红外热波无损检测

红外热波无损检测
红外热波无损检测

红外热波无损检测技术在复合材料检测方面的应用

邓淑萍郑海平姜照汉西安非金属材料材料研究所

杨玉孝西安交通大学

摘要:本文阐述了红外热波无损检测技术的基本原理和特点,介绍了国内外相关技术研究的发展现状,以及在非金属复合材料上检测应用的实例。

关键词:红外热波;复合材料

1 引言

由于复合材料具有高强度、高弹性模量、低热膨胀系数和高导热性等优良性能,现已在航天航空领域获得了广泛的应用,但是,由于复合材料制造过程复杂,在制作成型过程中受设备、环境、人员及原材料等因素的影响,在产品内部易产生空穴、裂纹、分层、多孔等缺陷,对产品的质量和安全性能影响极大,因此,对产品的检测尤为重要。

用于复合材料无损检测的方法主要有射线、超声、磁粉、渗透、涡流、激光全息及红外无损检测技术等,超声、射线检测技术应用最多,但受检测原理影响,射线检测成本高、周期长,不适于现场在线检测,对小分层、脱粘紧贴型缺陷无法检测;超声检测需要逐点扫描、检测效率低,对小、薄及结构复杂的工件检测困难,对复合构件中的脱粘紧贴型缺陷也无法检测;磁粉法只限于铁磁性材料,定量检测缺陷深度较为困难;渗透法检测程序复杂,只能检测表面开口缺陷,不能检测表面多孔性材料;涡流法对工件边缘效应敏感,易给出虚假显示;激光全息检测需暗室防震操作,检测效率低;红外无损检测技术作为复合材料结构件的一种无损检测新方法,具有快速、直观、准确、非接触的特点,对于提高复合材料构件的研制与防护质量,减少或避免重大事故的发生,具有重要的科学意义和应用价值。

2 红外热波无损检测原理及特点

红外热波无损检测技术是近年来复合材料无损检测领域发展迅速的一种新方法,与常规的超声、射线等检测技术相比,该项检测技术具有非接触、全场、大面积、快速、直观、易实现检测自动化等优点,采用专用软件对获得的红外图像信息处理后,可直接识别缺陷位置坐标,除此之外,检测时对周围环境没有特殊要求,设备轻便、可移动,特别适合现场应用和在线、在役检测,国外已经用于金属和非金属材料及其复合结构件的无损检测。

红外热成像技术理论及应用的研究重点是研究热源,产品被加热后,材料内部的缺陷改变复

合材料局部的热性能,导致材料表面温度场的变化,通过材料表面的温度图谱即可判定缺陷,采

用专用软件进行实时图像信号处理,显示出检测结果,从而达到检测目的。如图1所示。

图1 红外热波无损检测原理图

红外热成像技术就是把物体辐射或反射的红外波段图像转换成可见光波段人眼可观察图象的技术。根据斯蒂芬-玻尔兹曼定律,红外辐射的强度(单位面积向半球方向发射的全波长辐射功率)可表示为:

4T W εσ=

式中:ε-- 灰体发射系数,σ-- 斯蒂芬-玻尔兹曼常数(5.66x10-8 Wm -2 K – 4)

T -- 绝对温度

在复合材料制造过程中,因制造工艺不合理使固体复合材料中产生缺陷时,缺陷尺寸相对于物体整个表面而言所占比例很小,所以,均匀加热缺陷部位时,为了使问题简化,缺陷附近区域的热传导可以用固体一维热传导(沿板厚方向)模型代替,如图2所示。

图2 复合结构件缺陷一维热传导模型

根据固体热传导方程,简化后缺陷部位的一维热传导方程为:

缺陷

胶层

T k t

T c 2?=??=ρ 式中:ρ— 密度,c — 比热,k — 热传导系数,

?— laplace 算子,T — 温度,t — 时间

如果复合结构件内存在缺陷,采用适当的热加载方式加热构件表面时,热波在构件内部传播,并在其内部扩散,由于试件内部存在着裂纹、气孔、分层等缺陷,这将引起试件的热传导、热容量等性能的改变,经过一定的时间,由于热流被缺陷阻挡,就会在缺陷附近发生热量堆积,而这些热量的堆积必定会以不同的温度分部反映出来,使得有缺陷区域的表面温度不同于没有缺陷区域对应的表面的温度,当用红外探测器扫描或观察试件表面时,红外热像仪就可以测定工件表面的温度分布状况,在试件加热或冷却过程中探测出物体表面温度变化的差异,进而判明缺陷的存在及其大小。

3 国内外发展概况

目前国外红外热波无损检测技术的应用研究以美国较为领先,其次是瑞典、加拿大、英国和日本,主要应用于航空航天领域金属、陶瓷、橡胶等和发动机金属喷管胶接质量的检验。美国GE 、GM 、 波音、福特、洛克西德、西屋、NASA 及海军等已广泛应用,美国、俄罗斯、法国、加拿大等国己把红外热波检测技术广泛应用于飞机复合材料构件内部缺陷及胶接质量检测、蒙皮铆接质量检测。美国空间动力系统 GDSS 从 1992 年起就用该技术对 Atlas 空间发射舱复合材料的脱粘缺陷和A3火箭进行检测,目前红外无损检测已经正式应用于生产检测。美国的无损检测协会负责编写、2001年出版的无损检测手册中,红外热像无损检测分册里有大量的篇幅论述红外热波无损检测技术在航空航天领域的应用。美国韦恩州立大学的工业制造研究所在该技术领域的研究上一直得到美国政府机构和许多大公司科研基金的支持,处在该领域研究的最前沿,取得了很多实际的研究成果。在FAA 1998, 1999和2000年飞机机身无损探伤技术竞标中,此技术击败包括X 射线、超声波、暗电流检测等多项技术而唯一胜出。并逐渐被NASA 、美国空军和海军、波音、洛克希德.各大汽车公司及各大航空公司等许多知名大公司所采用。自20世纪90年代中期以来.这些政府机构和大公司纷纷设立了红外热波无损检测实验室,用于研究解决各自独特的无损检测问题。

目前国内红外热波无损检测技术尚处于试验研究阶段,国内科研单位在金属、金属与非金属复合结构中缺陷的红外无损检测与评价方面也进行了卓有成效的研究工作,如西安交大、北方交大、东南、天大、清华、621所、205所等,应用领域涉及电力、机车、医学、集成电路等热

故障缺陷的检测和航空航天领域铝蜂窝结构、多层材料复合结构的分层、脱粘、裂缝等缺陷检测。如火箭发动机的机体、火箭壳体、航空发动机喷管、涡轮叶片以及飞机蜂窝状结构等部件。2003年该项技术的应用研究列入国家863计划,同时得到211工程支持,北京首都师范大学、北京航空航天大学、北京航空材料研究院等单位进行了一些典型试件的应用试验,并获得了一些初步的实验结果。但由于是试验研究项目,专用检测设备的开发应用尚处于实验室阶段,目前国内还无红外热相仪的专业生产厂家,主要依靠引进红外热相仪进行相关技术研究工作。

4应用实例

4.1 红外热波无损检测系统

FLIR ThermaCAM P30便携式非制本次红外热波检测试验使用的红外检测仪器为美国TM

冷型红外热像仪,采用热加载方式为:(1)远红外均匀加热,冷却过程中检测;(2)大风口、小温度梯度热气流局部瞬态加热,在加热、冷却过程中检测;(3)小风口、大温度梯度局部瞬态加热,在加热、冷却过程中检测。在以上加热方式中均采用同侧加热、反射红外热波检测和异侧加热、透射红外热波检测,从而对加热方式和检测效果进行评价。

4.2 检测试件(3mm高硅氧板+3mm碳纤维板),如图3所示。

图 3 检测试件实物照片

4.3 检测结果

通过对检测试件进行不同加载方式、不同加载温度梯度和不同加热源加热等大量实验研究,并对实验结果进行总结分析,得到如图4的检测结果。

图4 红外热波检测试验图

4.4 外热波成像检测方法研究结果与分析 红外热波无损检测技术能够用于复合材料的无损检测,检测设备轻便,对检测环境无特殊要求,检测结果直观,标准配置的红外热像仪能够检测出复合材料内部的Φ10mm 分层、气孔等缺陷,如果要提高检测的灵敏度,需要改进现有热像仪配置,采用配置高空间分辨率镜头、可以实时记录热像图的热像仪,而且要采用适合的热加载技术,以及后续热图像信息处理技术。 5 结语

红外热波无损检测技术可以应用于多种材料、结构的产品检测,该项技术的应用可以为工艺分析提供参考信息,可用于产品设计、加工制造、成品检测等各个方面。但是该方法对结构复杂的产品需要高效的数学计算模型;受加热设备的限制检测深度还不够深;对缺陷的分辨率不够高,不及超声C 扫描;用于某些金属检测时,外表面需进行抗反射处理。

红外测试技术培训试题教案资料

红外测试技术培训试 题

红外测试技术培训试题 一、 单选题 1. 红外成像仪的色标温度量程宜设置在环境温度加 左右的温升范围内。 ( ) (a ) (A )10K-20K (B )5K-10K (C )15K-25K (D )20K-30K 2. 下图中哪个成像图不符合“确保被测设备不被遮蔽”原则( ) (d ) 3. 在进行红外测试时,有以下步骤需要遵循,①重点、温度异常点精确测 温,②全面测温,③环境检测;应遵循的正确顺序为:( ) (c ) (A ) ③①② (B ) ②③① ℃ 51.5℃3540 4550AR01℃51.5℃ 35404550 AR01℃ 51.5℃ 35 40 4550 AR01℃51.5℃ 35 404550 AR01 (A ) (B ) (C ) (D )

(C)③②① (D)②①③ 4.对变压器进行红外诊断,应开变电站第种工作票。()(b) (A) 第一种工作票 (B) 第二种工作票 (C) 第三种工作票 5.在红外诊断对环境的要求中,下列说法不恰当的为()(b) (A) 环境温度一般不宜低于5℃、相对湿度一般不大于85% (B) 最好在阳光充足,天气晴朗的天气进行 (C) 检测电流致热型的设备,最好在高峰负荷下进行。否则,一般应在不低于30%的额定负荷下进行 (D) 在室内或晚上检测应避开灯光的直射,最好闭灯检测 6.在对红外热像仪拍摄的图像进行分析时,采用的是表面温度判别法,下列 解释准确的为( ) (d) (A) 同组三相设备、同相设备之间及同类设备之间对应部位的温差进行相比较 (B) 与红外测试的历史数据作相比较 (C) 在一段时间内使用红外热像仪连续检测某被测设备,观察设备温度随 负载、时间等因素变化的方法。 (D) 将所测得温度、与环境的温差,与设备运行规定值相比较 7.红外检测中,精确检测要求设备通电时间不小于()(c) (A) 2h (B) 4h (C) 6h (D) 8h

复合材料的红外热成像无损检测技术

复合材料的红外热成像无损检测技术报告 院系:航空航天工程学部 班级:04030501 姓名:扈永健(2010040305005) 黄学廉(2010040305006)

目录 一、红外线的发现和分类 (3) 二、不同波段的红外线成像原理和特点 (4) 三、红外热波无损检测技术 (8) 四、展望 (11) 五、参考文献 (12)

摘要:科学技术的不断发展和制造工艺要求的不断提高,要求无损检测技术更加可靠、经济、准确、快速并且使用方便,此时传统的无损检测技术表现出其局限性,无法满足更高水平的要求。红外热成像技术作为非接触探测方式逐渐应用到无损检测领域,并以其快速、准确、安全的特点逐渐被人们认识并应用到多个领域。本文对目前红外热像仪的应用做了简单总结,重点是其在红外无损检测领域中的应用,并对红外热成像无损检测技术的基本原理和检测方法做了简要介绍 关键词:红外热成像技术及成像原理,无损检测, 红外热成像无损检测技术是一门新兴的科学.由于它具有无损、非接触、快速实时、远距离等优点,所以发展非常迅速.尤其是在高速运动、高温、高电压等场合下,该技术更具有常规无损检测技术所无法相比的优点.目前该技术己在石油化工、电力工业、机械制造、航天航空及冶金等领域中获得广泛应用. 一.红外线的发现和分类 1800年,英国物理学家赫歇尔研究单色光的温度时发现:位于红光外,用来对比的温度计的温度要比色光中温度计的温度高,于是称发现一种看不见的“热线”,称为红外线。红外线位于电磁波谱中的可见光谱段的红端以外,介于可见光与微波之间,波长为0.76~1000μm,不能引起人眼的视觉。在实际应用中,常将其分为三个波

红外热波无损检测

红外热波无损检测技术在复合材料检测方面的应用 邓淑萍郑海平姜照汉西安非金属材料材料研究所 杨玉孝西安交通大学 摘要:本文阐述了红外热波无损检测技术的基本原理和特点,介绍了国内外相关技术研究的发展现状,以及在非金属复合材料上检测应用的实例。 关键词:红外热波;复合材料 1 引言 由于复合材料具有高强度、高弹性模量、低热膨胀系数和高导热性等优良性能,现已在航天航空领域获得了广泛的应用,但是,由于复合材料制造过程复杂,在制作成型过程中受设备、环境、人员及原材料等因素的影响,在产品内部易产生空穴、裂纹、分层、多孔等缺陷,对产品的质量和安全性能影响极大,因此,对产品的检测尤为重要。 用于复合材料无损检测的方法主要有射线、超声、磁粉、渗透、涡流、激光全息及红外无损检测技术等,超声、射线检测技术应用最多,但受检测原理影响,射线检测成本高、周期长,不适于现场在线检测,对小分层、脱粘紧贴型缺陷无法检测;超声检测需要逐点扫描、检测效率低,对小、薄及结构复杂的工件检测困难,对复合构件中的脱粘紧贴型缺陷也无法检测;磁粉法只限于铁磁性材料,定量检测缺陷深度较为困难;渗透法检测程序复杂,只能检测表面开口缺陷,不能检测表面多孔性材料;涡流法对工件边缘效应敏感,易给出虚假显示;激光全息检测需暗室防震操作,检测效率低;红外无损检测技术作为复合材料结构件的一种无损检测新方法,具有快速、直观、准确、非接触的特点,对于提高复合材料构件的研制与防护质量,减少或避免重大事故的发生,具有重要的科学意义和应用价值。 2 红外热波无损检测原理及特点 红外热波无损检测技术是近年来复合材料无损检测领域发展迅速的一种新方法,与常规的超声、射线等检测技术相比,该项检测技术具有非接触、全场、大面积、快速、直观、易实现检测自动化等优点,采用专用软件对获得的红外图像信息处理后,可直接识别缺陷位置坐标,除此之外,检测时对周围环境没有特殊要求,设备轻便、可移动,特别适合现场应用和在线、在役检测,国外已经用于金属和非金属材料及其复合结构件的无损检测。 红外热成像技术理论及应用的研究重点是研究热源,产品被加热后,材料内部的缺陷改变复 合材料局部的热性能,导致材料表面温度场的变化,通过材料表面的温度图谱即可判定缺陷,采

红外检测技术介绍-安徽电科院

电网设备状态检测技术培训 ---------红外检测技术
安徽省电力科学研究院 王庆军 2011年3月
输变电设备运维及故障诊断分析技术交流会

主讲人简介
王庆军,安徽省电力科学研究院高压所副所长,国网 公司技术专家 长期从事红外检测技术研究工作 公司技术专家,长期从事红外检测技术研究工作。
输变电设备运维及故障诊断分析技术交流会

? ? ? ? ?
一、红外检测基本知识及术语 红外 测基本 及术语 二、红外热像仪的操作使用 三、判断方法 判断 法 四、诊断依据及缺陷类型确定 、诊断依据及缺陷类型确定 五、电气设备红外缺陷典型图谱
输变电设备运维及故障诊断分析技术交流会

一、红外检测基本知识及术语 红外检测基本知识及术语
? 1 、红外线是 、红外线是一种电磁波(英国物理学家 种电磁波(英国物理学家 赫胥尔 1800 年发 现) (0.75  ̄1000 微米) ,位于可见光红色光带(0.38 ̄0.78 微米)之外,普通玻璃能透过可见光,但是却几乎不能透 过红外线。
输变电设备运维及故障诊断分析技术交流会

? 2 2、热传输的方式 热传输的方式 热传输有三种方式,分别是:传导、对流和辐射。对流通常只发生 在流体介质中。 介质中 ? 3、红外热像仪一般是由三部分组成: 红外探测头、图像处理、监视器。 ? 4、焦平面红外探测器的工作原理: 是依靠探测微型辐射热量的热探测器(Microbolometer)。探测器通过吸 收 射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 收入射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 外加电压的情况下进而产生信号电压。 ? 5、黑体: 任何情况下对一切波长的入射辐射的吸收率都等于1的物体。
输变电设备运维及故障诊断分析技术交流会

红外热像无损检测图像处理研究现状与进展

红外热像无损检测图像处理研究现状与进展 来源:《红外技术》 引言 红外热像(infrared thermography)是目前运用非常广泛的一种快速高效的无损检测技术,通过外部施加的热或冷激励使被测物体内的异性结构以表面温度场变化的差异形式表现出来,从而达到缺陷部位的定性和定量分析。其成像原理是利用红外探测仪将接受到的被测物体的红外辐射映射成灰度值,再转化为可视温度分布图(红外热像图)。最早在二战末期应用于军事侦察领域,因其本身具有快速高效、无需停运、无需取样、可进行无污染、非接触、大面积检测、以及其直观成像等优点,而被作为复合材料的无损检测技术应用于工业领域,如航空航天、机械、油气、建筑等领域。 1 、红外热像技术的发展现状 自20世纪以来,红外热像技术得到快速发展。20世纪90年代,美国无损检测协会和材料试验协会针对红外热成像技术指定了相应标准,并在无损检测手册红外与热检测分册中描述了基于红外热像的无损检测技术在各个领域的运用。目前美国、俄罗斯、法国、德国、加拿大、澳大利亚等国已将红外热像技术广泛运用于航空航天复合材料构件内部缺陷及胶接质量的检测、蒙皮铆接质量检测等。近年来,红外热像技术与智能手机、无人机等设备充分结合,并在各个领域广泛使用,如美国的Fluke和FLIR、德国Testo、国内武汉高德、浙江大立等企业。 国内的红外热像检测技术比欧美、俄罗斯等发达国家起步较晚,但经过十几年的发展,目前也取得较为显著的成果。中国特种设备研究院和武汉工程大学将红外热像技术运用于压力设备缺陷检验,取得了一系列显著的成果。西南交通大学、昆明物理研究所、北京航空材料研究院、北京理工大学、西北工业大学等将红外热像技术运用于航空航天夹层结构件的缺陷检测,取得了有效进展。在石油化工领域,各位学者将红外热像技术用于高温高压容器和管道的缺陷、保温层破损、以及内部液体流动情况的检测,也取得了许多成果。 2 、红外图像预处理 红外技术应用的核心工作在于图像的处理及利用,不仅在无损检测领域,在军事监测、人脸识别等领域的应用更加重要。红外图像的处理主要分为图像预处理和图像识别,预处理是开展后续工作的基础,其主要分为图像的非均匀性校正和图像增强两个方面。 2.1 图像的非均匀性校正

碳纤维复合材料的红外热波检测

第!"卷!第#期!!!!!!!!!!!!!!!激光与红外$%&’!"!(%’# !)**"年#月!!!!!!!!!!!!!!+,-./!0!1(2/,/.3,456&!)**" !!文章编号!7**78"*9:")**"#*#8*);)8*! 碳纤维复合材料的红外热波检测 李艳红7!张存林7!金万平)!杨党纲!!沈京玲7!陈继华7!张小川7!蒋淑芳7 "7’首都师范大学!北京7***!9$)’北京维泰凯信新技术有限公司!北京7***:!$!’北京航空材料研究院!北京7***Y"# 摘!要!本文就红外热波检测的基本原理和实验方法做简要介绍!并对碳纤维层压板实验结果 作了初步分析" 关键词!碳纤维复合材料#红外热波#无损检测 中图分类号!<()7Y!!!文献标识码!, 8DA4*1.%,5%+*G&’(*9#1$>#"+*8’9-*>#"&’&/;%1=&’ E"=*1;&.-&9"#*J%#*1"%, +1^A B8C%B T7!]P,(?E D B8&6B7!d1(@A B846B T)!^,(?3A B T8T A B T!!-P.(d6B T8&6B T7! E P.(d68C D A7!]P,(?N6A%8I C D A B7!d1,(?-C D8K A B T7 "7’E A46J A&(%5O A&X B6M L5H6J S!\L6_6B T7***!9$)’\L6_6B T@A6J L h H6B,Q M A B I L Q#%2D B Q A O L B J A&456B I64&L A B QL V4L56O L B J A&O L J C%Q%K6B K5A5L Q J C L5O A&U A M L B%B Q L H J5D I J6M L6B H4L I J6%B6H 6B J5%Q D I L Q’,B QA I I%5Q6B T J%J C L H6O D&A J L I A5R%B K6R L5I%O4%H6J LO A J L56A&&A O6B A J L Q R%A5Q!J C L L V4L56O L B J A&5L8 H D&J H6H6B6J6A&&S A B A&S‘L Q’ ?*:@&1(9%I A5R%B K6R L5I%O4%H6J L$1/J C L5O A&U A M L$B%B Q L H J5D I J6M L6B H4L I J6%B 7!引!言 碳纤维复合结构主要是由碳元素组成的一种特种纤维!具有高比强度&高比模量&耐高温&耐腐蚀&耐疲劳&抗蠕变&导电!传热和热膨胀系数小等一系列优异性能!既可作为结构材料承载负荷!又可作为功能材料发挥作用’7()对于其在制造中的缺陷和使用过程中的损伤!国内目前主要是用超声波和N射线进行无损检测)超声E扫描能可靠地检出材料中的分层&疏松&孔隙等大部分危害性缺陷!但检测效率较低’)()N射线不受材料限制!探伤对气孔&夹渣&未焊透等体积型缺陷敏感!但检测周期长&消耗大&成本高)在国家:;!计划")**!,,!!!*Y*#和)77工程重点学科建设经费等的支持下!首都师范大学&北京维泰凯信新技术有限公司&北京航空材料研究院等单位最近开展的红外热波无损检测一系列 实验!结果表明!该技术可测量损伤面积和各种漆层&夹层的厚度以及进行表面下的材料和结构的识别!具有快速!观测面积大!直观易懂!准确&非接触&无污染等优点) )!基本原理 红外热波无损检测的基本原理就是对检测材料进行主动加热!利用被检材料内部热学性质差异!热传导的不连续反映在物体表面温度的差别上!即物体反映在物体表面温度的差别上!物体表面的局部区域产生温度梯度!表面红外辐射能力发生差异!再借助红外热像仪探测被检试件的辐射分布!反映到热像图序列就可推断出内部缺陷情况)这种检测 !!作者简介!李艳红"7Y:7Z#!女!首都师范大学物理系在读研究生!专业方向为光电信息处理!现在红外热波实验室从事:;!项目*红外热波无损检测技术在复合材料研究中的应用+课题研究) !!收稿日期!)**#8*Y8*; 万方数据

激光扫描红外热波成像技术在无损检测中的应用_江海军

2014远东无损检测新技术论坛论文精选 收稿日期:2014-06- 25作者简介:江海军(1988-),男,研发工程师,主要从事红外热波无损检测工作。 激光扫描红外热波成像技术 在无损检测中的应用 江海军1, 陈 力1,张淑仪2(1.南京诺威尔光电系统有限公司,南京 210038;2.南京大学声学研究所,南京 210093)摘 要:对激光扫描热波成像技术与传统的闪光灯激励热波技术进行了比较,介绍了一种基于激光扫描热波成像技术的新型红外无损检测设备,通过试验对所建立的2-D理论模型进行验证,试验结果表明,当激光扫描速度在一定范围内,样品表面温度场的变化服从一维热传导模式,主要表现为厚样品的温度-时间曲线在双对数坐标中为斜率-0.5的直线,与理论模型的结果相符合。并对两种特殊涂层的人工样品进行检测,验证了激光扫描红外热波成像设备的有效性。 关键词:激光扫描热波成像;热波;特殊涂层 中图分类号: TG115.28 文献标志码:A 文章编号:1000-6656(2014)12-0020-03Applications of the Laser Scanning Infrared Thermography  for Nondestructive TestingJIANG Hai-jun1,CHEN Li 1,ZHANG Shu-y i 2(1.Novelteq  Co.,Ltd.,Nanjing 210038,China;2.Institute of Acoustics,Nanjing University,Nanjing 210093,China)Abstract:A new active thermography system based on laser scanning technology is described.The system is comparedwith traditional flash lamp based approach.A 2-D temperature distribution model was examined with experimental resultsand the detection capability  of the system was verified with some samples of special over coatings.Keywords:Laser scanning  thermography;Thermal wave;Special coating 得益于红外热像仪的快速发展, 红外热波成像无损检测技术已经在欧美等先进国家得到广泛应 用,特别是在航空航天及国防军工等领域[ 1] 。该技术具有检测速度快、非接触、非破坏、检测面积大、便于在线在役检测、结果直观易懂等优点,可对金属、非金属、复合材料中存在的脱粘、裂纹、锈蚀、损伤等缺陷进行检测,已日益成为保证产品质量和安 全运行的重要手段[ 2] ,具有广阔发展前景。近年来,国内一些研究机构在跟踪研究红外无损检测技 术[3-6 ]方面做出了很多重要工作,但是在实际应用 方面和国外的差距还是很大。主要原因之一在于国内的检测系统大多依靠进口设备,导致成本很 高,很难进行推广应用[ 7-8] 。红外热波成像检测技术的两大关键技术为高 能量、短脉冲热激励和高帧频红外图像采集,对于检测高导热率的材料和近表面缺陷十分重要。目前国际上都是采用大功率闪光灯作为高功率短脉冲热激励,高帧频红外热像仪进行图像采集,该设备不仅功能有很多局限性,而且成本很高,同时高帧频热像仪的分辨率会随帧频的提高而大幅降低。 激光扫描热波成像技术可以有效地解决上述两个难题。其利用线状连续激光束在样品表面进行扫描,形成高功率密度的脉冲热激励,再通过控制激光束与热像仪之间的扫描时序关系,达到快速检测的目的,可实现优质的热波层析成像。该技术使得设备的功能得到大幅提升,而成本却大幅下降。 1 方法论述 1.1 激光扫描热波成像系统 红外热波成像技术采用热激励源对样品表面进行加热并形成向样品内部传播的热波,样品中的

红外热波无损检测知识

红外热波无损检测属于红外热成像视觉检测,检测过程基于材料表面的温度场变化特点。由于热量传递的连续性,材料内部热传递或者热特性的改变必然会影响到表面温度场,从而反映出材料内部的不连续性或损伤。 本技术的实现原理是通过热激励源进行外部主动加热,在被检结构表面激发出热波并向内部传播,通过热像仪记录结构内部热波传播过程(热传递过程)不同所导致的表面温差,由获取的热图像来判别结构内部损伤并进行定量分析。 研制的红外热波无损检测系统由计算机、热激励系统和热图像采集装置三部分组成。计算机是硬件控制平台,提供可视化操作界面;热图像采集装置用于完成对被检测表面温度场变化情况的记录;热激励系统用于对被检测部位实施热激励。热图像采集装置主要由红外热像仪、前端显示器和铝制盒体组成。红外热像仪负责热图像的实时采集并以特定的格式传输给计算机;前端显示器用于检测人员在检测位置实时观察被检测表面的温度场变化情况。热激励系统主要由热激励源和供电电源组成,热激励源安装在热图像采集装置的铝制盒体内部。热激励源可分别提供热激励时的脉冲强光热辐射和连续光热辐射输出。供电电源为独立结构,提供热激励源工作时所需的大电流。 【技术特点】与传统的损伤检测方法相比,红外热波无损检测具有适用面广(可用于所有金属和非金属材料)、检测速度快(每次检测只需数十秒钟)、检测面积大(检测面积可根据硬件及被检测对象进行调节)、单向非接触检测、显示直观且直接存储、定量测量和特征识别等特点。特别适合于飞机纤维增强复合材料结构和表面涂层内部脱落或腐蚀的在役检测。 【技术水平】技术性能参数: (1)温度测量精度:±2%。 (2)热灵敏度:0.08℃(30℃时)。 (3)空间分辨率:1.3mrad(毫弧度)。 检测性能指标: (1)可检测损伤类型:复合材料层压板分层、脱粘等内部损伤;复合材料蜂窝夹芯结构面板与蜂窝芯脱粘、蜂窝芯塌陷、积水、积油等。 (2)最小检测损伤面积:16mm2(埋深1mm)。 (3)检测速度:单次检测时间≤60s(连续工作状态)。 【可应用领域和范围】红外热波无损检测系统主要用于飞机、无人机和直升机等纤维增强复合材料构件的损伤检测及修理工作。该检测系统能够检测构件内部的面积型损伤,可实现损伤面积和埋藏深度定量计算,为复合材料构件损伤修理方案的制订提供参考数据,并可用于修理后的质量检查。 可用于航空航天飞行器设计与制造、飞行器在役维护保障等领域,尤其适用于纤维增强复合材料结构的损伤检测评估与维修质量检查。 【专利状态】已获得1项发明专利。 【技术状态】小批量生产阶段 【合作方式】技术转让合作开发

红外检测技术介绍

红外探测技术 红外检测技术基本原理 红外技术的原理是基于自然界中一切温度高于绝对零度的物体,每时每刻都辐射出红外线,同时,这种红外线辐射都载有物体的特征信息,这就为利用红外技术探测和判别各种被测目标的温度高低与热分布场提供了客观的基础。 红外线是波长在0. 76?1000 U m之间的一种电磁波,按波长范围可分为近红外、中红外、远红外、极远红外四类,它在磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射在真空中的传播速度 C=299792458m/s ?3xlO lu cm/s 红外辐射的波长 A = — co 式中:C:速度 2:波长 3 :频率 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外

线。其中黑体频谱辐射能流密度对红外辐射波长的关系,根据普郎克定律: D一GxL (瓦?厘米”"微米") 式中: P一波长%,热力r AT 学温度为T时,黑体的红外辐射功率。 C一光速度 (axiomcm/s) C—第一辐射常 数二3.7415X104(瓦厘米?微米2) 之一波长(微米),T热力学 温度(K)温度辐射的能量密 度峰值对应的 波长,随物体温度的升高波长变短。 根据维思定律:人理(urn) T 式中: A一峰值波长,单位:um T一物体的绝对温度单位K 物体的红外辐射功率与物体表面绝对温度的四次方成正比,与物体表面的发 射率成正比。物体红外辐射的总功率对温度的关系,根据斯蒂芬—波尔兹曼定 律:

红外热波无损检测技术的研究现状与进展

第40卷 第5期 红 外 技 术 V ol.40 No.5 2018年5月 Infrared Technology May 2018 401 〈综述与评论〉 红外热波无损检测技术的研究现状与进展 郑 凯1,江海军2,陈 力3 (1. 江苏省特种设备安全监督检验研究院,江苏 南京 210036;2. 南京诺威尔光电系统有限公司,江苏南京210046; 3. 电子科技大学,四川 成都 610054) 摘要:红外热波成像是近年来发展较快的一种新型无损检测技术,它是一门跨学科、跨应用领域的通用型实用技术,其三大核心技术包括热激励、红外图像采集及红外图像处理。本文对热激励技术中的闪光灯、激光、卤素灯、红外灯、超声、电磁等几种主要热激励方法的特点及研究现状进行了介绍与对比,分析了采集技术中的制冷与非制冷热像仪各自特点,并对红外图像处理技术中的降噪、增强、序列热图处理及缺陷提取等四大研究方向进行了总结,介绍了相应发展状况和进展。最后总结了该技术的发展趋势。 关键词:红外无损检测;热波成像;热波激励;红外图像采集技术;红外图像处理 中图分类号:TB302.5 文献标识码:A 文章编号:1001-8891(2018)05-0401-11 Infrared Thermography NDT and Its Development ZHENG Kai 1,JIANG Haijun 2,CHEN Li 3 (1. Special Equipment Safety Supervision Inspection Institute of Jiangsu Province , Nanjing 210036, China ; 2. Novelteq Ltd , Nanjing 210046, China ; 3. University of Electronic Science and Technology of China , Chengdu 610054, China ) Abstract :Thermography is a new NDT testing technology that has developed rapidly in recent years. It is an interdisciplinary and broadly applicable technology crossing multiplefields. Three major components of this technology include the excitation source, IR image acquisition, and data processing. This paper presents a brief comparative analysis of the current research status for different excitation sources, including flashlights, lasers, IR lamps, ultrasound, and electromagnetism. It compares the characteristics of cooled and uncooled thermal imagers and also introduces the recent development of various IR image processing technologies for feature enhancement, noise reduction, sequence processing, and defect extraction. Finally, the trend of this technology is briefly summarized. Key words :thermography ,nondestructive testing ,thermal excitation ,IR image acquisition ,IR image processing 0 引言 热波成像是一种主动式红外无损检测技术,它利用热能的传播来对材料的热导特性的变化进行检测。经过多年的发展,已成为一种灵活便捷的通用型无损检测技术,被广泛应用于金属、非金属、复合材料中存在的脱粘、裂纹、锈蚀、疲劳、损伤等缺陷的检测[1-3]。与射线、超声、磁粉、渗透、及涡流等传统无损检测技术相比,它具有快速、高效、大面积、直观及可远 距离非接触检测等优点,是一种新型数字化无损检测技术,近年来在国际上得到快速的发展,并不断地被人们所接受并推广使用[4-5]。作为一门跨学科、跨应用领域的通用型实用技术,红外热波无损检测是对传统无损检测技术的替代和补充,通过相互结合,可以提 万方数据

《带电设备红外诊断技术应用导则》DLT

带电设备红外诊断技术应用导则 参照中华人民共和国 电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》 《华北电网有限公司红外技术管理制度》 1、从事红外检测与诊断工作的人员应具备以下素质: (1)从事红外检测与诊断工作的人员应熟悉红外检测与诊断技术的基本原理,掌握红外检测仪器的工作原理、主要性能、技术指标以及操作方法,并能熟练操作红外检测仪器。 (2)从事红外检测与诊断工作的人员应了解电气设备的性能、结构、运行状况。 (3)从事红外检测与诊断工作的人员应熟悉掌握中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》和本管理制度,掌握《国家电网公司电力安全工作规程(变电站和发电厂电气部分、电力线路部分)(试行)》和现场试验的有关安全规定。 2、红外检测的范围:只要表面发出的红外辐射不受阻挡都属于红外诊断的有效监测设备。例如:旋转电机、变压器、断路器、互感器、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。 二、红外检测与诊断的基本要求 (一)对检测设备的要求 1、红外测温仪应操作简单,携带方便,测温精确度高,测量结果的重复性好,不受测量环境中高压电磁场的干扰,仪器应满足现场带电实测对距离的要求,并应能对表面放射率、大气环境参数、测量距离等进行修正以保证测量结果的真实性。 2、红外热电视应操作简单携带方便,有较好的测温精确度,测量结果的重复性好,不受测量环境中高压电磁场的干扰图像清晰,具有图像锁定、记录、输出和简单的分析功能。 3、红外热像仪应图象清晰、稳定,不受测量环境中高压电磁场的干扰,具有较强的图象分析功能,具有较高的热传感分辨率和图象分辨率,空间分辨率应满足实测距离的要求,具有较高的测量精确度和合适的测温范围。 (二)对被检测设备的要求 1、被检测设备应为带电设备。

无损检测新技术

无损检测新技术 无损检测是指在不损害或不影响被检测对象使用性能,不伤害被检测对象内部组织的前提下,利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试的方法[1] 。无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT)四种。其他无损检测方法有涡流检测(ECT)、声发射检测(AE)、热像/红外(TIR)、泄漏试验(LT)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)、超声波衍射时差法(TOFD)等。 一、磁记忆检测 金属磁记忆检测技术是一种利用金属磁记忆效应来检测部件应力集中部位的快速无损检测方法。克服了传统无损检测的缺点,能够对铁磁性金属构件内部的应力集中区,即微观缺陷和早期失效和损伤等进行诊断,防止突发性的疲劳损伤,是无损检测领域的一种新的检测手段。金属磁记忆方法自诞生以来,对其机理的解释就成为国内外学术界关注的焦点。国外专家俄罗斯 Doubov教授最早提出:磁记忆现象的出现是由于工件载荷作用下在铁磁材料内部形成位错稳定滑移带,高密度的位错积聚部位形成磁畴边界(位错壁垒),产生自有漏磁场。 在机理研究方面。如从电磁学角度出发的电磁感应说,即铁磁性材料垂直于地磁场作用方向的横截面积,在定向应力作用下会发生应变,因而通过此横截面的磁通量会发生变化。由电磁感应定律知,该截面上必然产生感应电流,并激励出感应磁场使工件磁化。又如基于铁磁学基本理论的能量平衡说,即磁记忆效应产生的内在原因是金属组织结构的不均匀性,材料内部不均匀处会出现位错,在地磁场环境中施加应力,则会出现滑移运动…,其结果会引起位错的增殖,产生很高的应力能。能量平衡的结果,使得铁磁零件内部磁畴的畴壁发生不可逆的重新取向排列,由于金属内部存在多种内耗效应,使得动载衙消除后,在金属内部形成的应力集中区会得以保留。为抵消应力能,磁畴组织的重新排列也会保留下来,并在应力集中区形成类似缺陷的漏磁场分布形式,即磁场的切向分量为最大值,而法向分量符号发生改变,且具有过零值点。丁辉等17呗0建立了裂纹类缺陷应力场和磁通量变化间的数学模型,为磁记忆检测裂纹类缺陷提供了理论依据。在磁记忆检测技术应用研究方面,大庆石油学院开展的对带有预制焊接裂纹的球型容器、爆破试验后破裂的管件和带有焊接缺陷的管件进行了磁记忆检测实验研究,利用已知评价标准,准确找出了构件中的缺陷,充分验证了金属磁记忆方法的有效性。中国科学院上海精密机械研究所等单位开展的利用地磁场检测钢球表面裂纹的可行性研究,表明钢球被地磁场磁化后,从位于地磁场中的磁阻传感器采样得到的信号就能够分辨出钢球表面缺陷,为磁记忆技术在轴承检测中的应用

红外热成像检测技术的应用与展望

红外热成像检测技术的应用与展望 无损检测,是指在不会对材料或元件的有效性或可靠性造成损害的前提下,对其内部的异性结构(缺陷或损伤)进行探测、定位、识别及测量的一种实用性技术。红外热成像技术是在红外探测器、微电子和计算机技术的基础上发展起来的,属于综合性高新技术,该技术正朝着快速扫描、非致冷、焦平面阵列式接收、计算机图像处理的方向发展,利用便携式笔记本电脑控制的系统正日趋完善。 红外热成像无损检测技术(又称红外热波无损检测技术),是一门跨学科的技术,它的研究和应用,对提高航空航天器,多种军、民用工业设备的安全可靠性具有重要意义。 1.红外热成像检测技术的原理 红外热成像无损检测技术的基本原理是利用被检物的不连续性缺陷对热传导性能的影响,使得物体表面温度不一致,即物体表面的局部区域产生温度梯度,导致物体表面红外 辐射能力发生差异。借助红外热像仪探测被检物的辐射分布,通过形成的热像图序列就可 推断出内部缺陷情况。 从理论上分析可知,材料或构件因内部缺陷将导致局部力学性能的强度改变,由于材 料内部结构的不连续性,这种缺陷将引起材料或构件的热传导不连续,致使材料或构件的 温度梯度不同,因而显现出的红外热图像也有所不同。通过研究被检测材料的内部缺陷及 结构力学性能,找出其热传导特性与红外热图像之间的关系和机理,根据显示图像的温度 梯度就可以确定缺陷的位置和范围,由温度梯度随时间变化的速率可以确定缺陷的深度。 采用红外热成像技术进行检测的特点是不受材料的几何结构及材质的限制,可以实现

非接触、大面积的检测。 2.红外热成像检测技术的分类 根据探测方式不同,红外热成像检测技术可划分为透射式和反射式,其中反射式更便于使用;根据引起温差的方式不同,可划分为主动式和被动式。 主动式红外热成像检测技术可以对物体表面进行快速、准确的检测,并具有直观、非接触、单次检测面积大等特点。根据主动式激励源不同,主要划分脉冲红外热成像检测技术、锁相红外热成像检测技术和超声红外热成像检测技术等。 2.1脉冲红外热成像检测技术 脉冲红外热成像技术是一种集光、机、电为一体的非接触式无损检测方法,也是目前研究最多和最成熟的方法之一。工作原理如图1所示:以高能脉冲闪光灯作为激励热源,热流在被测构件内部传导过程中,若构件内部存在缺陷或损伤,则使得物体内部热分布将存在不连续性结构,从而导致其缺陷或损伤处的表面温度与无缺陷或损伤处有明显不同。 图1冲红外热成像检测技术的工作原理 脉冲红外热成像检测方式虽然简单实用,但是也存在着一些缺点:适于检测平板类构件,对于复杂结构构件检测存在困难;对热源的均匀性要求非常高;检测构件厚度有限,当检测厚度较高的构件时,难以显示缺陷结果。 2.2锁相红外热成像检测技术

浅谈红外热成像无损检测技术及其应用

浅谈红外热成像无损检测技术及其应用 摘要:随着社会的进步,科学技术的发展也越来越快,传统的无损检测技术渐渐已经不能满足时代的需求了,此时红外热成像无损检测技术被广泛的应用起来,红外热成像无损检测技术在现代各种新型企业和传统的工业中发挥着很大的作用。 关键词:红外热成像;无损检测技术;优缺点 从现在的新型科技企业来说,很多企业的设备在车间生产线上都安装和设置了无损检测程序,之前也有很多传统的无损检测技术出现,不过这些技术不管是在管理方面还是在实践上都存在一定的缺点,而红外热成像无损检测技术能较好的改善一些传统的无损检测技术不能达到的一些检测效果,如今它在很多领域也得到了应用,因为有它检测的便捷、准确性高等优点逐渐得到人们的认可。 1 红外热成像无损检测技术的简介 红外热成像无损检测技术是利用红外热成像原理来工作的。它是由热成像技术、红外标定技术、图象处理技术和图象压缩与恢复技术等多项高技术的集成。举个例子,就石油化工企业生产程序来说,对这个生产线所需要的仪器设备进行检测,首先是启动设备,之后在设备工作的时候就会散发出热量,每个仪器所散发出的热量是不一样的,在设备工作的时候,可以利用红外热成像仪器检测被测仪器的热量,这些热量会发射出辐射,在自然界中一切物体都会有电磁波辐射,之后根据辐射就会在红外热成像仪器上成像,根据成像的不同可以判断被测仪器的工作状态。 2 红外热成像无损检测技术的原理 相位法红外无损检测利用调制激励源在被测物体内部产生周期热波,由于物体内部缺陷产生的反射受到入射波的干扰而在物体表面形成一个可被红外热像仪记录的波形,用红外热像仪采集多幅热图像,经过图像序列信号重构,得到被测物体表面温度变化信号,提取被测物体表面各点温度变化的相位图和幅值图,据此判定缺陷的存在和特征。图1给出了采用红外相位法技术进行无损检测的原理。 2.1 红外无损检测系统的组成 如图2所示,一个典型的红外无损检测系统由以下几部分组成:热激励系统、红外热成像系统、红外图像采集、处理和分析系统。 2.2 激励系统 主动式红外无损检测系统必须要有一个热激励系统,用以造成被测材料内部稳态或瞬态不均匀温度场,使被测材料内部缺陷显示出来。光源激励系统主要包

红外检测方法

红外检测方法 红外线的划分 1672年英国著名科学家牛顿首次用三棱镜将太阳光分解为红、橙、黄、绿、青、兰、紫七色,开始了可见光光谱学的研究.英国著名天文学家赫胥尔在研究太阳光谱中各单色光的热效应时,发现最大的热效应是出现在红色光谱以外,从而发现了红外线的存在。英国著名物理学家马克斯威尔在研究电磁理论时,证实了可见光及看不见的红外线,紫外线等均属于电磁波段的一部分,从而把人们的认识统一到电磁波理论中。从波长为数千米的无线电波, 到波长为10-8A ~10-10A(1A=10-4 μm )的宇宙射线均属于电磁波的范围,而可见光谱的波长从0.4~0.76μm 仅占电磁波中极窄的一部波段。红外光谱的波段为0.76~1000μm ,要比可见光波段宽得多。为了研究和应用的方便。根据红外辐射与物质作用时各波长的响应特性和在大气中传输吸收的特性,可把红外线按波长划分为四部分: ①近红外线——波长为0.76~3 μm ; ②中红外线——波长为3~6 μm ; ③远红外线——波长为6~15 μm ; ④超远红外线——波长为15~1000 μm 目前,600 ℃以上的高温红外线仪表多利用近红外波段。600℃以下的中、低温测温仪表面热成像系统多利用中、远红外线波段,而红外线加热装置则主要利用远红外线波段。超远红外线的利用尚在开发研究中。 红外线辐射的基本定理 ①辐射能 Q ——辐射源以电磁波形式所辐射的能量(J)。 ②辐射功率 P ——辐射源在单位时间内向整个半球空间所发射的能量 (w /s)。 ③辐射度M ——辐射源单位面积所发射的功率, ( W/m -2 )。一般,源的表面积A 越大,发射的功率也越多。因此辐射度M 是描述辐射功率P 沿源表面分布的特性。辐射度在某些文献上又称为辐出度或辐射出射度等。 ④光谱辐射度M λ——表示在波长λ处单位波长间隔内,辐射源单位面积所发射的功率。即 单位波长的辐射度, ( W/m 2·μm ),通常辐射源所发出的红外电磁波都是由多种波长成分所组成(全波辐射)。前述的辐射度M 是描述全波辐射的,因此又称为全辐射 度。而光谱辐射度则是描述某一特定波长成分的辐射度。而光谱辐射度则是描述某一特定波长成分的辐射度。 ⑤黑体的概念——黑体是为了研究方便而引入的一种理想物体。它定义为能在任何温度下将辐射到它表面上的任何波长的热辐射能全部吸收;并与其它任何物体相比,在相同温度和相同表面积的情况下其辐射功率为最大的一种物体。黑体辐射可用黑体炉来模拟。对 此,19世纪末叶的物理学家们曾做了大量实验工作,为非黑体辐射的研究奠定了基础。 ⑥比辐射率 ——定义为在相同温度及相同的条件下,实际物体(非黑体)与黑体的辐射度的比值,即: 黑体的辐射度实际物体的辐射度==b M M ε 有的文献还定义了光谱比辐射率 黑体的光谱辐射度实际物体的光谱辐射度== b λλεM M Q P t ?=?P M A ?=?M M λλ?=?

红外热波无损检测技术

红外热波无损检测技术 红外热波无损检测技术作为一门新兴无损检测技术,广泛应用于航空航天、机械、医疗、电力、建工和石化等领域。该技术具有适用范围广、速度快、非接触、勿需耦合、直观、探测面积大、使用安全及准确等优点,特别适用于整体结构的无损检测和可靠性筛选,已日益成为保证产品质量和安全运行的重要方法和手段。主动式红外热波无损检测以热传导理论为基础,按照热加载激励方法不同可分为脉冲式红外热波检测法和调制式红外热波检测法(如锁相法热波检测)。详细问题你可以咨询大连瑞丰泽科技有限公司。 脉冲式红外热波检测技术是目前最成熟、应用最广泛的检测方法,该方法采用脉冲热源对样件进行激励,利用材料中损伤部位热流与无损伤部位热流的不均匀性引起的表面温度变化进行探伤和检测。该方法以辐射信号强度信息为基础,热波传导的指数衰减使探测的深度有限;材料表面红外发射率低和反射率高均会影响检测性能。红外锁相法热波检测技术采用按正弦规律单一频率调制强度的热源对构件或材料进行热加载, 将红外热波检测技术与数字锁相信号处理技术相结合,通过计算材料或构件表面各点温度变化的相位图和幅值图确定缺陷特征,由于检测信号具有相位延迟且相位的信息量要多于幅值信息量,可有效降低背景噪声的影响,显著提高

温度信号的信噪比。红外锁相法热波检测技术可弥补脉冲式红外热波检测的缺点,具有与材料或构件加热不均匀性、环境条件及结构等无关的优点。但红外锁相法热波检测技术的检测缺陷深度与调制频率密切相关,不同缺陷深度需要选用不同调制频率,由于单一调制频率热波只能探测其相应扩散深度的缺陷, 对于材料内部不同深度缺陷,需要选择不同调制频率对材料进行激励,检测时间较长,降低了检测效率,难以实现一次性可靠检测材料内部不同深度的可检尺度范围缺陷。文中通过理论与实验对线性调频热激励红外热波成像检测技术进行研究,运用有限元法对线性调频)热流在固体材料内部热传导过程进行分析,并采用相关算法提取对仿真分析的表面 温度信号进行计算,得到相关运算的峰值图像与峰值时间图像。利用线性调制光源作为热激励源对金属平底孔试件进行热加载,通过焦平面红外热像仪对图像序列进行采集,在此基础上,利用相关运算与傅里叶变换频域扫描法计算试件表面温度信号变化时域相关峰值及时间和频域的相位信息,利用表面温度的时频域特征信息进行缺陷判定。

相关文档
最新文档