中考“网格”中的相似三角形问题
在正方形网格中画面积最大的格点相似三角形的基本方法

在正方形网格中画面积最大的格点相似三角形的基本方法随着计算机科学的发展,图形学已经成为一门重要的学科,日益受到广大研究者的关注。
在计算机图形学中有很多有趣的研究问题,其中之一是在连续正方形网格中绘制面积最大的格点相似三角形的基本方法。
本文主要讨论这一问题,首先介绍面积最大的格点相似三角形的定义和计算方法,其次探讨在正方形网格中画出面积最大的格点相似三角形的基本方法,最后小结。
一、格点相似三角形的定义和计算方法一个格点相似三角形就是由格点组成的三角形,其定义如下:定义:一个格点相似三角形由三个格点组成,每个格点之间有一条直线相连,并且每个格点之间的距离都相等。
根据定义,一个格点相似三角形的面积可以计算出来,它等于三个格点之间的距离的平方,也就是底边的长度的平方,用公式表示为: S=a2其中,S表示三角形的面积,a表示三角形的底边长度。
二、在正方形网格中画面积最大的格点相似三角形的基本方法将正方形的网格分割成n行,每行有n个格子,每个格子的长度为a,最终将网格分割成均等的m个正方形小模块(m=n*n)。
那么在这样一个正方形网格中画出最大面积的格点相似三角形的最基本算法是什么呢?下面将用一个示例来说明。
假设现在要画一个面积最大的格点相似三角形,从模块(2,2)开始,分别选取模块(2,3)、模块(3,2),用它们三个模块形成的三角形就是面积最大的格点相似三角形,此时此三角形的面积为3a2。
同样的,这一算法也适用于n行n列的正方形网格,最终可以画出面积为n*(n-1)*a2的格点相似三角形。
三、小结本文介绍了在正方形网格中画面积最大的格点相似三角形的基本方法。
首先介绍了面积最大的格点相似三角形的定义和计算方法,然后讨论了在正方形网格中画出面积最大的格点相似三角形的基本算法,最后总结了讨论的结果。
由上述讨论可知,在正方形网格中画出面积最大的格点相似三角形的基本算法是每行每列选取三个格子,每个格子间连线,最终得到的三角形的面积为n*(n-1)*a2。
2023年中考数学必考特色题型讲练【选择题】必考重点09 相似三角形的判定与性质

【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。
在解相似三角形的判定与性质的有关题目时,首先要求考生掌握证明三角形相似的条件和方法,相似三角形的对应边成比例、对应角相等,对应角平分线、中线、高的比等于相似比,相似三角形的周长之比等于相似比,面积之比等于相似比的平方。
其次要能够运用相似三角形的性质,列出方程,求出相应线段的长度或者探索各线段之间的数量关系。
【2022·江苏苏州·中考母题】如图,在平行四边形ABCD 中,AB AC ⊥,3AB =,4AC =,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AEC F 的周长为______.【考点分析】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.【思路分析】根据作图可得MN AC ⊥,且平分AC ,设AC 与MN 的交点为O ,证明四边形AECF 为菱形,根据平行线分线段成比例可得AE 为ABC 的中线,然后勾股定理求得BC ,根据直角三角形中斜边上的中线等于斜边的一半可得AE 的长,进而根据菱形的性质即可求解.【2022·江苏常州·中考母题】如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部..被染色的区域面积是______.【考点分析】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.【思路分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【2022·江苏宿迁·中考母题】如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是_____.【考点分析】本题主要考查了相似三角形的判定与性质,勾股定理,圆周角定理,以及弧长等知识,判断出点H 运动的路径长为PN 长是解答本题的关键.【思路分析】根据题意知EF 在运动中始终与MN 交于点Q ,且AQM FQN ∆∆, :1:2,NQ MQ =点H 在以BQ 为直径的PN 上运动,运动路径长为PN 的长,求出BQ 及PN 的圆角,运用弧长公式进行计算即可得到结果.【2021·江苏镇江·中考母题】如图,点D ,E 分别在△ABC 的边AC ,AB 上,△ADE ∽△ABC ,M ,N 分别是DE ,BC 的中点,若AM AN =12,则ADE ABC S S =__.【考点分析】本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.【思路分析】根据相似三角形对应中线的比等于相似比求出DE BC,根据相似三角形面积的比等于相似比的平方解答即可.1.(2022·江苏淮安·一模)如图,在正方形ABCD 中,8AB =,点H 在AD 上,且2AH =,点E 绕着点B 旋转,且3BE =,在AE 的上方作正方形AEFG ,则线段FH 的最小值是______.2.(2022·江苏苏州·二模)如图,在ABC 中,2AC =,AB AD CD ==,36BAD ∠=︒,则AD =________.3.(2022·江苏泰州·二模)定义:如果三角形中有两个角的差为90°,则称这个三角形为互融三角形,在Rt △ABC 中,∠BAC = 90°,AB = 4 ,BC = 5 ,点D 是 BC 延长线上一点.若 △ABD 是“互融三角形”,则 CD 的长为________.4.(2022·江苏泰州·二模)如图1,在Rt ABC 中,90B ,BA BC =,D 为AB 的中点,P 为线段AC上一动点,设PC x =,PB PD y +=,图2是y 关于x 的函数图像,且最低点E 的横坐标是AB =______.5.(2022·江苏淮安·一模)如图,在边长为1的小正方形组成的网格中,四边形ABCD 和四边形CGFE 的顶点均在格点上,则两个四边形重叠部分(阴影部分)的面积为__________.6.(2022·江苏泰州·一模)如图,直线l 与圆O 相交于A 、B 两点,AC 是圆O 的弦,OC ∥AB ,半径OC 的长为10,弦AB 的长为12,动点P 从点A 出发以每秒1个单位的速度沿射线AB 方向运动.当△APC 是直角三角形时,动点P 运动的时间t 为 _____秒.7.(2022·江苏南京·一模)如图,在ABC 中,30B ∠=︒,点D 是AC 上一点,过点D 作∥DE BC 交AB 于点E ,DF AB ∥交BC 于点F .若5AE =,4CF =,则四边形BFDE 的面积为______.8.(2022·江苏苏州·一模)如图,矩形ABCD中,点E在边CD上,AC与BE交于点F,过点F作FG BC⊥于点G,若23DEEC=,则FGAB的值为______.9.(2022·江苏南京·模拟预测)图,在▱ABCD中,对角线AC,BD交于点O,AF平分∠BAC,交BD于点E,交BC于点F,若BE=BF=2,则AD=_____.10.(2022·江苏扬州·一模)ABCD中,BE CF=,连接AE、BF交于点H,连接DH并延长交BC于点G,若2AB BH==BG=__________.11.(2022·江苏无锡·一模)如图,在ΔABC中放置5个大小相等的正方形,若BC=12,则每个小正方形的边长为____.12.(2022·江苏苏州·二模)如图,在矩形ABCD 中,1AB =,3AD =.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为______.13.(2022·江苏泰州·二模)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是△ABC 内部一点(不包括三条边),点F 、G 分别在AC 、AB 边上,且EF ⊥AC ,EG ⊥AB ,垂足分别为F 、G .点D 是AB 边的中点,连接ED ,若EF <EG ,则ED 长的取值范围是_________.14.(2022·江苏常州·二模)如图,正六边形ABCDEF 中,G 是边AF 上的点,113==GF AB ,连接GC ,将GC 绕点C 顺时针旋转60︒得,''G C G C 交DE 于点H ,则线段HG '的长为__________.15.(2022·江苏扬州·二模)如图,在锐角三角形ABC 中,8BC =,4sin 5A =,BN AC ⊥于点N ,CM AB ⊥于点M ,连接MN ,则△AMN 面积的最大值是______.16.(2022·江苏南通·二模)如图,正方形ABCD 的边长为5,E 为AD 的中点,P 为CE 上一动点,则AP BP +的最小值为______.17.(2022·江苏扬州·二模)定义:等腰三角形底边与腰的比叫做顶角α的正对(sad α).例如,在ABC 中,AB AC =,顶角A 的正对BC sadA AB ==底边腰.当36A ∠=︒时,36sad ︒=______________.(结果保留根号)18.(2022·江苏盐城·一模)如图,DE 是△ABC 的中位线,F 为DE 中点,连接AF 并延长交BC 于点G ,若2EFG S =△,则ABC S =___________.19.(2022·江苏无锡·一模)如图,点P 为线段AB 上一点,3AB =,2AP =,过点B 作任意一直线l ,点P关于直线l 的对称点为Q ,将点P 绕点Q 顺时针旋转90︒到点R ,连接PQ 、RQ 、AR 、BR ,则线段AR 长度的最大值为________.20.(2022·江苏盐城·一模)如图,在Rt ABC 中,CD 为斜边AB 的中线,过点D 作DE AC ⊥于点E ,延长DE 至点F ,使EF DE =,连接,AF CF ,点G 在线段CF 上,连接EG ,且180,2,3CDE EGC FG GC ∠+∠=︒==.下列结论:①12DE BC =;②四边形DBCF 是平行四边形;③EF EG =;④BC =______.(填序号)21.(2022·江苏连云港·一模)如图,以AB 为直径的半圆O 内有一条弦AC ,P 是弦AC 上一个动点,连接BP ,并延长交半圆O 于点D .若5AB =,4AC =,则DP BP 的最大值是________.22.(2022·江苏·扬州市邗江区梅苑双语学校一模)如图,在平行四边形ABCD 中,E ,F 分别是边AB ,AD 的中点,BF ,CE 交于点M ,若三角形BEM 的面积为1,则四边形AEMF 的面积为________.23.(2022·江苏南京·模拟预测)如图,在矩形ABCD 中,AB =6,E 是BC 的中点,AE 与BD 交于点F ,连接CF.若AE⊥BD,则CF的长为_____.24.(2022·江苏苏州·模拟预测)如图,矩形ABCD中,2BC=,E在边BC上运动,M、N在AB=,4+的最小值为______.对角线BD上运动,且25.(2022·江苏·连云港市新海初级中学一模)如图,矩形ABCD中,AB=4,AD=6,点E在边BC上,且BE∶EC=2∶1,动点P从点C出发,沿CD运动到点D停止,过点E作EF⊥PE交矩形ABCD的边于F,若线段EF的中点为M,则点P从C运动到D的过程中,点M运动的路线长为_______.【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。
中考“网格”中的相似三角形问题

中考“网格”中的相似三角形问题所谓网格中的形似三角形就是在正方形的网格中寻找三角形相似的问题.这类问题是近年来全国各地中考的一个热点和亮点,试题的特点主要是以用勾股定理等知识计算三角形的边长,再加上正方形的对角线形成的特殊角,要求能从正方形网格中挖掘出条件,灵活运用相似三角形的性质与判定解决问题.目的是要考查同学们的观察、猜想、探究问题的能力,为了帮助同学们掌握这一知识点,现以中考试题为例说明如下:例1 如图1,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )分析 先利用勾股定理求出△ABC2中三角形的三边的长,然后分别求出对应边长的比.解 由于正方形边长均为1,在△ABC 中,AC =2,BC =2,AB =10;图A 中三角形三边长为122,而与△ABC2它们不相等;图B 中三角形三边长为1,2ABC=2,22,故对应边的比相等;同样的道理可以得出在图C 和图D 中的两个三角形三边分别与△ABC 三边的比不相等.故选B .例2 如图2,若A 、B 、C 、D 、E 、F 、G 、H 、O 都是5×7方格纸中的格点,为使△DME ∽△ABC ,则点M 应是F 、G 、H 、O 四点中的( )A.FB.GC.HD.OB A图2C D图1分析 若△DME ∽△ABC ,△ABC 又是一个等腰直角三角形,故△DME 也应是等腰直角三角形,这样观察图中F 、G 、H 、O 四点与D 、E 两点的位置关系即可求解.解 因为△ABC 是一个等腰直角三角形,所以要使△DME ∽△ABC ,△DME 也必须是一个等腰直角三角形,所以观察图中F 、G 、H 、O 四点与D 、E 两点的位置关系只有点H 能与D 、E 两点构成等腰直角三角形.故应选C .以格点连线为边的三角形叫格点三角形.在如图3中5×5的方格中,作格点△ABC 和△OAB 相似(相似比不为1),则点C 的坐标是_____.分析 由于△OAB 是直角三角形,所以求得的格点△ABC 也一定是直角三角形,而在5×5的方格中以点O 为直角顶点的格点Rt △ABC 作不出来,只有分别以点A 或B 为直角的顶点可以作出Rt △ABC .解 若以A 为直角的顶点,作格点Rt △ABC ,则点C 的坐标为(4,0),若以B 为直角的顶点,作格点Rt △ABC ,则点C 的坐标为(3,2),所以点C 的坐标是(4,0)或(3,2).例4 如图4,在4×4的正方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC =_____,BC =_____;(2)判断△ABC 与△DEF 是否相似,并证明你的结论.分析 要解答第(1)小问,只要利用正方形的特性和勾股定理即可求解;而要判断△ABC 与△DEF 是否相似,可以利用“如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且这两条边的夹角也对应相等,那么这两个三角形相似”;或“如果一个图4FE 图3三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似”来验证.解(1)利用正方形对角线平分一组对角的性质可得∠ABC =180°-45°=135°,由勾股定理得BC 22;(2)△DEF 中,∠DEF =135°,分别计算△ABC 的边AB 、BC 和△DEF 的边DE 、EF ,AB =2,BC =22;EF =2,DE =2.因为ABDE 2,BC EF =2=2, 所以AB DE =BCEF,且∠ABC =∠DEF =135°,所以△ABC ∽△DEF .透过网格去看相似网格型试题具有新颖性、直观性、可操作性和综合性,不仅能考查图形的对称、勾股定理、面积公式等数学知识,体现了分类讨论、数形结合等重要数学思想,而且能通过学生的识图、思考、动手操作、自主探究等过程,能较好地把数学知识与多种能力有效地整合在一起,符合新课程标准的要求.在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得;(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.利用这些特征就可以设计出很多有趣的、具有操作性的探究性的题目来,特别是在研究相似问题时具有独到上午效果.一、网格与相似三角形例1.如图1,在正方形网格上,若使△ABC ∽△PBD , 则点P 应在( )A .P 1处 ;B .P 2处;C .P 3处 ;D .P 4处图1分析:本题根据网格的特征结合三角形相似的判定条件即可解决问题 解:答案为C例2.如图2,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ ABC 相似的是( )。
初中数学相似三角形模型(题型)大全-值得收藏

初中数学相似三角形模型(题型)大全-值得收藏一、比的性质:特征:比的基本性质,合比性质,等比性质 例1:已知,3==d c b a ,则ddc b b a 22+=+=( ) 例2:如果P 是线段AB 的黄金分割点,且AP >PB ,则下列各等式①AB 2=AP •PB , ②AP 2=PB •AB ,③BP 2=AP •PB ,④AP /AB=PB /AP 中,正确的是( )例3:已知k cba a cb bc a =+=+=+,则k 的值为( ) 二、平行A 字型如图(1)DE//BC ,则△ADE ∽△ABC 特征:△ADE ∽△ABC ⇒AD AE DEAB AC BC==应用1:(求线段的长)例1. 如图(2)DE//BC,且DB=AE,若AB=5,AC=10,则AE 的长为(103) 角度:平行产生比例 DE ∥BC 51051010,103AB AC AE BD EC AE EC AE AE ⇒=∴=∴==- PB例2.如图(3)△ABC 中,BC = a 是AB 边的五等分点;1234,,,C C C C 是AC 边的五等分点,则11223344B C B C B C B C +++=(2a )应用2:(证明比例线段)例3.如图(4),DE//BC//AF ,求证:111DE AF BC=+ 证明:分析:此题用了两个平行A 字型 在△ABC 中,DE//BC ,AD DE⇒= ①在△ABF 中,DE//AF ,DB DEAB AF⇒=② ①+②得AD DB DE DEAB BC AF+=+111()111DE BC AFDE BC AF ∴=+∴=+应用3:(证明线段相等) 例4.如图(5),一直线与△ABC 的边AB ,AC 及BC 的延长线分别交于D 、E 、F 。
求证:若AE BFEC CF=,则D 是AB 的中点。
证明:作CM//BA 与EF 交于M ,则△ADE ∽△CME//AD AEAE BF AD BFBD BFCM BD CM ECEC CF CM CFCM CF∴==∴=∴=因此,.AB AD BDAD BD CM CMD ==∴从而是的中点。
格点相似三角形

格点相似三角形在方格纸中,以格点为顶点的三角形叫做格点三角形,以网格为背景的相似三角形问题,在中考试题中时有出现.解决格点三角形相似问题,要依据网格的特征,并结合相似三角形的有关判定方法去思考.例1(安徽省)如图1是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面两个问题:在图2中画出与△ABC相似的格点△ABC和△ABC,且△ABC与△ABC的相似121121112 2.ABC 的相似比是△ABC与△比是2,2222析解:要作与△ABC相似的三角形,首先找到△ABC的特征,AB=BC=2,∠B=90°,因为△ABC与△ABC的相似比是2,所以AB=BC=4,∠B=90°;因为△ABC与△ABC211211112112AB?BC?2,∠B=90°.所作的三角形如图2的相似比是所示..所以22222评注:作已知三角形的相似三角形的关键是确定已知三角形的特征,根据条件找到要作三角形的对应特征.本题也可以从三边对应成比例考虑作相似三角形.DEF△ABC和4×4的正方形方格中,△,例2(台州市)如图3在1的小正方形的顶点上.的顶点都在边长为=_____;=_____°,BC(1)填空:∠ABC 是否相似,并说明你的结论.△DEFABC(2)判断△与析解:本题是一道和网格有关的相似三角形探索题.以,EBC,ABE知形察,度ABC角)(1求∠的数观图可∠=90°∠=45°所- 1 -∠ABC=90°+45°=135°;22?2?2BC?22.根据网格的特征,利用勾股定理可得(2)要判断△ABC和△DEF是否相似,则应根据三角形相似的判定方法,从对应边ABBC??2,所,以为∠ABC =∠DEF = 135°入比成例,对应角相等手.因DEEF△ABC ∽△DEF.评注:说明网格中的三角形相似,一般根据三边对应成比例,或两边对应成比例、夹角相等进行推理.、甲、乙、丙、丁、PQ,若例3(资阳市)如图4A、B、C、乙、丙、应是甲、,则点都是方格纸中的格点,为使△PQR∽△ABCR )丁四点中的(A.甲B.乙D.丁C.丙10BC??AC,则∽△PQR,=4,要使△ABC,PQ=2析解:从已知条件可知AB BCAB?,QRPQ10210210?QR2?RQ即,通过计算可得点,可求得,所以到丙的距离为QR4 C应是点丙,选.根据相似三角形的对应边成比例计ABC△的各边的长,根据直角三角形计算出评注:QR算出的长是解决问题的关键.还有其它方法,请同学们自己探讨.- 2 -- 3 -。
初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。
例谈相似在网格中的构建与应用

例谈相似在网格中的构建与应用在近几年的各类考试中,网格背景题深受命题者的关注与青睐。
当网格作为背景时,相关格点之间便容易形成特殊的图形如正方形,直角三角形,勾股定理等知识,具有较强的直观性、操作性,较好地实现了数学基本知识、空间观念与多种数学思维能力的综合与运用,尤其是勾股定理、数形结合等思想方法的运用达到了极点。
让我们从中感受到无穷的学习动力和学习乐趣,具有极大的学习创造性和挑战性。
一、相似的判定与性质例1;(2009年新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )思路点拨与解析:借助网格,由已知的ABC △可知,最大角∠ACB=135°,故排除选项B 、C 、D 三项, 故选A 。
点评:本题主要考查在网格背景中相似三角形的判定方法,解题的关键是准确把握ABC △在网格中的特有的本质; 最大角∠ACB=135°。
当然也可利用网格背景分别计算三角形的各边,利用三边对应成比例寻找两三角形相似。
在此题中勾股定理、数形结合等思想的运用达到了极点。
例2:(2009年甘肃庆阳)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB思路点拨:解此题的关键是要处理三角形的边与角的相关信息:B C⊥AE ,3162AC BC ==,2142DC EC ==,从而证出两三角形相似,要证EF ⊥AB ,只要证出∠DEC +∠A =90°,只要利用所证的两三角形相似知识即可证出。
解析:(1)∵ 3,2AC DC = 63,42BC CE == ∴ .AC BC DC CE =A .又 ∠ACB =∠DCE =90°,∴ △ACB ∽△DCE .(2)∵ △ACB ∽△DCE ,∴ ∠ABC =∠DEC .又 ∠ABC +∠A =90°,∴ ∠DEC +∠A =90°. ∴ ∠EFA =90°. ∴ EF ⊥AB .点评:网格题能充分调动有关背景中的正方形,直角三角形,勾股定理等知识,并让学生经历了观察、思考、猜测,动手操作、自主探索发现等过程. 帮助学生找到解决问题的突破口。
部编数学九年级下册专题14网格中画相似(解析版)含答案

专题14 网格中画相似1.如图,大小为4×4的正方形方格中,能作出与△ABC 相似的格点三角形(顶点都在正方形的顶点上),其中最小的一个面积是______.【答案】12##0.5【点睛】本题考查作图﹣相似变换,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2.图①,图②,图③均是66´的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中.按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC 上画一点D ,使ABD ACD S S =V V ;(2)在图②中,在BC 上画一点E ,使ABE S V :2ACE S =V :3;(3)在图③中,在ABC 内画一点F ,使ACF S △:ABF S △:2BCF S =V :3:3.(2)在图②中,点E 即为所求;点C 下移三个单位得到点连接MN ,得到CME ∽△△32CE CM BE BN ==∴,∴ABE S V :2ACE S =V :3(3)在图③中,点F 即为所求.由图可知,6AC =,AB =12ABC S =∴△,∵ACF S △:ABF S △:BCF S =V 21238ACF S =´=∴△,ABF S =△【点睛】本题考查作图-应用与设计作图,三角形相似性质,三角形的面积等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.3.(1)如图,4×4的正方形方格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上.请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在小正方形的顶点上.并将此三角形涂上阴影(2)按要求作图,不要求写作法,但要保留作图痕迹:我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图1,在平行四边形ABCD中,E为CD的中点,作BC的中点F.②如图2,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH(2)①如图1,点F 为所作;理由:因为三角形的三条中线交于同一点,四边形ABCD 是平行四边形,∴O 是BD 的中点,∵E 是CD 的中点,根据三条中线交于同一点,连接BE 交AC 于P ,则点P 为三条中线的交点,作射线DP 交DP 于点F ,则点F 为BC 的中点;②如图2,找到格点D ,过A 点作AD 垂直AB ,再平移DA 得到CE ,则CE ⊥AB ,接着作MN 垂直AC ,平移MN 得到BF ,则BF ⊥AC ,BF 与CE 的交点O 为△ABC 的垂心,所以延长AO 交BC 于H ,则AH ⊥BC ,AH 为所作.理由:∵ABG DAKV V ≌∴GAB ADKÐ=Ð90GAB DAK ADK DAK \Ð+Ð=Ð+Ð=°∴90BAD Ð=°∴BA AD^平移AD 至CJ ,并延长,交AB 于点E ,∴CE AB^同理作出BF AC ^,,BF CE 交于点O根据三角形三条高所在的直线交于同一点,延长AO 交BC 于点H ,则AH 即为所求.【点睛】本题考查了画相似三角形:根据相似三角形的判定条件作为作图的依据.比较简单的是把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,也考查了三角形的重心和平行四边形的性质.4.在4*4的方格中,ABC V 的三个顶点都在格点上.(1)在图1中画出与ABC V 成轴对称且与ABC V 有公共边的格点三角形(画出一个即可);(2)将图2中画一个与ABC V 相似的三角形.【答案】(1)见解析;(2)见解析.【分析】(1)选取AC 所在的直线为对称轴作图即可;(2)保证每条边方向一致,且边长减小为原来的一半作图即可.【详解】(1)解:如下图所示,AB C ¢V 即为所求作的三角形;(答案不唯一)(2)如下图所示,DEF V 即为所求作的三角形;【点睛】本题考查轴对称作图与作相似图形,掌握两个图形关于某条直线对称的性质与相似三角形的性质是解题的关键.5.如图,ABC D 是正方形网格中的格点三角形(顶点在格点上),请在正方形网格上按下列要求画一个格点三角形与ABC D 相似.(1)在图甲中画△111A B C ,使得△111A B C 的周长是ABC D 的周长的2倍;(2)在图乙中画出△222A B C ,使得△222A B C 的面积是ABC D 的面积的2倍.(1)A B C,即为所求;解:如图所示:△111(2)A B C,即为所求.解:如图所示:△222【点睛】此题主要考查了相似变换,正确得出对应三角形的边长是解题关键.6.如图,在8×8的正方形网格中,△ABC是格点三角形,请按以下要求作图.(1)在图1中画出格点△EDP,使得△EDP∽△ABC,且面积比为1;2(2)在图2中将△ABC绕着某格点逆向时针旋转90°得到格点△PFG,其中C与P对应.【答案】(1)见解析(2)见解析【分析】(1)直接利用位似图形的性质,结合位似中心得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.(1)如图,(案不唯一)(2)如图,【点睛】此题主要考查了位似变换以及旋转变换,根据题意得出对应点位置是解题关键.7.如图,在74´方格纸中,点A,B,C都在格点上(△ABC称为格点三角形,即格点△ABC),用无刻度直尺作图.(1)在图1中的线段AC上找一个点D,使25CD AC=;(2)在图2中作一个格点△CEF,使△CEF与△ABC相似.【答案】(1)见解析(2)见解析【分析】(1)根据“8字形”相似,可得CD:AD=2:3,从而得出点D的位置;(2)根据∠ACB=90°,AC=2BC,即可画出△CEF.【详解】(1)解:如图1所示,点D即为所求,(2)如图2所示,△CEF即为所求,【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.如图,在7×6的正方形网格中,点A、B、C、D在格点(小正方形的顶点)上,从点A、B、C、D四点中任取三点,两两连接,得到一个三角形,请在所得的所有三角形中,写出互为相似的两个三角形及它们的相似比.∵AB=2221+=5,AC=∴55225ADBD==,ABCD=∴52 AD AB BDBD CD BC===,∴△ABD∽△DCB,相似比9.如图,在5×5的边长为1小的正方形的网格中,如图1△ABC和△DEF都是格点三角形(即三角形的各顶点都在小正方形的顶点上).(1)判断:△ABC与△DEF是否相似?并说明理由;(2)在如图2的正方形网格中,画出与△DEF相似且面积最大的格点三角形,并直接写出其面积.【答案】(1)相似,见解析(2)图见解析,面积为5【点睛】此题考查了作图—相似变换,三角形的面积等知识,解题的关键是掌握相似变换的性质,灵活运用所学知识解决问题.10.按要求作图,无需写作法:图①图②(1)如图①,已知∠AOB,OA=OB,点E 在OB 边上,四边形AEBF 是平行四边形,只用无刻度的直尺在图中画出∠AOB 的平分线.(2)如图②,在边长为1个单位的方格纸上,有△ABC,请作一个格点△DEF,使它与△ABC相似,但相似比不能为1.Q即为所求\11.如图正方形网格中,每个小正方形的边长均为1,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中画等腰△ABC ,使得∠CAB =90°;(2)在图②中画等腰△DEF ,使△ABC ∽△DEF :1.10AB =Q ,10AC =,25BC =,5,5,10DE DF EF ===,21AB AC BC DE DF EF \===.\△ABC ∽△DEF ,且相似比为2:1.【点睛】本题考查了勾股定理,相似三角形的性质,掌握勾股定理与相似三角形的性质是解题的关12.图①、图②、图③分别是6×6的正方形网格,网格中每个小正方形的边长均为1,小正方形的顶点称为格点,点A 、B 、C 、D 、E 、P 、Q 、M 、N 均在格点上,仅用无刻度的直尺在下列网格中按要求作图,保留作图痕迹.(1)在图①中,画线段AB 的中点F .(2)在图②中,画CDE V 的中位线GH ,点G 、H 分别在线段CD 、CE 上,并直接写出CGH V 与四边形DEHG 的面积比.(3)在图③中,画PQR V ,点R 在格点上,且PQR V 被线段MN 分成的两部分图形的面积比为1:3.【答案】(1)见解析(2)见解析,面积比为1:3(3)见解析【分析】(1)根据网格的特点,找到,A B 之间单元网格的对角线,交AB 于点F ,则点F 即为所求;(2)根据(1)的方法找到,CD CE 的中点,G H ,连接GH ,根据相似三角形的性质即可求出CGH V 与四边形DEHG 的面积比;(3)根据(2)的结论,可知,只要MN 经过PQR V 的中位线,根据R 在网格上,找到符合题意的点R 即可求解.(1)如图①:13.如图,已知ABC V 和点O .(2)用无刻度的直尺,在AC边上画出点P,使23PAPC=(要求保留作图痕迹,不写作法).(2)解:如图,取网格点E、F,连接EF交AC14.如图,ABC V 是格点三角形(三角形的三个顶点都在格点上),每个小正方形的边长均为1.(1)在图(1)中将ABC V 绕点C 逆时针旋转90°,得到CDE V .(2)在图(2)中找格P ,使以格点P 、C 、B 为顶点的三角形与ABC V 相似,但不全等,请画出一个符合条件的三角形.【答案】(1)见解析(2)见解析【分析】(1)找到旋转角度、旋转中心、旋转方向后可得出各点的对应点,进而顺次连接即可得出答案;(2)可找能使PCB V 是直角三角形且2PB BC =或2PC BC =的P .(1)所作图形如下:(2)【点睛】本题考查旋转作图及相似三角形的性质,明确旋转角度、旋转中心、旋转方向是解本题的关键.15.如图是由边长为1的小正方形构成的69´网格,各个小正方形的顶点叫做格点.△ABC 的顶点在格点上,边BC 上的点D 也是一个格点.仅用无刻度的直尺在定网格中画图.画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先画出AC 的平行线DE 交AB 边于点E ,可在BC 边上画点F ,使ACF BCA ∽△△;(2)在图2中,先在边AB 找点M ,使△MDC 与△MAC 的面积相等,再在AC 上画点N ,使△CDN 的面积是△ABC 的面积的三分之一.【答案】(1)见解析(2)见解析【分析】(1)根据格点特点画出AC 的平行线即可;根据格点特点作MA ⊥AC ,连接MC ,则△AMC16.如图,在6×7的矩形网格中,我们把顶点都在格点上的多边形称为格点多边形,点A,B,C 均在格点上,按下面要求画出格点三角形.(1)在图1中,画一个△ABD,使得△ABD与△ABC全等.(2)在图2中,画一个△ACE,使得S△ABC=3S△ACE,且点E不在边BC上.注:图1,图2在答题纸上.【答案】(1)见解析(2)见解析【分析】(1)运用三角形全等判定定理SSS,在网格上构造△ABD与△ABC全等.(2)△ACE与△ABC共顶点A,因此考虑两个三角形在以A为顶点的高线相等的情况下,构造3CE=BC,从而满足S△ABC=3S△ACE.(1)解:(2)解:【点睛】本题考查三角形全等判定定理,三角形面积计算方法,找到相应的作图依据是解题关键.17.如图,在7×8的正方形网格中,点A,B,C都在格点上,用无刻度直尺完成下列作图:(1)在AC上画点E,使AE=3CE;(2)在AB上画点D,使AD=CD;(3)在BC上画点F(不与B重合),使AF^BC.(4)在AB上画点P,使tan13 ACPÐ=.(2)如图,取格点,P Q,连接PQ,交AC于点M,Q=∥,AP CQ AP CQ\APM CQM∽V VAM AP\=1=MC PQ\=AM MCM,连接根据网格的特点作正方形,同理取中点1则DM是AC的垂直平分线,\=.DA DC(3)如图,方法同(2)作正方形BXYC ,作AZ ∥(4)如图,同方法(3)作正方形,作EE AC ¢^,同方法(连接1KK 交EE ¢于点S ,作射线CS 交AB 于点13,44AE AC CE AC ==Q ,1tan 3SE ACP EC \Ð==.【点睛】本题考查了网格中无刻度直尺作图,相似三角形的性质,正方形的性质,根据相似三角形的性质确定线段的长度是解题的关键.18.如图,在6×10的方格纸ABCD中有一个格点△EFG,请按要求画线段.(1)在图1中,过点O画一条格点线段PQ(端点在格点上),使点P,Q分别落在边AD,BC上,且PQ与FG的一边垂直.(2)在图2中,仅用没有刻度的直尺找出EF上一点M,EG上一点N,连结MN,使△EMN和△EFG的相似比为2:5.(保留作图痕迹)【答案】(1)见解析(2)见解析【分析】(1)根据题意找到格点,P Q,画出线段PQ即可(1)如图所示,PQ即为所求,19.请在如图所示的网格中,运用无刻度直尺作图(保留作图痕迹)(1)在图1中画出线段AB的中垂线AC CB=.(2)如图2,在线段AB上找出点C,使:1:2\点C 即为所求,如图所示:【点睛】本题考查作图—应用与设计作图,相似三角形的应用,解题关键是学会利用数形结合的思想解决问题.20.如图在5×5的网格中,△ABC 的顶点都在格点上.(仅用无刻度的直尺在给定的网格中按要求画图,画图过程用虚线表示,画图结果用实线表示)(1)在图1中画出△ABC 的中线AD ;(2)在图2中画线段CE ,点E 在AB 上,使得ACE S V :BCE S V =2:3;(3)在图3中画出△ABC 的外心点O .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)由题知BO =CO ,取两个格点F 、G 构造CFD BGD △≌△,即可得中点D .(2)由ACE S V :BCE S V =2:3得AE :BE =2∶3,取格点H 、J ,构造△∽△AHE BGE ,且相似比为2∶3,即可得到E 点.(3)由O 为△ABC 的外心知O 为AB 、AC 的中垂线的交点,作出两条中垂线,交点即为O .(1)如图1中,取格点F 、G ,连接FG 交BC 于点D ,线段AD 即为所求.(2)如图2中,取格点H 、J ,连接HJ 交AB 于点E ,线段CE 即为所求.(3)如图3中,取格点K 、L 、M 、N ,连接KL 、MN 交于点O ,则点O 为所求.【点睛】本题考查作图-应用与设计作图,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.21.如图,在6×6的正方形网格中,每个小正方形的边长都为1,点A ,B ,C 均在格点上.请按要求在网格中画图,所画图形的顶点均需在格点上.(1)在图1中以线段AB 为边画一个ABD △,使其与ABC V 相似,但不全等.(2)在图2中画一个EFG V ,使其与ABC V 相似,且面积为8.(2)如图,△EFG 即为所求.【点睛】本题考查作图-相似变换,三角形的面积,全等三角形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.如图,在6×6的正方形网格中,每个小正方形的边长均为1,线段AB 的两个端点均在格点上,按要求完成下列画图(要求:用无刻度的直尺,保留画图痕迹,不要求写出画法).(1)在图①中,在线段AB 上找到一点E ,使AE BE=23;(2)在图②中,画出一个以A 、B 、C 为顶点的三角形,且cos ∠BAC (3)在图③中,画出一个四边形ACBD ,使其既是中心对称图形,又是轴对称图形,且邻边之比为12,C 、D 为格点.【答案】(1)见解析(2)见解析(2)V即为所求;如图所示,ABC(3)如图所示即为所求作【点睛】本题考查了作图-轴对称变换,等腰直角三角形的性质,相似三角形的判定与性质,解决本题的关键是掌握相关知识与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考“网格”中的相似三角形问题
所谓网格中的形似三角形就是在正方形的网格中寻找三角形相似的问题.这类问题是近年来全国各地中考的一个热点和亮点,试题的特点主要是以用勾股定理等知识计算三角形的边长,再加上正方形的对角线形成的特殊角,要求能从正方形网格中挖掘出条件,灵活运用相似三角形的性质与判定解决问题.目的是要考查同学们的观察、猜想、探究问题的能力,为了帮助同学们掌握这一知识点,现以中考试题为例说明如下:
例1 如图1,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )
分析 先利用勾股定理求出△ABC 的三边分别是10、2、2,再分别求出选择支中三角形的三边的长,然后分别求出对应边长的比. 解 由于正方形边长均为1,在△ABC 中,AC =2,BC =2,AB =10;图A 中三角形三边长为1,5,22,而与△ABC 三边的比分别为12,52,2210
=25显然它们不相等;图B 中三角形三边长为1,2,5与△ABC 的三边的比分别为
12=22,22,510
=22,故对应边的比相等;同样的道理可以得出在图C 和图D 中的两个三角形三边分别与△ABC 三边的比不相等.故选B .
例 2 如图2,若A 、B 、C 、D 、E 、F 、G 、H 、O 都是5×7方格纸中的格点,为使△DME ∽△ABC ,则点M 应是F 、G 、H 、O 四点中的( )
A.F
B.G
C.H
D.O
分析 若△DME ∽△ABC ,△ABC 又是一个等腰直角三角形,故△DME 也应是等腰直角三角形,这样观察图中F 、G 、H 、O 四点与D 、E 两点的位置关系即可求解.
解 因为△ABC 是一个等腰直角三角形,所以要使△DME ∽△ABC ,△DME 也必须是一个等腰直角三角形,
所以观察图中F 、G 、H 、O 四点与D 、E 两点的位置关系只有点H 能与D 、E 两点构成等腰直角三角形.故应选C .
图4 F E D C B A O H G F E 图 3D C B A
图2 B A 图2
A
C B C
D 图1 图3
例3 在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图3中5×5的方格中,作格点△ABC 和△OAB 相似(相似比不为1),则点C 的坐标是_____.
分析 由于△OAB 是直角三角形,所以求得的格点△ABC 也一定是直角三角形,而在5×5的方格中以点O 为直角顶点的格点Rt △ABC 作不出来,只有分别以点A 或B 为直角的顶点可以作出Rt △ABC .
解 若以A 为直角的顶点,作格点Rt △ABC ,则点C 的坐标为(4,0),若以B 为直角的顶点,作格点Rt △ABC ,则点C 的坐标为(3,2),所以点C 的坐标是(4,0)或(3,2).
例4 如图4,在4×4的正方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.
(1)填空:∠ABC =_____,BC =_____;
(2)判断△ABC 与△DEF 是否相似,并证明你的结论.
分析 要解答第(1)小问,只要利用正方形的特性和勾股定理即可求解;而要判断△ABC 与△DEF 是否相似,可以利用“如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且这两条边的夹角也对应相等,那么这两个三角形相似”;或“如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似”来验证.
解(1)利用正方形对角线平分一组对角的性质可得∠ABC =180°-45°=135°,由勾股
定理得BC =22;
(2)△DEF 中,∠DEF =135°,分别计算△ABC 的边AB 、BC 和△DEF 的边DE 、EF ,AB =2,BC =22;EF =2,DE =2.
因为AB
DE 2,BC EF =2, 所以
AB DE =BC EF
,且∠ABC =∠DEF =135°,所以△ABC ∽△DEF .。