(完整版)整式的乘除提高练习

合集下载

(完整版)整式的乘除培优(可编辑修改word版)

(完整版)整式的乘除培优(可编辑修改word版)

(完整版)整式的乘除培优(可编辑修改word版)整式的乘除培优⼀、选择题:1﹒已知x a=2,x b=3,则x3a+2b 等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12 B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5 D﹒(x-2y)2=x2-4y23、已知M=20162,N=2015×2017,则M 与N 的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定4、已知x2-4x-1=0,则代数式 2x(x-3)-(x-1)2+3 的值为()A﹒3 B﹒2 C﹒1 D﹒-15、若a x ÷a y =a2,(b x)y=b3,则(x+y)2的平⽅根是()A﹒4 B﹒±4C﹒±6D﹒166、计算-(a -b)4 (b -a)3 的结果为()A、-(a -b)7B、-(a +b)7C、(a-b)7D、(b-a)77、已知a=8131,b=2741,c=961,则a,b,c 的⼤⼩关系是()B、A.a>b>c B.a>c>b C.a<b<c D.b>c>a8、图①是⼀个边长为(m+n)的正⽅形,⼩颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式⼦是()A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mnC.(m﹣n)2+2mn=m2+n2 D.(m+n)(m﹣n)=m2﹣n29、若a﹣2=b+c,则a(a﹣b﹣c)+b(b+c﹣a)﹣c(a﹣b﹣c)的值为()=90 pA.4 B.2 C.1 D.810、当x=1 时,ax+b+1 的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8 D.1611、已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1512、在求1+6+62+63+64+65+66+67+68+69 的值时,⼩林发现:从第⼆个加数起每⼀个加数都是前⼀个加数的6 倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的⼩林想:如果把“6”换成字母“a”(a≠0 且a≠1),能否求出1+a+a2+a3+a4+…+a2014 的值?你的答案是()A. B. C. D.a2014﹣1⼆、填空:1、若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=﹒2、若(2x+3y)(mx-ny)=4x2-9y2,则mn=.3. 已知a+b=8,a2b2=4,则1(a2+b2)-ab=. 2999 p999 , q =119,那么9q (填>,<或=)5.已知10a= 20, 10b=1,则3a÷ 3b= 56.设A =(x -3)(x - 7),B =(x - 2)(x -8),则A B(填>,<,或=)7.若关于x 的多项式x2-8x +m =(x - 4)2 ,则m 的值为若关于x 的多项式x2+nx +m2=(x - 4)2 ,则m n=4. 若225 4 3 2 1 3 1 若关于 x 的多项式 x 2 + nx + 9 是完全平⽅式,则 n=8.计算: 20162 - 2015? 2016 =9. 计算: ?1- 1 ??1- 1 ? ?1- 1 ??1- 1 ? =? 32 ? 992 1002 ? 10.计算: (2 +1)(22 +1)(24 +1)(22n+1)=11、已知:(x +1)5 = a x 5 + a x 4 + a x 3 + a x 2+ a x + a ,则 a + a + a =12、已知: x 2 - (m - 2)x + 36 是完全平⽅式,则 m=13、已知:x 2 + y 2- 6 y = 2x - 10 ,则 x - y =14、已知:13x 2 - 6xy + y 2 - 4x +1 = 0 ,则(x + y )2017 x 2016= 15、若 P = a 2 + 2b 2 + 2a + 4b + 2017 ,则 P 的最⼩值是=16、已知 a =1 2018 x2 + 2018,b = 1 2018 x 2 + 2017,c = 1 2018x 2+ 2016 ,则 a 2 + b 2 + c 2 - ab - bc - ac 的值为17、已知(2016 - a )(2018 - a ) = 2017 ,则(2016 - a )2 + (2018 - a )2 =x - 1 18、已知 x x 2 5,则 x 4+ 1 =19、已知: x 2 - 3x - 1 = 0 ,则 x 2 + 1x2三、解答题:=, x 4 +1=x41、(x 2-2x -1)(x 2+2x -1);②(2m+n ﹣p )(2m ﹣n+p )2、形如 a b c的式⼦叫做⼆阶⾏列式,它的运算法则⽤公式表⽰为da c = ad - bc ,⽐如 2b d 1 5= 2 ? 3 -1? 5 = 1,请按照上述法则计算 30 5 =-2ab -3ab2a2b(-ab)2的结果。

(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)

(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)

整式的乘除 提高测试(二)选择题(每小题 2 分,共计 16 分)13.计算(-a )3·(a 2)3·(-a )2 的结果正确的是……………………………() (A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………()(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1 15.4m ·4n 的结果是……………………………………………………………………( ) (A )22(m +n ) (B )16mn (C )4mn (D )16m +n 16.若 a 为正整数,且 x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………()5 (A )5(B )(C )25 (D )10217. 下列算式中, 正确的是 ……………………………………………………………… ( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )( 1 )-2=1= 13329(C )(0.00001)0=(9999)0(D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题 5 分,共 10 分) 23.9972-1001×999.1111122.(1-22 )(1-32 )(1-42 ) (1)92 )(1-102)的值.(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1 =2,求 x 2+ 1 x x 2,x 4+ 1x4 的值.a 2b 2 24.已知(a -1)(b -2)-a (b -3)=3,求代数式-ab 的值.225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.⎨26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题 5 分,共 10 分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1 =10002+6000+9-10002+.【答案】-5990.1 1 1 1 1 22.(1-22)(1-32)(1-42 ) (1)92)(1-102)的值.【提示】用平方差公式化简,1 1 11 1 1 11原式=(1- )(1+ )(1- )(1+ )…(1- )(1+ )(1-)(1+)=21 32 4 32339 10 11 1 9 910101111 · · · · …· ··= ·1·1·1·…·. 【答案】.2 23 3 48 9 102 1020(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1=2,求 x 2+ 1x x 2,x 4+ 1x4 的值.【提示】x 2+ 1 x2 =(x + 1)2-2=2,x 4+ 1 xx 4=(x 2+ 1x2 )2-2=2.【答案】2,2.(a - b )2 124.【答案】由已知得 a -b =1,原式== ,或用 a =b +1 代入求值.2225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.【答案】4.【提示】将 x 2+x -1=0 变形为(1)x 2+x =1,(2)x 2=1-x ,将 x 3+2x 2+3 凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值. 【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3 项系数应为零,得⎧ p - 2 = 0 ⎩q - 2 p - 3 = 0.∴ p =2,q =7.。

(word完整版)整式的加减乘除培优精华

(word完整版)整式的加减乘除培优精华

练习:1、下列那些式子是单项式,并指出他的系数和次数 2013 a 2bba +5x y 2 2013y x + 0 -10 π b a 2221012⨯2、若c ax y -是关于x ,y 的单项式,且系数为2013,次数为12,则a= ,c= 。

3、12)1(++n y x m 是关于x ,y 的四次单项式,则m= ,n= 。

4、下列那些式子是多项式,并指出他的次数,读法,各项的次数x 2+x 3+x 40 4—2π 9 x 4y b a y x +- 6ab+4 243(a+b)5、z y xy x +++444读作: ; 1425-+++-z xz y xy 读作: ;6、2013435232--+-+b a ab b a b a 这个多项式的最高次项是 ,一次项是 ,二次项是 ,三次项是 ,常数项是 。

7、已知4543433515a y y x y x y x +-+-,按a 升幂排列为: ; 按a 的降幂排列为 ;按b 升幂排列为: ;按b 的降幂排列为 . 8、下列那些式子是整式12π -4yxz x 2-y 22a-b+8c 543 43x 4y 0 322013y x + b a 2221012⨯9、若b b a x y x 532-+和是同类项则a= ,b= 。

若363543y x y x nn m -+和是同类项则m= ,n= 。

11、若442-+x x 的值为0,则51232-+x x 的值是________.12、如果代数式535ax bx cx ++-当2x =-时的值为13,那么当2x =时,该式的值是 . 13、若3a =-,25b =,则20072006a b +的个位数字是=________。

14、已知012=-+a a ,求2013223++a a = 。

15、当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值 。

(完整版)整式的乘除提高练习题(精准校对-课后练习)

(完整版)整式的乘除提高练习题(精准校对-课后练习)

(完整版)整式的乘除提高练习题(精准校对-课后练习)整式的乘除提高练习题一、填空1.若2a +3b=3,则9a ·27b 的值为_____________.2.若x 3=-8a 9b 6,则x=______________.3.计算:[(m 2) 3·(-m 4) 3]÷(m ·m 2) 2÷m 12__________.4.用科学记数法表示0.000 507,应记作___________.5.a 2+b 2+________=(a+b )2 a 2+b 2+_______=(a -b )2(a -b )2+______=(a+b )26.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)7.设是一个完全平方式,则=_______。

8.已知,那么=_______。

9.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.二.计算:(本题8分)(1)(2)(3))(2x 2y -3xy 2)-(6x 2y -3xy 2)(4)(-32ax 4y 3)÷(-65ax 2y 2)·8a 2y(5)(45a 3-16a 2b+3a )÷(-13a )(6)(23x 2y -6xy )·(12xy )(7)(x -2)(x+2)-(x+1)(x -3)(8)(1-3y )(1+3y )(1+9y 2)12142++mx x m 51=+x x 221xx +()()02201214.3211π--??? ??-+--()()()()233232222x y x xy y x ÷-+-?(9)(ab+1)2-(ab -1)2 (10)(998)2 (11)197×203(12) a 3÷a ·a 2; (13)(-2a )3-(-a )·(3a )2(14)t 8÷(t 2·t 5);(15)x 5·x 3-x 7·x+x 2·x 6+x 4·x 4.(16)0.252008×(-4)2009 (17)(a -b) 2·(a -b) 10·(b -a );(18)2(a 4) 3+(a 3) 2·(a 2) 3+a 2a 10 (19)x 3n+4÷(-x n+12) 2÷x n .(20)2202211(2)()()[(2)]22----+---+--;(21)32236222()()()()x x x x x ÷+÷-÷-(22) 333)31()32()9(?-?-;(23) 19981999)532()135(?-.(24)21012()1(3)3π--+---- (25)[5xy 2(x 2-3xy)+(3x 2y 2)3]÷(5xy)2(26)(2m+1)(2m-1)—m ·(3m-2) (27)10002-998×1002 (简便运算)(28) (-2y 3)2+(-4y 2)3-(-2y)2·(-3y 2)2 (29)(3y+2)(y-4)-3(y-2)(y-3)三(本题8分)先化简,再求值:(1),其中,。

(完整)整式的乘除拔高题.docx

(完整)整式的乘除拔高题.docx

1.算:( 1)( 2+1)( 22+1 )(24+1)⋯(22n+1) +1( n 是正整数);( 2)( 3+1)( 32+1 )(34+1)⋯(32008+1)-34016.22.利用平方差公式算:2009 ×2007 -20082.( 1)利用平方差公式算:22007.2008200720062007 2( 2)利用平方差公式算:.2008 200613.解方程: x( x+2 )+( 2x+1 )( 2x- 1) =5( x2+3 ).1.(律探究)已知x≠1,算( 1+x)( 1- x) =1 - x2,(1- x)( 1+x+x 2) =1- x3,(1- x)( ?1+x+x 2+x 3)=1- x4.(1)察以上各式并猜想:( 1- x)( 1+x+x 2+⋯ +x n) =______.( n 正整数)(2)根据你的猜想算:①(1-2)(1+2+22+2 3+24+25)=______ .② 2+2 2+23+⋯ +2n=______ (n 正整数).③( x- 1)( x99+x 98+x 97+⋯ +x2+x+1 ) =_______ .(3)通以上律你行下面的探索:①( a-b)( a+b)=_______.②( a- b)( a2+ab+b2) =______.③( a- b)( a3+a2b+ab2+b3) =______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m, n 和数字 4.221、已知 m+n -6m+10n+34=0,求 m+n的值2、已知2246130、都是有理数,求yx y x y, x y x 的值。

3.已知(a b)216, ab 4, 求a2b2与 (a b) 2的值。

3练一练1 .已知(a b) 5, ab 3 求 (a b)2与 3(a2b2 ) 的值。

2 .已知a b 6, a b 4 求ab与 a2b2的值。

3、已知a b 4, a2b2 4 求 a2b 2与 (a b) 2的值。

(完整word版)整式的乘除竞赛题

(完整word版)整式的乘除竞赛题

初二上加深提高部分整式的乘除复习题1、阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a .∵x-y=(a2-a-2)-(a2-a)=-2<0∴x<y看完后,你学到了这种方法吗再亲自试一试吧,你准行!问题:计算1.345×0.345×2.69-1.3453-1.345×0.3452解:设1.345=x,那么:原式=x(x-1)•2x-x3-x(x-1)2,=(2x3-2x2)-x3-x(x2-2x+1),=2x3-2x2-x3-x3+2x2-x,=-1.345.4、我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n•(n-1)•(n-2)…2•1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加碱,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!= ;(2)(3+2)!-4!= ;(3)用具体数试验一下,看看等式(m+n)!=m!+n!是否成立?12. 小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点,例如:(x-1)(x2+x+1)=x3-1,(2a+b)(4a2-2ab+b2)=8a3+b3,小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式”,小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差)”小明说:“还有,我发现左边那个二项式和最后的结果有点像”小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍”小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系”…亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗?(1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算(-x-2y)(x2-2xy+4y2)吗?2、一个单项式加上多项式9(x-1)2-2x-5后等于一个整式的平方,试求所有这样的单项式.3、化简:(1);(2)多项式x2-xy与另一个整式的和是2x2+xy+3y2,求这一个整式解:(1)原式=2a2-ab+a2-8ab-ab=a2-9ab;(2)(2x2+xy+3y2)-(x2-xy)=2x2+xy+3y2-x2+xy=x2+2xy+3y2.∴这个整式是x2+2xy+3y2.点评:(1)关键是去括号.①按5、设,求整式的值.6、已知整式2x2+ax-y+6与整式2bx2-3x+5y-1的差与字母x的值无关,试求代数式7(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)的值.解:(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,因为它们的差与字母x的取值无关,所以2-2b=0,a+3=0,解得a=-3,b=1.2(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)=6a2-4a2b+5ab2+4b3=6×(-3)2-4×(-3)2×1+5×(-3)×1+4×1=7.8。

整式的乘除法提高练习

整式的乘除法提高练习

整式的乘除法提高练习1,已知x ·x a ·x 2a+1=x 29,求a 2+2a+1的值 2,如果y m-n ·y 3n+1=y 13,且x m-1·x 4-n =x 6,求2m+n 的值 3,若(9m=1)2=316,求正整数m 的值。

4,已知22x+1+4x =48,求x 的值。

5,已知n 为正整数,且(x n )2=9,求( x 3n )2-3(x 2)2n 的值 。

6,已知|a-b+2|+(a-2b )2=0,求(-2a )2b 的值. 7,已知2a =3,2b =6,2c =12,求证:2b=a+c 。

8,已经在10m =4,10n =5,求102m-3n 的值。

9, 已知有理数a ,b ,c 满足|a-c-2|+(3a-6b-7)2+|3b+3c-4|=0,求(-3ab )·(-a 2c )·6ab 2的值。

10, 如果(-3x 2m-1y 2n-1)( x n y m-1)=-x 7y 5,m ,n 均为正整数,求m ,n 的值 11, 若x 2y 3<0,化简:-2xy ·|- x 5(-y )7|. 12, 已知m ,n 为正整数,且3x (x m +5)=3x 6+5nx ,则m+n 的值是多少。

13, 已知a m =2,a n =3,求a 3m+2n 的值:14, 已知x 3=m ,x 5=n ,试用含m ,n 的代数式表示x 14.15, 计算0.52011×22012的值。

16, 用平方差公式计算(1)103×97 (2)13.2×12.817, 化简(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+118, 若m 2-n 2=6,且m-n=2,求m+n 值。

19, 已知8b a =+,5ab -=,求下列各式的值。

(1)、22a b +; (2)、22a b ab +-。

完整word版整式的乘除提高练习

完整word版整式的乘除提高练习

《整式的乘除》拔高题专项练习【题型1】1、若2x 5y 3 ____________________ 0,则4x 32y的值为m 3 m 1 4m 72、如果9 27 3 81,那么m= ________ .【变式练习】1、若5X—3y—2=0,则105x 103y= _________ .2、若32 92a 127a 181,求a 的值.3、如果2 8X 16x222,贝V x的值为_______________ .【题型2】1、___________________________________________________ 若10m 3, 10n 2,则102m 3n的值为 ________________________2、若a2n3,则a3n 4的值为________________ .3、 已知 x n 5, y n 4,贝V xy 2n = _________________ .4、 若 3m =6, 9n =2,求 32fm 4n +1 的值。

【变式练习】1、已知2m 3,2n 4,则23m 2n 的值为 ____________________2、若2x 3,4x 5,则2x 2y 的值为 _______________3、己知 2n =a , 3n =b,则 6n = ______________,t . —m . n亠 E —3m 2n 14、若 2 3,4 8,则 2 = _____ .【题型3】1、 若 x 2m+102=x 5,则 m 的值为()A.OB.1C.2 3 2、 已知 2|x29,则 x = __________ .【变式练习】 1、求下列各式中的x :①a x 3 a 2x1(a 0,a 1) •,②p x p 6 D.3p 2x (p 0,p 1).2、已知2 X 2329,则x的值是 ______________ .【题型4】1、在ax 3y与x y的积中,不想含有xy项,则a必须为____________________ .【变式练习】2 2 11. 当k= ________ 时,多项式x 3kxy 3y xy 8中不含xy项.32、若a2 pa 8 a2 3a q中不含有a3和a2项,贝U p _______________ ,q ______【题型5】1、若x26, x y 3,则x y =2 22、已知a b 11, a b 7,则ab的值是__________________________3、已知a b 5, ab 3,贝V a2 b2的值为 _____________________21 14、已知x —3,贝y x - 的值为_________________x x5、(3x 2y)2 ___________ =(3x 2y)2.6、若ab 2, a b 3,贝V a b 2的值为【变式练习】2 2 4、若 x y 8, xy 10 ,则 x y =4 42 5、若1 4 -2 0,则2的值为 ____________x x x1 1 16 .已知 a 1,贝U a 2= ___________________ ; a 4= _________________ a a a【题型6】 1、计算 a 2 ab b 2 a 2 ab b 2 的结果是 _____________________________________1、已知x 9, x y 2 5,则xy 的值为2 22 .若 m n 10, mn 24,则 m n3、若 x y 0, xy 11,则x 2 xy y 2的值为【变式练习】1、计算3x 2y 1 3x 2y 1的结果为________________________________【题型7】21、若4x mx 9是一个完全平方式,则m的值为____________________ .2、若代数式x2 y214x 2y 50的值为0,则x ____________ ,y ________【变式练习】2 21、已知4x 12x m 是一个完全平方式,则m的值为________________________ .2、若x22(m 3) 16是关于x的完全平方式,则m __________ .2 23、若m n 3,则2m 4mn 2n 6的值为 ____________________________24、若 m 2 n 8n 16 0,贝U m _____ ,n _________15•已知 a2 b 2 2a 6b 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式的乘除》技巧性习题训练
一、逆用幂的运算性质
1.2005200440.25⨯= .
2.( 23 )2002×(1.5)2003÷(-1)2004=________。

3.若23n x =,则6n x = .
4.已知:2,3==n m x x ,求n m x 23+、n m x 23-的值。

5.已知:a m =2,b n =32,则n m 1032+=________。

二、式子变形求值
1.若10m n +=,24mn =,则22m n += .
2.已知9ab =,3a b -=-,求223a ab b ++的值.
3.已知0132=+-x x ,求221x x +
的值。

4.已知:()()212-=---y x x x ,则xy y x -+2
2
2= . 5.24(21)(21)(21)+++的结果为 .
6.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为_______________。

7.若210,n n +-=则3222008_______.n n ++=
8.已知099052=-+x x ,求1019985623+-+x x x 的值。

9.已知0258622=+--+b a b a ,则代数式b
a a
b -的值是_______________。

10.已知:0106222=+++-y y x x ,则=x _________,=y _________。

11.已知:20072008+=x a ,20082008+=x b ,20092008+=x c , 求ac bc ab c b a ---++222的值。

三、式子变形判断三角形的形状
1.已知:a 、b 、c 是三角形的三边,且满足0222=---++ac bc ab c b a ,则该三角形的形状是_________________________.
2.若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是___________________。

3.已知a 、b 、c 是△ABC 的三边,且满足关系式222222b ac ab c a -+=+,试判断△ABC 的形状。

四、其他
1.已知:m 2=n +2,n 2=m +2(m ≠n),求:m 3-2mn +n 3的值。

2.计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-•⋅⋅⋅•⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-
22222100119911411311211
3.(3+1)(32+1)(34+1)…(32008+1)-
401632

4.计算:(1)2009×2007-20082 (2)22007200820061⨯+ (3)22007200720082006
-⨯
5.你能说明为什么对于任意自然数n,代数式n(n+7)-(n -3)(n -2)的值都能被6整除吗?
五、“整体思想”在整式运算中的运用
“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:
1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.
2、已知2083-=
x a ,1883-=x b ,168
3-=x c ,求:代数式bc ac ab c b a ---++222的值。

3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值
4、若123456786123456789⨯=M ,123456787123456788⨯=N ,试比较M 与N 的大小
六、完全平方公式变形的应用
完全平方式常见的变形有:
()2222222222
222)(4)(22b a b a b a ab b a b a b ab a b a b ab a b a +=-++=--+++=+++=+)()()()(
1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

2.已知6,4a b a b +=-=求ab 与22a b +的值。

3. 已知224,4a b a b +=+=求22a b 与2()a b -的值。

课后练习
1.已知2264x kxy y ++是一个完全式,则k 的值是( )
A .8
B .±8
C .16
D .±16
2.设a 、b 、c 为实数,
,则x 、y 、z 中,至少有一个值( )
A .大于0
B .等于0
C .不大于0
D .小于0
3.若(x +m )(x -8)中不含x 的一次项,则m 的值为( )
(A )8 (B )-8 (C )0 (D )8或-8
4.已知a +b =10,ab =24,则a 2+b 2的值是( )
(A )148 (B )76 (C )58 (D )52
5.已知:A=1234567×1234569,B=12345682,比较A 、B 的大小,则A B.
6.已知252
2=+y x ,7=+y x ,且y x >,则=-y x
7.已知3m =4,3m +2n =36,求2013n 的值.
8.已知3x =8,求3x +3.
9.计算:
(1)222(21)(3)(1)1x x x +-+--+
(2)(1)(1)(2)(3)x x x x --+-+-
(3) )32)(32(c b a c b a +--+
(4)24(1)(25)(25)x x x +-+-
(5)(x 2-2x -1)(x 2+2x -1)
(6)[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab
(7)()()()()121212123242++++

8)1297989910022222-++-+-
10.已知a 2+b 2﹣8a ﹣10b +41=0,求5a ﹣b 2+25的值
11.已知(2017﹣a )•(2015﹣a )=2016,求(2017﹣a )2+(2015﹣a )2的值.
12.若x +y=a +b 且x ﹣y=a ﹣b .试说明:x 2+y 2=a 2+b 2.
13.代数式(a +1)(a +2)(a +3)(a +4)+1是一个完全平方式吗?请说明你的理由.
14.已知x +x 1=2,求x 2+21x ,x 4+41x
的值.
15.已知x 2+x -1=0,求x 3+2x 2+3的值.。

相关文档
最新文档