汽车发动机及机构(1)
05 EA211系列发动机结构(1)

电子节气门 报警灯K132 排放报警灯K83
29
2
EA211发动机理论部分
发动机参数
排量 功率 扭矩 缸径/行程 压缩比 喷油方式 发动机质量 1.4L 66kW/5500rpm 132Nm/3800rpm 74.5mm/80mm 10.5:1 多点喷射 约 88kg 1.6L 81kW/6000rpm 160Nm/3800rpm 76.5mm/86.9mm 10.5:1 多点喷射 约 89kg
曲轴正时 皮带轮
EA111
EA211
10
EA211发动机理论部分
6、正时罩盖由EA111发动机的整体式铝压铸件改为三个零件组成,两个塑料 件一个中间罩盖铝压铸件,减轻了重量。 凸轮轴 罩盖塑 料件 中间罩 盖铝铸 件
曲轴前 罩盖塑 料件
EA111
11
EA211
EA211发动机理论部分
技术更新-缸盖
3
EA211发动机理论部分
1.4L 66KW MPI发动机
4
EA211发动机理论部分
1.6L 81kw MPI发动机
5
EA211发动机理论部分
降低油耗和排放的措施
1.6L MPI
齿形皮带
降低的 g CO2/km,Σ = 9.6 g
凸轮轴带滚动轴承
0.9 g
重量减轻Σ=14 kg
2.0 g
铝缸体
槽型球轴承
凸轮轴壳体
铸造吊环螺栓 进气凸轮轴 传感器轮
9
EA211发动机理论部分
4、1.6MPI发动机进气凸轮轴装有VVT可变气门正时机构。 5、正时链条改为正时皮带,使用寿命可达30万公里, 噪音低。 (首次保养90000公里,之后每30000 公里检查,必要时更换)
汽车发动机基本结构与工作原理

汽车发动机基本结构与工作原理一、发动机的基本结构:1.缸体和缸盖:发动机的主体部分,用于容纳气缸和活塞,并封闭燃烧室。
2.活塞和连杆:活塞在气缸内作往复运动,通过连杆将动力传递给曲轴。
3.曲轴和飞轮:曲轴通过连杆将活塞的直线运动转换为旋转运动,并传递给传动系统。
4.气门和气门机构:控制气缸进出气体的开关装置,包括进气门和排气门。
5.火花塞和点火系统:火花塞在燃烧室内产生火花,点火系统提供火花塞所需的电力。
6.进气系统和排气系统:进气系统将空气和燃料混合物送入燃烧室,排气系统将排出废气。
7.冷却系统:通过循环冷却液来对发动机进行冷却,确保发动机正常运行。
二、发动机的工作原理:1.进气过程:在进气过程中,进气门打开,活塞下行,汽缸内形成负压,汽缸内的混合气体进入燃烧室。
同时,燃料喷射器喷射燃油进入混合气体中,形成可燃混合气体。
2.压缩过程:在压缩过程中,进气门关闭,活塞上行,将可燃混合气体压缩至极限,并使燃料和空气更加充分混合,形成易燃混合气体。
此时,活塞上行所需动力由曲轴提供。
3.工作过程:在工作过程中,点火系统产生火花,点燃易燃混合气体,燃烧过程产生剧烈的高温和高压气体。
这些气体推动活塞向下运动,通过连杆将动力传递给曲轴。
曲轴的旋转运动将线性运动转换为旋转运动,并传递给传动系统,从而驱动车辆行驶。
4.排气过程:在排气过程中,排气门打开,活塞上行,将燃烧后产生的废气排出燃烧室,并送入排气系统。
排气过程完成后,进入下一次循环。
总结:汽车发动机的基本结构和工作原理决定了它的工作特点和性能。
不同形式的发动机在结构和工作原理上会有所不同,但都遵循了同样的基本工作原理。
了解汽车发动机的基本结构和工作原理,对于维修、保养和改进汽车都非常重要,也有助于提高对汽车的理解和欣赏。
发动机内部结构图

发动机内部结构图引言发动机是现代机动车辆中不可或缺的关键部件之一,它负责将燃料转化为能量,驱动车辆行驶。
发动机的内部结构决定了其性能和效率,了解发动机内部结构对于维护和修理发动机至关重要。
本文将介绍发动机的常见内部结构并提供相应的结构图。
缸体和缸盖发动机的缸体是发动机的主体结构,它用于容纳活塞、气缸和气门等关键部件。
缸体通常由铸铁或铝合金制成,以提供足够的强度和耐热性。
缸盖则位于缸体的顶部,密封并承载发动机的气缸盖、凸轮轴和气门等部件。
活塞和连杆活塞是发动机中起着压缩和传递力量作用的关键部件。
它由铝合金制成,具有较低的重量和较高的强度。
活塞通过连杆与曲轴相连,将活塞的上下往复运动转化为曲轴的旋转运动。
连杆一端连接活塞,另一端连接曲轴,起到连接与传递力量的作用。
曲轴和凸轮轴曲轴是发动机中最重要的部件之一,它通过连杆的传动将活塞上下往复运动转化为旋转运动。
曲轴通常由钢铁或铸铁制成,具有高强度和耐磨性。
凸轮轴则用于控制发动机气门的开启和关闭过程,它通过凸轮的形状实现气门的运动。
气门和气门机构气门是控制发动机进气和排气的关键部件,它位于缸体上方的气门座中。
发动机通常具有进气气门和排气气门,它们由气门机构控制开启和关闭。
气门机构通常由凸轮轴、齿轮、摇臂和弹簧组成,通过凸轮的旋转推动摇臂,进而控制气门的运动。
节气门和喷油器节气门用于控制发动机的油气混合物进入气缸的量,通过调节节气门的开度可以控制发动机的功率输出。
喷油器则用于将燃油喷射到气缸内,以完成燃烧过程。
节气门和喷油器一般通过发动机控制单元(ECU)来实现精确的控制。
总结发动机的内部结构是复杂而精密的,各个组件协调工作以提供动力和效率。
本文介绍了发动机的常见内部结构,包括缸体和缸盖、活塞和连杆、曲轴和凸轮轴、气门和气门机构、节气门和喷油器。
了解这些结构对于维护和修理发动机具有重要意义,帮助我们更好地理解发动机的工作原理。
汽车发动机基本构造

汽车发动机基本构造发动机基本构造发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。
发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异,发动机的总体结构图如下所示。
汽油发动机柴油发动机汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。
柴油机通常由两大机构和四大系统组成(无点火系)。
1.曲柄连杆机构曲柄连杆机构是由气缸体、气缸盖、活塞、连杆、曲轴和飞轮等组成。
这是发动机产生动力,并将活塞的直线往复运动转变为曲轴旋转运动而对外输出动力。
2.配气机构配气机构是由进气门、排气门、气门弹簧、挺杆、凸轮轴和正时齿轮等组成。
其作用是将新鲜气体及时充入气缸,并将燃烧产生的废气及时排出气缸。
3.燃料供给系由于使用的燃料不同,可分为汽油机燃料供给系和柴油机燃料供给系。
汽油燃料供给系又分化油器式和燃油直接喷射式两种,通常所用的化油器式燃料供给系由燃油箱、汽油泵、汽油滤清器、化油器、空气滤清器、进排气歧管和排气消声器等组成,其作用是向气缸内供给已配好的可燃混合气,并控制进入气缸内可燃混合气数量,以调节发动机输出的功率和转速,最后,将燃烧后废气排出气缸。
柴油机燃料供给系由燃油箱、输油泵、喷油泵、柴油滤清器、进排气管和排气消声器等组成,其作用是向气缸内供给纯空气并在规定时刻向缸内喷入定量柴油,以调节发动机输出功率和转速,最后,将燃烧后废气排出气缸。
4.冷却系机动车一般采用水冷却式。
水冷式由水泵、散热器、风扇、节温器和水套(在机体内)等组成,其作用是利用冷却水的循环将高温零件的热量通过散热器散发到大气中,从而维持发动机电动正常工作温度。
5.润滑系润滑系由机油泵、滤清器、油道、油底壳等组成。
其作用是将润滑油分送至各个相对运动零件的摩擦面,以减小摩擦力,减缓机件磨损,并清洗、冷却摩擦表面。
发动机构造和原理(最完整的精华版上)

发动机构造和原理(最完整的精华版上)发动机是汽车的心脏,它通过燃烧燃料产生动力,驱动汽车前进。
发动机构造和原理是汽车技术中最基础也是最重要的部分。
本篇文档将为您详细介绍发动机构造和原理,让您对汽车发动机有更深入的了解。
一、发动机构造1. 气缸:气缸是发动机的主要工作部分,它负责燃烧燃料产生动力。
气缸内有一个活塞,活塞在气缸内上下运动,将燃料燃烧产生的能量转化为机械能。
2. 活塞:活塞是气缸内的一个重要部件,它的主要作用是将燃料燃烧产生的能量转化为机械能。
活塞在气缸内上下运动,通过连杆与曲轴连接,将活塞的上下运动转化为曲轴的旋转运动。
3. 曲轴:曲轴是发动机的核心部件,它负责将活塞的上下运动转化为旋转运动。
曲轴与活塞通过连杆连接,曲轴的旋转运动通过传动系统传递给车轮,驱动汽车前进。
4. 进气系统:进气系统负责将空气吸入发动机,与燃料混合后燃烧产生动力。
进气系统包括空气滤清器、节气门、进气歧管等部件。
5. 排气系统:排气系统负责将燃烧产生的废气排出发动机。
排气系统包括排气歧管、消声器等部件。
6. 点火系统:点火系统负责点燃混合气体,使其燃烧产生动力。
点火系统包括火花塞、点火线圈等部件。
7. 润滑系统:润滑系统负责润滑发动机各部件,减少磨损。
润滑系统包括机油泵、机油滤清器、机油冷却器等部件。
8. 冷却系统:冷却系统负责冷却发动机,防止过热。
冷却系统包括水泵、散热器、冷却液等部件。
二、发动机工作原理1. 进气阶段:发动机通过进气系统吸入空气,与燃料混合后进入气缸。
2. 压缩阶段:活塞向上运动,将混合气体压缩,使其温度和压力升高。
3. 燃烧阶段:点火系统点燃混合气体,使其燃烧产生高温高压气体。
4. 作功阶段:高温高压气体推动活塞向下运动,通过曲轴转化为旋转运动,驱动汽车前进。
5. 排气阶段:燃烧后的废气通过排气系统排出发动机。
发动机构造和原理(最完整的精华版上)一、发动机构造发动机是汽车的心脏,它通过燃烧燃料产生动力,驱动汽车前进。
汽车发动机的工作原理及总体构造

汽车发动机的工作原理及总体构造
一、汽车发动机的工作原理
1.吸气:发动机的活塞下行时,活塞腔内的气门打开,通过气门进入
汽缸的混合气。
2.压缩:活塞上行时,活塞腔内的气门关闭,活塞将混合气压缩成高
压气体。
3.爆燃:在活塞接近顶死点时,火花塞产生火花,将混合气点燃爆炸,释放出能量。
4.排气:活塞下行时,废气通过排气门排出汽缸,为新的混合气提供
空间。
通过这四个基本过程循环运作,汽车发动机可以持续地产生动力,驱
动汽车运行。
二、汽车发动机的总体构造
1.气缸体系:汽缸是发动机燃烧的主要部分,通常由铁合金或铝合金
制成。
汽缸体内设置有活塞和气门,通过这些部件的运动来实现吸气、压缩、爆燃和排气的过程。
2.曲轴与连杆机构:曲轴是将活塞运动转化为有用功的装置,具有一
定的几何结构,可以将来自活塞的线性运动转化为旋转运动。
连杆连接活
塞与曲轴,将活塞的线性运动转化为曲轴的旋转运动。
3.气门机构:气门控制气缸内的进气和排气。
气门通过气门杆与凸轮
轴相连接,由凸轮轴的转动带动气门的开闭。
4.燃油供给系统:燃油供给系统包括燃油箱、燃油泵、喷油器等。
燃油从燃油箱经过燃油泵被送入汽缸,与空气混合后形成可燃气体。
此外,还有点火系统、冷却系统、润滑系统等辅助系统,保证发动机正常运行。
总之,汽车发动机通过吸气、压缩、爆燃和排气这四个基本过程,不断地将化学能转化为机械能,从而驱动汽车运行。
其总体构造包括气缸体系、曲轴与连杆机构、气门机构和燃油供给系统等。
这些构造相互配合,共同完成发动机的工作。
汽车发动机主要结构

汽车发动机主要结构简述如下:(一)机体组汽车发动机机体组包括气缸盖、气缸体和机油盘。
气缸体的上部为气缸盖,下部为曲轴箱,气缸体一般简称为缸体。
发动机机体的作用是作为发动机各机构、各系统的安装和配合的基体,而且本身的许多部分又分别是曲柄连杆机构、配气机构、汽油喷射系、冷却系、润滑系的组成部分。
因此,严格的区别发动机各系统所归属零部件是困难的。
气缸盖和缸体内壁与活塞顶部组成一个单坡屋脊性燃烧室,燃烧室中央有一个电火花塞,用来点燃混合气体,所以,机体组是承受高温高压的机件。
(二)曲柄连杆机构曲柄连杆机构包括活塞、连杆、带飞轮的曲轴。
这是发动机借以产生动力,并将活塞的往复直线运动转变为曲轴的旋转运动而输出动力的机构。
在结构分析时,常把机体组和曲柄连杆机构合并一起。
(三)配气机构配气机构包括进气门、排气门、挺杆、进气凸轮轴、排气凸轮轴以及凸轮轴正时皮带(由曲轴正时齿轮驱动)。
配气机构的作用是将可燃气体及时充入气缸和及时地将燃烧作过功的废气从气缸中排走。
(四)电子控制汽油喷射系统电子控制汽油喷射系统包括下列三个子系统:燃油供应系统、进气系统和电子控制系统。
燃油供应系统由汽油箱、输油泵、汽油滤清器、压力调节器、脉动衰减器、喷油器以及输油管、回油管等组成。
进气系统包括空气滤清器、节气门、空气流量计、进气室、怠速控制阀以及进气控制阀组成。
燃油供应系统和进气系统的作用是根据节气门位置(发动机负荷)和发动机转速,由ECM/ECU确定的喷油量和进气量混合成可燃混合气,进入气缸以供燃烧作功。
电子控制系统由若干只检测发动机各种状况的传感器、一只按传感器信号确定喷油量的ECU,以及按ECU指令工作的喷油器组成。
它的主要作用是根据发动机不同工况,决定最佳的喷油正时和喷油持续期。
(五)汽车发动机点火系统点火系统包括点火器、点火线圈、分电器、火花塞和点火电子控制器。
点火电子控制器由曲轴位置传感器、凸轮轴位置传感器和ECU组成。
点火系的作用是ECU根据发动机的各种状况,计算点火正时并将点火正时信号送至点火器。
汽车发动机基本构造

c.缓和不平路面对车身造成的冲击,衰减汽车行驶中的振动,保持行驶的平顺性。
d.与转向系配合,保证汽车操纵稳定性。
3.转向系:汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。
转向系统的基本组成a.转向操纵机构,主要由转向盘、转向轴和转向管柱等组成。
b.转向器,将转向盘的转动变为转向摇臂的摆动或齿条轴的直线往复运动,并对转向操纵力进行放大的机构。
转向器一般固定在汽车车架或车身上,转向操纵力通过转向器后一般还会改变传动方向。
c.转向传动机构将转向器输出的力和运动传给车轮(转向节),并使左右车轮按一定关系进行偏转的机构。
4.制动系:汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。
其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
制动系分类:a. 按制动系统的作用制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。
用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。
上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
b.按制动操纵能源制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。
以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
c.按制动能量的传输方式制动系统可分为机械式、液压式、气压式和电磁式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中: i----气缸数 VS---气缸工作容积,L
汽车发动机及机构(1)
MDS( Multi Displacement system )
n 多段式排气量调节系 统,D-C公司特有技 术,05款大切诺基 : 5.7升V8 HEMI发动 机
n MDS系统使发动机工 作汽缸在V8-V6-V4 之 间切换,提高了发动 机的燃油经济性
返回
汽车发动机及机构(1)
排气行程(exhaust)
进气门关,排气门开;
活塞:BDC->TDC ;
废气靠自身的残余压力和活 塞推动,经排气门排出气缸。
排气行程结束后,残留在燃 烧室内的少量废气称为残余 废气。残余废气压力约为 0.105~0.12 MPa,温度约 为900~1100 K。
汽车发动机及机构(1)
燃烧气体体积膨胀,气缸内气体温 度和压力急剧升高,推动活塞从上 止点运行到下止点,并通过连杆推 动曲轴旋转作功。此时,进排气门 仍然关闭。
燃烧最高压力可达3~6.5 MPa,最 高温度可达2200~2800 K。
终了时, 气体压力降低到0.35~ 0.5 MPa,气体温度降低到1200~ 1500K。
返回
四冲程汽油机工作原理
汽车发动机及机构(1)
示功图(indicator diagram)
气缸内气体压力随气缸容积或曲轴转角的变化 关系称作示功图
图
图
示功图是研究内燃机工作过程的重要试验数据。 将它与所积累的试验数据进行分析比较,可以 对整个工作过程或工作过程的不同阶段进展的 完善程度作出正确的判断。
返回
汽车发动机及机构(1)
工况及负荷率
工况:内燃机在某一时刻的运行状况。以该时 刻内燃机输出的有效功率和曲轴转速表示。 曲轴转速即为发动机转速。
负荷率:发动机在某一转速下发出的有效功率 与相同转速下所能发出的最大有效功率的比值 称为负荷率,以百分数表示。 负荷率通常简称负荷。
返回
汽车发动机及机构(1)
汽车发动机及机构(1)
2020/11/23
汽车发动机及机构(1)
第一节 内燃机基本结构
汽车发动机及机构(1)
返回
汽车发动机及机构(1)
汽车发动机及机构(1)
第二节 内燃机的基本术语
工作循环(working cycle) 上、下止点(TDC,BDC) 活塞行程(stroke) 气缸工作容积 内燃机排量 燃烧室容积 气缸总容积 压缩比
缸内形成一定的真空度。油气 混合物被吸入气缸,进一步混 合形成可燃混合气。 终了时,内压力约0.08~0.09 MPa,温度达320~380 K。
汽车发动机及机构(1)
返回
压缩行程(Compression)
进、排气门关,气缸封闭; 活塞:BDC->TDC; 混合气压缩,压力温度不断
升高 终了时,压力达0.8~1.5
为曲柄半径。 曲轴每回转一周,活
塞移动两个活塞行程。 对于气缸中心线通过
曲轴回转中心的内燃
机: S=2R 。
返回
汽车发动机及机构(1)
气缸工作容积(swept volume)
定义:上、下止点间所包容的气缸容积
式中:D----气缸直径mm S----活塞行程mm
汽车发动机及机构(1)
返回
ቤተ መጻሕፍቲ ባይዱ
内燃机排量(displacement)
压缩比表示气体的压缩程度,是发动机中一个非常重要 的概念。
通常汽油机:7~10,柴油机:16~22。 绅宝(Saab)的SVC发动机:缸体与缸盖之间安装楔型
滑块,缸体可以沿滑块的斜面运动,使得燃烧室与活塞 顶面的相对位置发生变化,改变燃烧室的容积。其压缩 比范围可从8至14之间变化。小负荷时用高压缩比以节 约燃油;大负荷时采用低压缩比,并辅以机械增压器以 实现大功率和高扭矩输出。
n 在一个循环中,只有一个行程作功。将燃料的 化学能转化为曲轴的动能。
汽车发动机及机构(1)
n VCM可变汽缸系统
n 雅阁3.5L VCM发动机,采取“六缸/四缸/三缸” 等不同的运转模式,达到兼顾动力输出或节能的 不同需求。
汽车发动机及机构(1)
返回
燃烧室容积(clearance)
活塞位于上止点时,活塞顶面以上气缸盖底 面以下所形成的空间称为燃烧室,其容积称 为燃烧室容积,符号:VC
示功图上曲线围成的面积表示气体在单个气缸 内所作的功
汽车发动机及机构(1)
汽车发动机及机构(1)
汽车发动机及机构(1)
四冲程汽油机的工作原理小结(1)
n 四冲程汽油机在四个活塞行程内完成进气、压 缩、作功和排气等过程,即在一个活塞行程内 只进行一个过程。
n 一个工作循环内发动机曲轴转两周,即每一个 行程有180度的曲轴转角。
MPa, 温度达600~750 K
采用大压缩比,可提高压缩终了 时气缸内的压力和温度,从而加 快燃烧速度,提高发动机热效率。 但太大容易引起“爆震” 。
返回
汽车发动机及机构(1)
作功行程(Power/Expansion)
压缩行程结束时,火花塞产生电火 花,点燃可燃混合气,火焰迅速传 遍整个燃烧室,并放出大量热能;
第三节 四冲程内燃机工作原理
四冲程往复活塞式内燃机在四 进气冲程 个活塞行程内完成进行、压缩、 压缩冲程
作功(燃烧和膨胀)和排气等 四个过程。
每一个活塞行程内只进行一个 过程。
作功冲程 排气冲程 工作原理 工作过程
柴油机
汽车发动机及机构(1)
返回
进气行程(Intake)
排气门关,进气门开; 活塞:TDC->BDC; 活塞移动过程中, Va增大,气
工况及负荷率
返回
汽车发动机及机构(1)
上、下止点
活塞顶离曲轴回转中心最远处为上止点(TDC); 活塞顶离曲轴回转中心最近处为下止点(BDC) 。 在上、下止点处,活塞的运动速度为零。
返回
汽车发动机及机构(1)
活塞行程(stroke)
上、下止点间的距离
S 称为活塞行程。 曲轴的回转半径R 称
汽车发动机及机构(1)
返回
气缸总容积(all)
活塞位于下止点时,活塞顶部与气缸盖之间 的容积称为气缸总容积,符号:Va
气缸总容积等于气缸工作容积与燃烧室容积 之和
返回
汽车发动机及机构(1)
压缩比(compression ratio)
定义:气缸总容积与燃烧室容积之比(气体压缩前的容积 与气体压缩后的容积之比 )