正弦定理和余弦定理习题及答案
正弦定理和余弦定理

16.(2020·广东化州市高三模拟)在△ABC 中,三个内角 A,B,C 所
对的边分别为 a,b,c,若 S△ABC=2 3,a+b=6,acosB+c bcosA=2cosC,
则 c=( )
A.2 7
B.4
C.2 3
D.3 3
答案 C
解析
acosB+bcosA c
=
sinAcosB+sinBcosA sinC
由余弦定理得 cosB=BC2+2BBCD·B2-DCD2=BC2+2BACB·A2-B AC2,即126×+49×-34 =16+2×644-×A8C2,解得 AC=2 6,故周长为 AB+AC+BC=8+2 6+4= 12+2 6,故 C 正确;由余弦定理可得,cos∠ACB=126×+42×4-2 664=- 46< 0,故∠ACB 为钝角,故 D 正确.故选 BCD.
∴BD=BsiCn∠·sinB∠DCC=3×245=125
2 .
2
由∠ABC=∠ABD+∠CBD=90°,
可得 cos∠ABD=cos(90°-∠CBD)=sin∠CBD
=sin[π-(∠C+∠BDC)]=sin(∠C+∠BDC)
=sin∠C·cos∠BDC+cos∠C·sin∠BDC
=45× 22+35× 22=7102.
∈(0,π),所以 C=π4,故选 C.
12.(2020·全国卷Ⅰ)如图,在三棱锥 P-ABC 的平面展开图中,AC =1,AB=AD= 3,AB⊥AC,AB⊥AD,∠CAE=30°,则 cos∠FCB= ________.
答案 -14
解析 ∵AB⊥AC,AB= 3,AC=1,由勾股定理得 BC= AB2+AC2 =2,同理得 BD= 6,∴BF=BD= 6.在△ACE 中,AC=1,AE=AD= 3, ∠CAE=30°,由余弦定理得 CE2=AC2+AE2-2AC·AEcos30°=1+3- 2×1× 3× 23=1,∴CF=CE=1.在△BCF 中,BC=2,BF= 6,CF =1,由余弦定理得 cos∠FCB=CF2+2CBFC·B2-C BF2=21+ ×14- ×26=-14.
高考正弦定理和余弦定理练习题及复习资料

高考正弦定理和余弦定理练习题与答案一、选择题1.已知△中, a=c=2, A=30°, 则b=( )A. B.2C.3.D. +1答案:B解析: ∵a=c=2, ∴A=C=30°, ∴B=120°.由余弦定理可得b=2.2.△中, a= , b= , = , 则符合条件的三角形有( )A.1.B.2个C.3.D.0个答案:B解析: ∵= ,∴<b= <a= ,∴符合条件的三角形有2个.3.(2010·天津卷)在△中, 内角A, B, C的对边分别是a, b, c.若a2-b2= , =2 , 则A=( )A. 30°B. 60°C. 120°D. 150°答案:A解析: 利用正弦定理, =2 可化为c=2 b.又∵a2-b2= ,∴a2-b2= b×2 b=6b2, 即a2=7b2, a= b.在△中, === ,∴A=30°.4. (2010·湖南卷)在△中, 角A, B, C所对的边长分别为a, b, c, 若∠C=120°, c= a, 则( )A. a>bB. a<bC. a=bD. a与b的大小关系不能确定答案:A解析: 由正弦定理, 得= ,∴==>.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5.如果等腰三角形的周长是底边长的5倍, 则它的顶角的余弦值为( )A..B.C..D.答案:D解析: 方法一: 设三角形的底边长为a, 则周长为5a,∴腰长为2a, 由余弦定理知α== .方法二:如图, 过点A作⊥于点D,则=2a, = , ∴= ,∴α=1-22=1-2×=.6.(2010·泉州模拟)△中, = , =1, ∠B=30°, 则△的面积等于( )A..B.C. 或.D. 或解析: ∵= ,∴=·30°=.∴C=60°或C=120°.当C=60°时, A=90°, S△=×1×= ,当C=120°时, A=30°, S△=×1× 30°= .即△的面积为或.二、填空题7. 在△中, 若b=1, c= , ∠C= , 则a=.答案:1解析: 由正弦定理= , 即= , = .又b<c, ∴B= , ∴A= .∴a=1.8.(2010·山东卷)在△中, 角A, B, C所对的边分别为a, b, c.若a = , b=2, += , 则角A的大小为.答案:解析: ∵+= ,∴(B+)=1.又0<B<π, ∴B= .由正弦定理, 知= , ∴= .又a<b, ∴A<B, ∴A= .9.(2010·课标全国卷)在△中,D为边上一点,=,∠=120°,=2.若△的面积为3-,则∠=.答案: 60°解析: S△=×2××=3- ,解得=2( -1),∴=-1, =3( -1).在△中, 2=4+( -1)2-2×2×( -1)×120°=6,在△中, 2=4+[2( -1)]2-2×2×2( -1)×60°=24-12 ,∴= ( -1),则∠=== ,∴∠=60°.三、解答题10.如图, △是等边三角形, ∠=45°, = , A.B.C三点共线.(1)求∠的值;(2)求线段的长.解: (1)∵△是等边三角形, ∠=45°,∴∠=45°+60°,∴∠=(45°+60°)=45°60°+45°60°=.(2)在△中, = ,∴=∠×=×=1+.11.(2010·全国Ⅱ卷)△中, D为边上的一点, =33, = , ∠= , 求. 解: 由∠= >0知B< ,由已知得= , ∠= ,从而∠=(∠-B)=∠-∠=×-×=.由正弦定理得= ,===25.12.(2010·安徽卷)设△是锐角三角形, a, b, c分别是内角A, B, C 所对边长, 并且2A=+2B.(1)求角A的值;(2)若·=12, a=2 , 求b, c(其中b<c).解: (1)因为2A=+2B= 2B- 2B+2B= ,所以=±.又A为锐角, 所以A= .(2)由·=12, 可得=12.①由(1)知A= , 所以=24.②由余弦定理知a2=c2+b2-2, 将a=2 与①代入, 得c2+b2=52, ③③+②×2, 得(c+b)2=100,所以c+b=10.因此c, b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6, b=4.。
正弦定理和余弦定理及答案

Байду номын сангаас
, 即
2 ) 3
············· 12 分
12 3 sin sin( ) 3
2 6 3 cos(2 ) 3 3 (0 ) (下同) 3 3
15. (1)因为 (2a c)cos B b cos C ,所以 (2sin A sin C ) cos B sin B cos C , 即 2sin A cos B sin C cos B sin B cos C sin(C B) sin A 而 (2)因为
17. (1)在 ABC中 ,由b 2 c 2 a 2 3bc, 得b 2 c 2 a 2 3bc , 所以 cos A
b2 c2 a2 3 . 2bc 2
在ABC 中,因为0 A , 所以 A
又因为 sin A sin B cos 即 sin B 1 cos C.
16. ABC 的三边 a, b, c 满足关系: c 4 2 a 2 b 2 c 2 a 4 a 2b 2 b 4 0 ,角 C 为锐角. ⑴ 求 C 的度数; ⑵ 求函数式 sin A sin B及 sin A cos B 的取值范围.
17. 在△ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 b 2 c 2 a 2 (1)求角 A,B,C 的大小; (2)若 BC 边上的中线 AM 的长为 7 ,求△ABC 的面积.
0 A 2 5 1 , A , sin A 1, 3 6 6 6 2 6
3 sin A sin B 3 . 2
正弦定理余弦定理(答案)

正、余弦定理及应用例1.在∆ABC中,已知=ac 060=B ,求b 及A ; 解:(1)∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+- =8∴=b求A 可以利用余弦定理,也可以利用正弦定理:解法一:∵cos 2221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=2 1.8 3.6,⨯=∴a <c ,即00<A <090, ∴060.=A例2.在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求A ta n 的值和∆ABC 的面积。
解:先解三角方程,求出角A 的值。
.21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180<<A , 4560,105.A A ∴-==tan tan(4560)2A ∴=+==- .46260sin 45cos 60cos 45sin )6045sin(105sin sin +=+=+==AS AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()。
例3.△ABC 中,,3,3A BC π==则△ABC 的周长为( )A.)33B π++ B.)36B π++C .6sin()33B π++ D .6sin()36B π++ 解析:在ABC ∆中,由正弦定理得:,233sin =B AC 化简得AC=,sin 32B 233)3(sin[=+-ππB AB ,化简得AB=)32sin(32B -π, 所以三角形的周长为:3+AC+AB=3+B sin 32+)32sin(32B -π=3+.3)6sin(6cos 3sin 33++=+πB B B 。
故选D 。
例4.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 解析:2sin A cos B =sin (A +B )+sin (A -B )又∵2sin A cos B =sin C ,∴sin (A -B )=0,∴A =B例5.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1)?解:连接BC,由余弦定理得BC 2=2022×20×10COS120°=700.于是,BC=107。
正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。
正弦定理和余弦定理 含解析

3-6正弦定理和余弦定理基础巩固强化1.(文)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°[答案] A[解析] ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C =32sin C +32cos C ,即sin C =-3cos C ,∴tan C =- 3.又C ∈(0°,180°),∴C =120°.故选A.(理)(2011·郑州六校质量检测)△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形[答案] A[解析] 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形,选A.2.(文)(2011·湖北八校联考)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是( )A .(1,2)B .(2,3)C .(3,2)D .(1,2) [答案] C[解析] 由条件知,a sin60°<3<a ,∴3<a <2.(理)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,π4 B.⎝ ⎛⎭⎪⎫π4,π2 C.⎝ ⎛⎭⎪⎫π4,3π4 D.⎝ ⎛⎭⎪⎫π4,π3 [答案] A[解析] 由条件知b sin A <a ,即22sin A <2,∴sin A <22, ∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4.3.(2011·福建质检)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =42,B =45°,则sin C 等于( )A.441B.45 C.425 D.44141[答案] B[解析] 依题意得b =a 2+c 2-2ac cos B =5,又c sin C =b sin B ,所以sin C =c sin B b =42sin45°5=45,选B.4.(2012·天津理,6)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725 D.2425[答案] A[解析] 由b sin B =csin C 及8b =5c ,C =2B 得,5sin2B =8sin B ,∴cos B =45,∴cos C =cos2B =2cos 2B -1=725.5.(2011·辽宁理,4)△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,a sin A sin B +b cos 2A =2a ,则ba =( )A .2 3B .2 2 C. 3 D. 2[答案] D[解析] ∵a sin A sin B +b cos 2A =2a , ∴sin 2A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b =2a ,∴ba = 2.6.(文)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°[答案] A[解析] 由余弦定理得:cos A =b 2+c 2-a 22bc ,由题知b 2-a 2=-3bc ,c 2=23bc ,则cos A =32,又A ∈(0°,180°),∴A =30°,故选A.(理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33 D .2+ 3[答案] C[解析] 12ac sin B =12,∴ac =2, 又2b =a +c ,∴a 2+c 2=4b 2-4,由余弦定理b 2=a 2+c 2-2ac cos B 得,b =3+33.7.在直角坐标系xOy 中,已知△ABC 的顶点A (-1,0),C (1,0),顶点B 在椭圆x 24+y 23=1上,则sin A +sin C sin B 的值为________.[答案] 2[解析] 由题意知△ABC 中,AC =2,BA +BC =4, 由正弦定理得sin A +sin C sin B =BC +BAAC =2.8.(2011·广州一测)△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π3,a =2b ,则b 的值为________.[答案]3[解析] 依题意及余弦定理得c 2=a 2+b 2-2ab cos C ,即9=(2b )2+b 2-2×2b ×b cos π3,解得b 2=3,∴b = 3.9.(文)(2012·石家庄质检)在△ABC 中,∠A =60°,BC =2,AC =263,则∠B =________.[答案] 45°[解析] 利用正弦定理可知:BC sin A =AC sin B , 即2sin60°=263sin B ,∴sin B =22,∵2>263,∴BC >AC ,∴∠A >∠B ,∴∠B =45°.(理)(2012·北京西城区期末)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c .若b =5,B =π4,tan C =2,则c =________.[答案] 2 2 [解析]⎭⎬⎫sin 2C +cos 2C =1tan C =2⇒sin C cos C =2⇒sin 2C =45⇒sin C =255.由正弦定理,得b sin B =c sin C ,∴c =sin Csin B ×b =2 2.10.(2012·河南商丘模拟)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且b cos C =(3a -c )cos B .(1)求cos B 的值;(2)若BA →·BC →=2,且b =22,求a 和c 的值.[解析] (1)由正弦定理得,sin B cos C =3sin A cos B -sin C cos B , ∴sin(B +C )=3sin A cos B ,可得sin A =3sin A cos B . 又sin A ≠0,∴cos B =13.(2)由BA →·BC →=2,可得ac cos B =2. 又cos B =13,∴ac =6.由b 2=a 2+c 2-2ac cos B ,及b =22, 可得a 2+c 2=12,∴(a -c )2=0,即a =c . ∴a =c = 6.[点评] 本题主要考查正、余弦定理及三角运算等基础知识,同时考查运算求解能力.能力拓展提升11.(文)(2011·泉州质检)△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120°[答案] B[解析] 依题意得a cos C +c cos A =2b cos B ,根据正弦定理得,sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,又0°<B <180°,所以cos B =12,所以B =60°,选B.(理)在△ABC 中,内角A 、B 、C 对边的长度分别是a 、b 、c ,已知c =2,C =π3,△ABC 的面积等于3,则a 、b 的值分别为( )A .a =1,b =4B .a =4,b =1C .a =4,b =4D .a =2,b =2 [答案] D[解析] 由余弦定理得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C =3,∴ab =4.联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4.解得a =2,b =2.12.(2011·天津理,6)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33B.36C.63D.66[答案] D[解析] 如图,根据条件,设BD =2,则AB =3=AD ,BC =4. 在△ABC 中,由正弦定理得3sin C =4sin A ,在△ABD 中,由余弦定理得, cos A =3+3-42×3×3=13,∴sin A =223,∴sin C =3sin A 4=3×2234=66,故选D. 13.(文)(2011·济南外国语学校质检)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,b =2,sin B +cos B =2,则∠A 的大小为________.[答案] π6[解析] ∵sin B +cos B =2sin(B +π4)=2, ∴sin(B +π4)=1, ∵0<B <π,∴B =π4,∵b sin B =a sin A ,∴sin A =a sin B b =2×222=12, ∵a <b ,∴A <B ,∴A =π6.(理)(2011·河南质量调研)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3,则△ABC 的面积为________.[答案] 2[解析] 依题意得cos A =2cos 2A 2-1=35,∴sin A =1-cos 2A =45,∵AB →·AC →=AB ·AC ·cos A =3,∴AB ·AC =5,∴△ABC 的面积S =12AB ·AC ·sin A =2.14.(2011·安阳月考)在△ABC 中,C =60°,a 、b 、c 分别为A 、B 、C 的对边,则a b +c +bc +a=________.[答案] 1[解析] ∵C =60°,∴a 2+b 2-c 2=ab , ∴(a 2+ac )+(b 2+bc )=(b +c )(a +c ), ∴a b +c +b a +c=1. 15.(2012·天津文,16)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a =2,c =2,cos A =-24.(1)求sin C 和b 的值; (2)求cos(2A +π3)的值.[分析] (1)由cos A =-24及0<A <π,sin 2A +cos 2A =1可求sin A ,再由正弦定理求sin C ,由余弦定理a 2=b 2+c 2-2bc cos A ,可求b 的值.(2)由(1)知道sin A ,cos A ,用正弦、余弦二倍角公式求sin2A ,cos2A ,展开cos(2A +π3)代入即可.[解析] (1)在△ABC 中, 由cos A =-24,可得sin A =144.又由a sin A =c sin C 及a =2,c =2,可得sin C =74. 由a 2=b 2+c 2-2bc cos A ,得b 2+b -2=0, 因为b >0,故解得b =1. 所以sin C =74,b =1.(2)由cos A =-24,sin A =144得, cos2A =2cos 2A -1=-34, sin2A =2sin A cos A =-74.所以,cos(2A +π3)=cos2A cos π3-sin2A sin π3 =-3+218. [点评] 本题主要考查同角三角函数的基本关系、二倍角的正弦与余弦关系、两角和的余弦公式以及正弦定理、余弦定理等基础知识.考查基本运算求解能力.16.(文)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,向量m =(2sin B ,-3),n =(cos2B,2cos 2B2-1)且m ∥n .(1)求锐角B 的大小;(2)如果b =2,求△ABC 的面积S △ABC 的最大值.[分析] (1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决.[解析] (1)∵m ∥n ,∴2sin B ⎝ ⎛⎭⎪⎫2cos 2B 2-1=-3cos2B , ∴sin2B =-3cos2B ,即tan2B =-3, 又∵B 为锐角,∴2B ∈(0,π), ∴2B =2π3,∴B =π3.(2)∵B =π3,b =2,∴由余弦定理cos B =a 2+c 2-b 22ac 得,a 2+c 2-ac -4=0,又∵a 2+c 2≥2ac ,∴ac ≤4(当且仅当a =c =2时等号成立),S △ABC =12ac sin B =34ac ≤3(当且仅当a =c =2时等号成立).[点评] 本题将三角函数、向量与解三角形有机的结合在一起,题目新颖精巧,难度也不大,即符合在知识“交汇点”处命题,又能加强对双基的考查,特别是向量的坐标表示及运算,大大简化了向量的关系的运算,该类问题的解题思路通常是将向量的关系用坐标运算后转化为三角函数问题,然后用三角函数基本公式结合正、余弦定理求解.(理)已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin2C .(1)求角C 的大小;(2)若sin A 、sin C 、sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.[解析] (1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ).在△ABC 中,由于sin(A +B )=sin C .∴m ·n =sin C .又∵m ·n =sin2C ,∴sin2C =sin C ,∴2sin C cos C =sin C .又sin C ≠0,所以cos C =12.而0<C <π,因此C =π3.(2)由sin A ,sin C ,sin B 成等差数列得,2sin C =sin A +sin B ,由正弦定理得,2c =a +b . ∵CA →·(AB →-AC →)=18,∴CA →·CB →=18.即ab cos C =18,由(1)知,cos C =12,所以ab =36.由余弦定理得,c 2=a 2+b 2-2ab cos C =(a +b )2-3ab .∴c 2=4c 2-3×36,∴c 2=36.∴c =6.。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
正弦定理和余弦定理 (含详解)

第三章第七节正弦定理和余弦定理1.(2009·广东高考)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =6+2,且∠A =75°,则b = ( )A .2B .4+2 3C .4-2 3 D.6- 2解析:如图所示.在△ABC 中,由正弦定理得sin 30b == =4, ∴b=2. 答案:A2.在锐角△ABC 中,BC =1,B =2A ,则AC cos A的值等于______,AC 的取值范围为________. 解析:由正弦定理得AC sin2A =BC sin A. 即AC 2sin A cos A =1sin A .∴AC cos A =2. ∵△ABC 是锐角三角形,∴0<A <π2,0<2A <π2,0<π-3A <π2,解得π6<A <π4. 由AC =2cos A 得AC 的取值范围为(2,3).答案:2 (2,3)3.(2009·全国卷Ⅰ)在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c .已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .解:由余弦定理得a 2-c 2=b 2-2bc cos A .又a 2-c 2=2b ,b ≠0,所以b =2c cos A +2.①又sin A cos C =3cos A sin C ,sin A cos C +cos A sin C =4cos A sin C ,sin(A +C )=4cos A sin C ,sin B =4sin C cos A .由正弦定理得sin B =b c sin C ,故b =4c cos A .②由①、②解得b =4.4.(2010·天津模拟)在△ABC 中,cos 2B 2=a +c 2c,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 ( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:∵cos 2B 2=a +c 2c ,∴cos B +12=a +c 2c,∴cos B =a c , ∴a 2+c 2-b 22ac=a c , ∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.答案:B5.在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形解析:法一:因为在△ABC 中,A +B +C =π,即C =π-(A +B ),所以sin C =sin(A +B ).由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B ,即sin A cos B -cos A sin B =0,即sin(A -B )=0.又因为-π<A -B <π,所以A -B =0,即A =B .所以△ABC 是等腰三角形.法二:利用正弦定理和余弦定理2sin A cos B =sin C 可化为2a ·a 2+c 2-b 22ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0, 即a 2=b 2,故a =b .所以△ABC 是等腰三角形.答案:B6.在△ABC 中,AB =3,AC =1,B =π6,则△ABC 的面积等于 ( ) A.32 B.34 C.32或 3 D.32或34解析:由正弦定理知AB sin C =AC sin B ,∴sin C =AB sin B AC =32, ∴C =π3或2π3,A =π2或π6,∴S =32或34. 答案:D7.在△ABC 中,面积S =a 2-(b -c )2,则cos A = ( )A.817B.1517C.1315D.1317解析:S =a 2-(b -c )2=a 2-b 2-c 2+2bc =2bc -2bc cos A =12bc sin A ,∴sin A =4(1-cos A ),16(1-cos A )2+cos 2A =1,∴cos A =1517. 答案:B8.(2009·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB ·AC =3. (1)求△ABC 的面积;(2)若c =1,求a 的值.解:(1)因为cos A 2=255, 所以cos A =2cos 2A 2-1=35,sin A =45. 又由AB ·AC =3,得bc cos A =3,所以bc =5. 因此S △ABC =12bc sin A =2. (2)由(1)知,bc =5,又c =1,所以b =5,由余弦定理,得a 2=b 2+c 2-2bc cos A =20,所以a =2 5.9.若△ABC ( )A .5B .6C .7D .8解析:依题意及面积公式S =12bc sin A , 得103=12bc sin60°,得bc =40. 又周长为20,故a +b +c =20,b +c =20-a ,由余弦定理得:a 2=b 2+c 2-2bc cos A =b 2+c 2-2bc cos60°=b 2+c 2-bc =(b +c )2-3bc ,故a 2=(20-a )2-120,解得a =7.答案:C10.(文)在三角形ABC 中,已知∠B =60°,最大边与最小边的比为3+12,则三角形的最大角为 ( )A .60°B .75°C .90°D .115°解析:不妨设a 为最大边.由题意,a c =sin A sin C =3+12, 即sin A sin(120°-A )=3+12, ∴sin A 32cos A +12sin A =3+12, (3-3)sin A =(3+3)cos A ,∴tan A =2+3,∴A =75°.答案:B(理)锐角△ABC 中,若A =2B ,则a b的取值范围是 ( ) A .(1,2) B .(1,3) C .(2,2) D .(2,3)解析:∵△ABC 为锐角三角形,且A =2B ,∴⎩⎨⎧0<2B <π2,0<π-3B <π2,∴π6<B <π4, ∴sin A =sin2B =2sin B cos B ,a b =sin Asin B =2cos B ∈(2,3).答案:D11.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ),若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =________.解析:∵m ⊥n ,∴3cos A -sin A =0,∴tan A =3,∴A =π3. ∵a cos B +b cos A =c sin C ,∴sin A cos B +sin B cos A =sin C sin C ,∴sin(A +B )=sin 2C ,∴sin C =sin 2C ,∵sin C ≠0,∴sin C =1.∴C =π2,∴B =π6. 答案:π612.(文)(2010·长郡模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3<C <π2且b a -b =sin2C sin A -sin2C(1)判断△ABC 的性状;(2)若|BA +BC |=2,求BA ·BC 的取值范围.解:(1)由b a -b =sin2C sin A -sin2C及正弦定理得sin B =sin2C , ∴B =2C ,且B +2C =π,若B =2C ,π3<C <π2, ∴23π<B <π,B +C >π(舍); ∴B +2C =π,则A =C ,∴△ABC 为等腰三角形.(2)∵|BA +BC |=2,∴a 2+c 2+2ac ·cos B =4,∴cos B =2-a 2a 2(∵a =c ), 而cos B =-cos2C ,π3<C <π2, ∴12<cos B <1, ∴1<a 2<43, 又BA ·BC =ac cos B =2-a 2,∴BA ·BC ∈(23,1).(理)(2010·广州模拟)在△ABC 中,A ,B ,C 分别是三边a ,b ,c 的对角.设m =(cos C 2,sin C 2),n =(cos C 2,-sin C 2),m ,n 的夹角为π3. (1)求C 的大小;(2)已知c =72,三角形的面积S =332,求a +b 的值. 解:(1)m ·n =cos 2C 2-sin 2C 2=cos C , 又m ·n =|m ||n |cos π3=12, 故cos C =12,∵0<C <π,∴C =π3. (2)S =12ab sin C =12ab sin π3=34ab , 又已知S =332,故34ab =332,∴ab =6. ∵c 2=a 2+b 2-2ab cos C ,c =72, ∴494=a 2+b 2-2ab ×12=(a +b )2-3ab . ∴(a +b )2=494+3ab =494+18=1214, ∴a +b =112.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理和余弦定理 测试题一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A .-223 C .-632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )4.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝⎛⎭⎪⎫0,π2,则△ABC 的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为,那么b 为( )A .1+ 3B .3+ 3 D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c≥2a7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=A.3 B .3- C .53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π (B)3π (C) 2π (D)23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( )A.2C.8D.711、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =A .14 B .34C .D12、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c =(A) 1 (B )2 (C )3—1 (D )3二、填空题:13、在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___________.14、在∆ABC 中,已知433=a ,b =4,A =30°,则sinB = .15、在△ABC 中,已知BC =12,A =60°,B =45°,则AC =16、已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .三、解答题:17。
、已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a1tan A+b 1tan B,求内角C .18、在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.19、如图,在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.20、已知ABC △21,且sin sin 2A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cot A +cot C 的值; (Ⅱ)设32BA BC ⋅=,求a +c 的值.22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东︒60,向北航行40分钟后到达B 点,测得油井P 在南偏东︒30,海轮改为北偏东︒60的航向再行驶80分钟到达C 点,求P 、C 间的距离.答案1.解析:依题意得0°<B <60°,由正弦定理得a sin A =bsin B得sin B=b sin A a =33,cos B =1-sin 2B =63,选D.2.解析:由sin C =23sin B 可得c =23b ,由余弦定理得cos A=b 2+c 2-a 22bc =-3bc +c 22bc =32,于是A =30°,故选A.3.解析:设AC =1,则AE =EF =FB =13AB =23,由余弦定理得CE=CF =AE 2+AC 2-2AC ·AE cos45°=53,所以cos ∠ECF =CE 2+CF 2-EF 22CE ·CF =45,所以tan ∠ECF =sin ∠ECF cos ∠ECF=1-⎝ ⎛⎭⎪⎫45245=34. 答案:D 4.解析:∵lg a -lg c =lgsin B =-lg 2,∴lg a c =lgsin B =lg 22.∴a c =sin B =22. ∵B ∈⎝⎛⎭⎪⎫0,π2,∴B =π4,由c =2a , 得cos B =a 2+c 2-b 22ac=3a 2-b 222a2=22. ∴a 2=b 2,∴a =b . 答案:D5.解析:2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33. 答案:C6.解析:由sin 2A -cos 2A =12,得cos2A =-12, 又A 是锐角,所以A =60°,于是B +C =120°. 所以b +c 2a =sin B +sin C2sin A=2sinB +C2cosB -C23=cosB -C2≤1,b +c ≤2a . 答案:c7.解:由sin2A =2sinAcosA 0,可知A 这锐角,所以sinA +cosA0,又25(sin cos )1sin 23A A A +=+=,故选A8.解:111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形。
故选D 。
9.【解析】222//()()()p q a c c a b b a b a c ab ⇒+-=-⇒+-=,利用余弦定理可得2cos 1C =,即1cos 23C C π=⇒=,故选择答案B 。
【点评】本题考查了两向量平行的坐标形式的重要条件及余弦定理和三角函数,同时着重考查了同学们的运算能力。
10.解:依题意,结合图形可得15tan2A =,故221522tan15152tan 7151tan 1()215AA A ⨯===--,选D 11.解:ABC ∆中,a 、b 、c 成等比数列,且2c a =,则b =2a ,222cos 2a c b B ac +-==222242344a a a a +-=,选B. 12.解:由正弦定理得sinB =12,又a b ,所以A B ,故B =30,所以C =90,故c =2,选B二、填空13.解: sin :sin :sin 5:7:8A B C =a b c =578设a =5k ,b =7k ,c =8k 由余弦定理可解得B ∠的大小为3π. 14.解:由正弦定理易得结论sinB 3。
15.【正确解答】由正弦定理得,sin 45sin 60AC BC=解得46AC = 【解后反思】解三角形:已知两角及任一边运用正弦定理,已知两边及其夹角运用余弦定理16.解析: 由ABC ∆的三个内角A 、B 、C 成等差数列可得A+C=2B 而A+B+C=π可得3B π∠=AD 为边BC 上的中线可知BD=2,由余弦定理定理可得3AD = 本题主要考察等差中项和余弦定理,涉及三角形的内角和定理,难度中等。
三、解答题:(17-21题12分,22题14分,写出证明过程或推演步骤.)17。
、已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a 1tan A +b 1tan B,求内角C . 解:由a +b =a 1tan A +b 1tan B及正弦定理得 sin A +sin B =cos A +cos B ,即sin A -cos A =cos B -sin B , 从而sin A cos π4-cos A sin π4=cos B sin π4-sin B cos π4,即sin ⎝ ⎛⎭⎪⎫A -π4=sin ⎝ ⎛⎭⎪⎫π4-B . 又0<A +B <π, 故A -π4=π4-B ,A +B =π2, 所以C =π2.18、在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A ∈(0,π),故A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,得sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C .所以△ABC 是等腰的钝角三角形.19、如图,在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12,∴∠ADC =120°,∠ADB =60°. 在△ABD 中,AD =10,B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =ADsin B ,∴AB =AD ·sin ∠ADBsin B=10sin60°sin45°=10×3222=5 6.20、已知ABC △21,且sin sin 2A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得21AB BC AC ++=,2BC AC AB +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--==,所以60C =.21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cot A +cot C 的值; (Ⅱ)设32BA BC ⋅=,求a +c 的分析:本题是正、余弦定理与向量、等比数列等知识的交汇,关键是用好正弦定理、余弦定理等.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由b 2=ac 及正弦定理得 .sin sin sin 2C A B =则BC A C A A C A C C C A A C A C A 2sin )sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1cot cot +=+=+=+=+ .774sin 1sin sin 2===B B B (Ⅱ)由32BA BC ⋅=,得ca •cos B =32,由ㄋB =34,可得ac=2,即b 2=2.由余弦定理b 2=a 2+c 2-2a c+cosB ,得a 2+c 2=b 2+2a c ·cosB=5.3,9452)(222=+=+=++=+c a ac c a c a22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东︒60,向北航行40分钟后到达B 点,测得油井P 在南偏东︒30,海轮改为北偏东︒60的航向再行驶80分钟到达C 点,求P 、C 间的距离.解:如图,在△ABP 中,AB = 30×6040= 20, ∠APB =︒30,∠BAP =︒120, 由正弦定理,得:BPA AB ∠sin =BAP BP ∠sin ,即2120=23BP,解得BP =320.在△BPC 中,BC = 30×6080= 40, 由已知∠PBC =︒90,∴PC =22BC PB +=2220)320(+=720 (海所以P、C间的距离为720海里.评析:上述两例是在准确理解方位角的前提下,合理运用正弦定理把问题解决,因此,用正弦定理解有关应用问题时,要注意问题中的一些名称、术语,如仰角、俯角、视角、象限角、方位角等.。