供应商而言,高温合金含量明细表也是进行质保和质控的重要依据,有助于确保产品符合规范要求。

总结而言,高温合金含量明细表是用于确保高温合金材料质量和性能的重要文件。

通过明确每种元素的含量要求,可为材料的选择、设计和使用提供准确的依据。

俄罗斯粉末冶金高温合金

俄罗斯粉末冶金高温合金

粉末冶金高温合金主要用于制造航空发动机的 涡轮盘、压 气 机 盘 和 鼓 筒 轴 等 高 温 承 力 转 动 部 件。 美国和俄罗斯在粉 末 冶 金 高 温 合 金 的 研 发、生 产 及 应用 方 面 处 于 领 先 地 位。 俄 罗 斯 于 1965 年 开 始 研 发粉末冶 金 高 温 合 金,1973 年 全 俄 轻 合 金 研 究 院 (ВИЛС)建立了 粉 末 高 温 合 金 研 发 实 验 室,开 始 研 制粉末冶金高温 合 金 盘 件。ВИЛС 从 1981 年 开 始 工业 批 生 产 和 提 供 军 用 飞 机 用 ЭП741НП 涡 轮 盘 和轴,从1984年开始批生产民用飞机用 ЭП741НП 涡轮盘 。 [1,2] 其 生 产 工 艺 不 同 于 美 国 等 西 方 国 家, 为等离子旋转电 极 工 艺(PREP)制 粉 + 直 接 热 等 静 压 (As-HIP)成 形 。
备注Hale Waihona Puke 5000技术条件保证的
73148
实 测 (平 均 值 )
2002~2006 年 期 间,ВИЛС 出 厂 检 验 和 乌 克 兰《Прогресс》发动机 设 计 局 入 厂 复 验 的 ЭП741НП 合金盘坯的室温力学性能和 650℃ 下 的 持 久 性 能 数
据见表3[5]。《Прогресс》发 动 机 设 计 局 入 厂 复 验 的 ЭП741НП 合金盘坯650℃ 下 的 低 周 疲 劳 性 能 数 据 见表 4[5]。
表3 ЭП741НП 合金盘坯室温性能和持久性能[5]
第 5 期 张 义 文 等 :俄 罗 斯 粉 末 冶 金 高 温 合 金 研 制 新 进 展
· 39 ·
个 ЭП741НП 合 金 盘 件,包 括 高 压 涡 轮 盘、低 压 涡 合金盘件,包括高 压 涡 轮 盘、低 压 涡 轮 盘、导 流 盘 和 轮盘和篦齿盘。1台 Д27发 动 机 用 4 个 ЭП741НП 改型压气机的离心环 。 [5]

高温合金冶炼流程

高温合金冶炼流程

高温合金冶炼流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!高温合金冶炼一直是金属工业中的关键技术之一,其在航空航天、能源、医疗等领域发挥着重要作用。

粉末高温合金研究进展

粉末高温合金研究进展

粉末高温合金研究进展一、本文概述粉末高温合金,作为一种重要的金属材料,以其出色的高温性能、优异的力学性能和良好的抗腐蚀能力,在航空航天、能源、化工等领域具有广泛的应用前景。

随着科技的不断进步,对粉末高温合金的性能要求也越来越高,因此,对粉末高温合金的研究显得尤为重要。

本文旨在全面综述粉末高温合金的研究进展,包括其制备工艺、组织结构、性能优化以及应用领域等方面。

我们将简要介绍粉末高温合金的基本概念、特点以及应用领域,然后重点分析当前粉末高温合金的制备方法及其优缺点,包括粉末冶金法、机械合金化法、自蔓延高温合成法等。

接着,我们将探讨粉末高温合金的组织结构对其性能的影响,以及如何通过调控组织结构来优化其性能。

我们还将对粉末高温合金在高温、强腐蚀等极端环境下的性能表现进行深入研究。

我们将展望粉末高温合金的未来发展趋势,包括新材料的开发、新技术的应用以及新工艺的研发等方面,以期为推动粉末高温合金的研究和应用提供有益的参考和借鉴。

二、粉末高温合金的制备技术粉末高温合金的制备技术近年来取得了显著的进步,为高温环境下的应用提供了强有力的材料支持。

粉末高温合金的制备主要包括粉末制备、粉末冶金、热处理及精密加工等关键步骤。

粉末制备是粉末高温合金制造的基础。

目前,常用的粉末制备方法有气相沉积法、液态金属雾化法、机械合金化法等。

其中,液态金属雾化法因其生产效率高、粉末质量稳定而被广泛应用。

这种方法通过高速气流将液态金属破碎成细小的液滴,并迅速冷却凝固成粉末。

粉末冶金是将粉末进行压制和烧结,以获得所需形状和性能的合金材料。

压制过程中,通过模具和压力使粉末颗粒紧密结合,形成具有一定形状和密度的坯料。

烧结则是在一定温度和气氛下,使粉末颗粒间发生原子扩散和结合,形成连续的合金基体。

热处理是粉末高温合金制备过程中的重要环节,用以调整材料的组织结构、提高性能。

通过控制加热温度、时间和冷却速度等参数,可以优化合金的相组成、晶粒大小和分布,进一步提高高温强度、抗蠕变性能和热稳定性。

《高温合金简述》课件

《高温合金简述》课件

3
未来发展
随着技术的不断创新,取向结晶技术在高温合金制备中的应用前景广阔。
高温合金的热处理工艺
1
固溶处理
高高温合金的强度和耐腐蚀性能。
3
退火处理
改善高温合金的晶粒结构和内部应力。
高温合金的机械性能和腐蚀性能
机械性能
高温合金具有高强度、高硬度和良好的韧性。
腐蚀性能
《高温合金简述》
高温合金是一种特殊的金属材料,具有出色的耐高温性能和机械性能,被广 泛应用于航空航天、能源、化工、医疗器械和汽车工业等领域。
高温合金的分类
镍基合金
包括有铸造合金、变形合金和粉末冶金合金 等。
铁基合金
具有良好的耐腐蚀性能和高温强度,适用于 核电和石油化工等领域。
钴基合金
应用于高温腐蚀环境中,例如炼油和化工行 业。
高温合金的组成和制造工艺
合金组成
制造工艺
高温合金通常由金属元素和合金元素组成,如镍、 铁、钴、钛和铝等。
高温合金的制造过程包括熔炼、铸造、变形加工 和热处理等。
取向结晶技术在高温合金制备中的应用
1
取向结晶原理
通过控制结晶取向,提高高温合金的性能和使用寿命。
2
应用案例
取向结晶技术已成功应用于航空发动机叶片等高温合金零件的制备。
钛基合金
具有良好的高温强度和耐腐蚀性能,用于航 空航天和船舶制造。
高温合金的特性及应用
1 耐高温性能
高温合金具有出色的耐高温性能,可长时间在高温环境中工作。
2 优异的机械性能
高温合金具有高强度、高硬度和良好的抗腐蚀性能。
3 广泛应用领域
高温合金被广泛用于航空航天、能源、化工、医疗器械和汽车工业等领域。

粉末高温合金FGH96惯性摩擦焊接头常温力学性能分析

粉末高温合金FGH96惯性摩擦焊接头常温力学性能分析

第26卷 第3期2006年6月 航 空 材 料 学 报JOURNAL OF AERONAUTI CA L MATER I ALSVol .26,No .3June 2006粉末高温合金FGH96惯性摩擦焊接头常温力学性能分析何胜春,张田仓,郭德伦(北京航空制造工程研究所北京100024)摘要:第二代粉末高温合金FG H96是采用损伤容限设计思想研制的新型粉末高温合金,是当前750℃工作条件下满足高推比、高燃效发动机使用要求的涡轮盘、环形件和其他热端部件的理想材料。

结合FGH96惯性摩擦焊接头的组织特征和强化相γ′数量分析接头的显微硬度和常温拉伸性能。

结果表明,FG H96惯性摩擦焊接头具有良好的常温力学性能。

关键词:FGH96;惯性摩擦焊;显微硬度;常温拉伸性能中图分类号:T G453 文献标识码:A 文章编号:100525053(2006)0320122204收稿日期:2006201230;修订日期:2006203223作者简介何胜春(),男,硕士,工程师,主要从事高温合金、钛合金惯性摩擦焊工艺研究,(2)_@。

第二代粉末高温合金FG H96是采用损伤容限的设计思想研究出来的新型高温粉末合金,与FG H95相比适当减少了强化相γ′的含量,调整了晶粒尺寸,使强度有所降低,但高温抗裂能力得到较大提高。

通常的制造工艺是采用真空感应熔炼母合金,然后雾化制取预合金粉末,以热等静压+等温锻造等工艺制取零件毛坯,通过热处理控制晶粒的尺寸。

FG H96是当前750℃工作条件下满足高推比、高燃效发动机使用要求的涡轮盘、环形件和其他热端部件的关键材料[1]。

在航空发动机高温合金整体涡轮转子部件焊接技术研究方面,通过多年的生产应用实践,国外一些先进的航空发动机制造公司已将摩擦焊接作为焊接高性能航空发动机整体转子部件的主导的、典型的和标准的工艺方法,普遍认为摩擦焊是最可靠、再现性最好和最可依赖的焊接技术。

本研究主要结合FG H96惯性摩擦焊接头的组织特征和强化相分布对常温力学性能进行分析,为粉末高温合金工程应用研究提供可靠的依据。

GH99高温合金成分表

GH99高温合金成分表

GH99高温合金成分表GH99简介:GH99是Ni-Cr基沉淀硬化型变形高温合金,900℃以下可长期运用,短时最高运用温度可达1000℃。

合金参与铬、钴、钨和钼元素进行固溶强化,参与铝和钛元素构成时效强化相,参与硼、铈和镁元素净化和强化晶界。

合金具有较高的热强性、组织安稳,并具有满意的冷热加工构成和焊接工艺功用。

适合于制造航空发动机燃烧室等高温焊接结构件。

首要产品有热轧棒材、板材、丝材和锻件。

GH99化学成分:热处理原则:摘自HB/Z140、QJ/DT0160018、QJ/DT0160020和QJ/DT0130021,各品种的规范热处理原则为:1. 冷轧板,(1080~1140)℃(最高不超越1160℃),空冷或快冷,其间δ≤3mm,保温(8~10)min, δ3 mm~5 mm,保温(10~15)min,HB≥300HV;2. 热轧棒,原则Ⅰ:(1080~1120)℃保温1小时空冷;原则Ⅱ:1090℃±10℃保温2小时空冷+900℃±10℃保温5小时空冷;原则Ⅲ:1000℃±15℃保温4小时空冷+700℃±10℃保温16小时空冷;3. 大规模锻棒,1130℃±10℃保温(30~40)分钟空冷+900℃±10℃保温4小时空冷;4. 焊丝,固溶处理(1100~1140)℃空冷首要合金元素是铬、钼、钨,还含有少量的铌、钽和铟。

除具有耐磨功用外,其抗氧化、耐腐蚀、焊接功用也好。

可制造耐磨零部件,也可作为包覆材料,经过堆焊和喷涂工艺将其包覆在其他基体材料表面。

镍基合粉末有自熔性合金粉末与非自熔性合金粉末。

非自熔性镍基粉末是指不含B、Si或B、Si含量较低的镍基合金粉末。

这类粉末,广泛的应用于等离子弧喷涂涂层、火焰喷涂涂层和等离子表面强化。

首要包含:Ni-Cr合金粉末、Ni-Cr-Mo合金粉末、Ni-Cr-Fe合金粉末、Ni-Cu合金粉末、Ni-P和Ni-Cr-P合金粉末、Ni-Cr-Mo-Fe合金粉末、Ni-Cr-Mo-Si高耐磨合金粉末、Ni-Cr-Fe-Al合金粉末、Ni-Cr-Fe-Al-B-Si合金粉末、Ni-Cr-Si合金粉末、Ni-Cr-W基耐磨耐蚀合金粉末等。

高温合金分类及牌号标准

高温合金分类及牌号标准

高温合金分类及牌号标准高温合金是先进发动机的基石,也是航空发动机热端部件的关键材料。

高温合金材料需要在高温、高压、高应力条件下工作,因此要求具有良好的高温强度、抗氧化性和抗腐蚀性等性能。

高温合金的分类和牌号标准是评估和选择材料的重要依据。

一、高温合金的分类1. 变形高温合金变形高温合金是指在高温下可以进行塑性变形加工的高温合金。

变形高温合金是高温合金中市场应用最广的一种,其需求占比达到了70%。

变形高温合金可以加工成各种形状和尺寸的零件,如板材、棒材、管材等。

2. 铸造高温合金铸造高温合金是指通过铸造工艺制备的高温合金。

根据凝固结晶组织的不同,铸造高温合金可以分为等轴晶铸造高温合金、定向凝固柱晶高温合金和单晶高温合金。

等轴晶铸造高温合金的晶粒形状为等轴状,具有良好的综合性能;定向凝固柱晶高温合金的晶粒形状为柱状,具有更高的强度和蠕变性能;单晶高温合金具有更高的抗蠕变性能和抗疲劳性能。

3. 粉末高温合金粉末高温合金是指以金属粉末作为原材料,经过后续热加工处理得到的高温合金。

粉末高温合金是新一代高温合金,具有较高的抗拉强度和良好的抗疲劳性能。

粉末高温合金主要用于制备涡轮盘等高性能发动机部件。

二、高温合金的牌号标准高温合金的牌号标准是评估和选择材料的重要依据之一。

不同牌号的高温合金具有不同的化学成分、组织结构和性能特点,因此需要根据具体的应用场景选择合适的牌号。

1. 变形高温合金牌号标准变形高温合金的牌号主要由数字和字母组成,其中数字表示合金的类别和用途,字母表示合金的主要元素或特点。

例如,GH4169是一种常用的变形高温合金,其数字部分表示它是一种用于航空发动机的高温强度材料,字母部分表示它含有镍、铬、铁等元素。

2. 铸造高温合金牌号标准铸造高温合金的牌号主要由字母和数字组成,其中字母表示合金的类别和用途,数字表示合金的编号。

例如,K213是一种常用的铸造高温合金,其字母部分表示它是一种单晶高温合金,数字部分表示它是第213号高温合金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粉末高温合金的成分及生产工艺
各国研制成功的粉末高温合金有10余种,其中作用较广的有IN100,Rene’95,MERL76,Rene’88DT,зΠ741HΠ等。

它们都属于沉淀强化型镍基高温合金,化学成分见表15所示。

表15 几种国外粉末高温合金的化学成分
FGH95是我国研制的第一个粉末高温合金,其成分相当于美国GE公司的
R ene’95合金(表16),是一种高合金化的r′相沉淀强化型镍基高温合金,其r′体积含量为50%~55%,r′形成元素含量(原子)为28%。

它是当前650℃使用条件下强度水平最高的涡轮盘材料。

除用于高、低压涡轮盘外,也可用于压气机盘、涡轮轴、涡轮挡环、高温密封件等高温零件。

表16 FGH95粉末高温合金化学成分
根据不同使用要求,对粉末高温合金可以采用HIP(热等静压)直接成形、
HIP+模锻、HIP+等温锻和挤压+等温锻等不同工艺路线。

在我国没有大型挤压机和大型等温锻造机的条件下,曾选用HIP+包套模锻的成形工艺路线,模锻出
φ420mm和φ630mm的全尺寸涡轮盘,盘件的性能基本达到了美国同类合金Rene’95技术条件的要求。

存在的问题是粉末中的陶瓷夹杂含量较高,致使材料性能不太稳定。

采用等离子旋转电极制粉设备制得粉末,其粉末质量大幅度提高。

φ420mmFGH95粉末高温合金涡轮盘的制造工艺流程如图24所示。

图24 粉末盘制造工艺流程
(1)母合金熔炼用200kg真空感应炉冶炼,熔炼温度1550℃,真空度1.3×10-1Pa,浇注成φ80×1000mm的圆棒,处理后准备重熔喷粉。

(2)雾化制粉用65kg真空感应炉—氩气雾化装置将母合金重熔,熔液经漏嘴流下,用高压氩气将其雾化成粉末。

浇注温度为1520℃,氩气喷吹压力为1.6~1.8MPa。

(3)粉末处理粉末高温合金对粉末质量要求十分严格。

FGH95合金粉末在氩气保护下筛分,粒度为-150目。

粉末经静电分离法去除陶瓷夹杂。

在3.99×10-3Pa 的真空下,加热300℃,去除粉末表面吸附的气体。

在真空下将粉末装入不锈钢套,摇实,焊封。

钢套尺寸为φ240×380mm,装粉质量为82~88kg。

(4)热等静压成形HIP工艺参数为1120℃,110MPa,3h,炉冷。

(5)自由锻制坯HIP锭坯在12000t水压机上进行自由锻预制坯。

加热温度为1120℃,分两火锻造,总变形量为61%。

(6)盘坯模锻自由锻坯在12000t水压机上进行模锻。

加热温度为1200℃,一火锻成。

(7)热处理和时效强化型高温合金的热处理工艺相类似,进行固溶处理和时效处理。

热处理规范为:1120℃,1h,油冷+870℃,1h,空冷+650℃,24h,空冷。

在上述工艺流程中,第4、第5和第6项为粉末压实成形阶段。

通过压实工艺,不但要获得一定形状和尺寸的锻件或预成形件,使粉末材料致密化,达到理论密度,而且要使材料的组织发生显著的变化。

锻造加热温度对FGH95合金显微组织和力学性能影响的研究表明,合金在1080~1140℃加热,所得组织均匀,晶粒细小,各项力学性能都能达到技术条件要求;而在1160℃加热,由于大部分r′相溶解,晶粒长大,虽然持久强度提高,但屈服强度明显降低。

锻造变形量对FGH95合金显微组织和力学性能影响的研究结果表明,热等静压坯经锻造变形后,破碎了原始颗粒边界(PPB)和铸态枝晶组织。

变形量由42%增加到77%,枝晶组织从1.99%减少到0.39%。

由于组织的改善,锻造合金的拉伸强度、屈服强度和塑性,都比热等静压态的合金明显提高。

若采用热挤压工艺,由于粉末颗粒受到了强烈的剪切变形,高倍组织中已观察不到枝晶组织和PPB,是完全再结晶的细晶组织。

变形速度对FGH95合金的变形抗力和塑性影响也很大,慢速变形时,变形抗力降低,塑性提高。

按图24工艺流程制得的FGH95粉末高温合金盘件,其低倍组织均匀,无宏观偏析,晶粒细小。

高倍组织如图25所示,其基体为奥氏体,组织均匀,晶粒细小,晶粒度为ASTM13~14级。

基体上弥散分布着不同尺寸的r′相,0.5~1.5um 的大r′相分布于晶界,晶内为细小的r′相,枝晶区有规则排列的r′相,晶内和晶界存在着微量MC和M23C6型碳化物和M3B2型硼化物。

FGH95盘件的全面性能
优异,有待进一步完善工艺,为我国的高推比发动机提供高性能、可靠的盘件和其他热端部件。

在美国,粉末冶金IN100合金涡轮盘是采用热挤压+超塑性等温锻造工艺制造的。

其最佳超塑温度范围是1036~1093℃,最大m值为0.5,最大延伸率为100%。

镍基合金成功地进行等温锻造的关键是锻造前形成细晶组织并在锻造中维持细小晶粒组织。

因此像IN100及Rene’95和Astroloy合金因含有大量r′相,在等温锻造中可防止晶粒长大,容易获得所必须的超塑性性能。

对于等温锻造,采用带精确速度控制的液压机,典型的滑块速度在0.04~0.4mm/s范围中。

在等温锻造时,模具必须在980~1095℃温度下保持其强度。

最广泛应用的模具材料是钼合金钢TZM,它可在1205℃(2200F)温度下使用。

这种钼合金在高温下虽然有良好的抗氧化性能,但一般仍要求锻造系统在保护气氛(如氩或氮)或在真空条件下操作,以防止模具材料氧化。

图25 FGH95盘件的高倍组织×1500
返回。

相关文档
最新文档