微分方程基础知识与解析解

合集下载

微分方程解法详解

微分方程解法详解
第八章
微分方程与差分方程简介
8.1 微分方程的基本概念
8.2 可分离变量的一阶微分方程
8.3 一阶线性微分方程
8.4 可降阶的高阶微分方程
8.5 二阶常系数线性微分方程 8.6 微分方程应用实例
退出
第八章
微分方程与差分方程简介
我们知道,函数是研究客观事物运动规律的重要 工具,找出函数关系,在实践中具有重要意义。可在 许多实际问题中,我们常常不能直接给出所需要的函 数关系,但我们能给出含有所求函数的导数(或微分) 或差分(即增量)的方程,这样的方程称为微分方程 或差分方程,我们需要从这些方程中求出所要的函数。 本章主要介绍微分方程的基本概念及求解微分方程中 未知函数的几种常见的解析方法;并对差分方程的有 关内容做一简单介绍。
(3) (4)
将条件( 2)代入( 3),可得c 1,则所求曲线方程:
例2一汽车在公路上以10m/s的速度行驶,司机突然发现 汽车前放20米处有一小孩在路上玩耍,司机立即刹车,已 知汽车刹车后获得加速度为-4 m / s 2,问汽车是否会撞到小孩? 解 设汽车刹车后t秒内行驶了s米,根据题意,反映刹车
(5) (6)
(7) (8)
t 0
将条件v t 0 10代入(7)式中,将条件 S
0代入( 8)式,
(9)
S 2t 2 10t (10) 在(9)式中令v=0,得到从开始刹车到完全停住所需要
的时间t=2.5秒,因此刹车后汽车行使距离为: 2 S 2 2.5 10 2.5 12.(米) 5
8.1
微分方程的基本概念
一.引例
例1 一曲线通过(1,2),且在改曲线上任一 点M(x,y)处的切线的斜率为2x,求该曲线的方程。 解 设所求曲线方程为y=y(x),根据导数的几何意义, y(x)应满足:

三角函数的微分方程和解析解

三角函数的微分方程和解析解

三角函数的微分方程和解析解在微积分的学习过程中,我们经常会遇到各种不同类型的微分方程。

而三角函数的微分方程是其中一类常见且重要的微分方程。

本文将探讨三角函数的微分方程以及它们的解析解。

一、三角函数的微分方程我们首先回顾一下三角函数的定义:正弦函数:sin(x),定义域为实数集,值域在[-1, 1]之间;余弦函数:cos(x),定义域为实数集,值域在[-1, 1]之间;正切函数:tan(x),定义域为实数集,值域为全体实数。

在微分方程中,三角函数的变量通常是自变量x,因变量是其对应的三角函数。

下面是几种常见的三角函数微分方程:1. 正弦函数的微分方程:d^2y/dx^2 = -y;2. 余弦函数的微分方程:d^2y/dx^2 = -y;3. 正切函数的微分方程:d^2y/dx^2 = y(1 + y^2)。

这些微分方程是二阶常微分方程,涉及到对三角函数的两次微分。

二、解析解的求解解析解是指可以用已知的函数形式来表达的微分方程的解。

对于三角函数微分方程,我们可以使用一些特殊的技巧来求解。

1. 正弦函数的微分方程的解析解:对于正弦函数的微分方程d^2y/dx^2 = -y,我们猜测解的形式为y = Asin(x)。

将这个解代入微分方程中,可以得到:A(-sin(x)) = -Asin(x)。

由于对于任意的x,sin(x)不会为0,所以我们可以得到A = 1。

因此,这个微分方程的解析解为y = sin(x)。

2. 余弦函数的微分方程的解析解:对于余弦函数的微分方程d^2y/dx^2 = -y,我们猜测解的形式为y = Acos(x)。

将这个解代入微分方程中,可以得到:A(-cos(x)) = -Acos(x)。

由于对于任意的x,cos(x)不会为0,所以我们可以得到A = 1。

因此,这个微分方程的解析解为y = cos(x)。

3. 正切函数的微分方程的解析解:对于正切函数的微分方程d^2y/dx^2 = y(1 + y^2),我们可以采用变量替换的方法来求解。

微分方程基本概念与解法

微分方程基本概念与解法

微分方程基本概念与解法一、概念引入微分方程作为数学中的重要分支,广泛应用于自然科学、工程技术等领域中,是研究自然现象和描述物理过程的重要工具之一。

微分方程的研究,对于解决实际问题,推动科学技术的发展具有重要意义。

本文将介绍微分方程的基本概念以及解法。

二、微分方程的定义微分方程是描述函数与其导数、高阶导数之间关系的方程。

通常用x和y表示自变量和因变量,设y=f(x),则微分方程可以表示为F(x,y,y',y'',...)=0的形式。

其中F为x、y及其导数的函数,y'、y''分别表示y的一阶和二阶导数。

三、常微分方程与偏微分方程常微分方程是指只涉及一个自变量的微分方程,其解是一个函数。

而偏微分方程涉及多个自变量的微分方程,其解是一个多元函数。

四、微分方程的阶数微分方程的阶数是指微分方程中最高阶导数的阶数。

例如,y'=3x^2+2x是一阶微分方程,y''=4x+2是二阶微分方程。

五、微分方程的解法微分方程的解法主要有解析解和数值解两种方法。

1. 解析解方法解析解方法是通过代数运算和数学技巧,直接求得微分方程的解表达式。

常见的解法有分离变量法、常数变易法、齐次方程法、伯努利方程法等。

2. 数值解方法数值解方法是通过数值计算近似地求解微分方程。

常见的数值解法有欧拉法、龙格-库塔法、变步长法等。

数值解法适用于无法求得解析解或解析解过于复杂的微分方程。

六、应用举例微分方程在自然科学和工程技术中具有广泛的应用。

以下举例说明微分方程的应用场景。

1. 物理学中的运动问题在描述物体的运动过程时,常常会遇到涉及时间、速度和加速度之间关系的微分方程。

通过解微分方程,可以求得物体的位置、速度和加速度随时间的变化规律。

2. 工程领域中的控制问题在控制系统中,常常需要求解微分方程来描述控制过程中的动态特性。

通过解微分方程,可以得到系统的稳定性、响应速度等相关信息。

微分方程的建模与解析解法

微分方程的建模与解析解法

微分方程的建模与解析解法一、引言微分方程是数学中的重要概念,广泛应用于各个领域的建模与分析问题中。

本文将介绍微分方程的建模过程,以及常见的解析解法。

二、微分方程的建模微分方程的建模通过描述问题中的变量与变量之间的关系来进行。

具体步骤如下:1. 了解问题:详细了解问题的背景和要解决的具体内容。

2. 确定变量:确定与问题相关的变量,归纳出关键变量和依赖变量。

3. 建立关系:根据问题的特点和变量之间的关系,建立微分方程。

4. 添加初始条件:在微分方程中添加相关的初始条件,这些条件旨在确定方程的具体解。

三、常见的微分方程解析解法微分方程的解析解是通过数学方法求出的解,可以明确地表示出问题的解决方案。

以下是常见的解析解法:1. 可分离变量法:对于形如dy/dx=f(x)g(y)的一阶微分方程,可以将x和y分离到方程的两边,然后分别进行积分求解。

2. 齐次方程法:对于形如dy/dx=f(x/y)的一阶微分方程,可以进行变量代换将其化为可分离变量形式的方程。

3. 线性微分方程法:对于形如dy/dx+p(x)y=q(x)的一阶线性微分方程,可以利用积分因子法求解。

4. 变量替换法:对于一些复杂的微分方程,通过适当的变量替换,可以将其化简为已知解法形式的微分方程来求解。

5. 求和法和积分法:对于高阶线性微分方程,可以通过求和法和积分法来求解特解,然后利用线性微分方程的叠加原理求得整个方程的解。

四、举例与实践为了更好地理解微分方程的建模与解析解法,我们来看一个具体的例子。

假设有一水槽中的水高度随时间变化的问题,可以建立如下微分方程:dh/dt = -k * sqrt(h)其中,h是水槽中的水高度,t是时间,k是一个常数。

使用可分离变量法,我们可以将此微分方程分离变量并进行求解:(1/√h)dh = -kdt对两边同时进行积分,得到:2√h = -kt + C1其中C1是积分常数。

通过一系列代数变换,我们可以求出水槽中水的高度h关于时间t的解析解:h = ((-kt + C1)/2)^2这个解析解可以明确地描述出水槽中水的高度随时间变化的规律。

微分方程的解析解和数值解

微分方程的解析解和数值解

微分方程的解析解和数值解微分方程是数学中一个重要的概念,它描述了物理、工程、经济等领域中许多现象和过程。

解析解和数值解是求解微分方程的两种常见方法。

本文将从解析解和数值解两个方面介绍微分方程的求解方法,并分析它们的优缺点。

解析解是指能够用已知的数学函数表达出来的微分方程的解。

它通过变量分离、直接积分、常数变易等方法求得。

解析解具有形式简洁、具有普适性和精确性等特点。

例如,二阶线性常系数齐次微分方程可以通过特征方程的求解得到解析解。

解析解的求解过程通常需要运用复杂的数学技巧和方法,因此对于一些复杂的微分方程,可能难以求得解析解。

数值解是指通过数值计算的方法求解微分方程的解。

数值解的求解过程通常基于离散化方法,将微分方程转化为差分方程,并利用数值计算的方法进行求解。

数值解具有计算简单、适用范围广和可自动化计算等特点。

例如,常见的数值解方法有Euler方法、Runge-Kutta方法等。

数值解的求解过程通常需要选择合适的步长和计算精度,以保证计算结果的准确性。

解析解和数值解在求解微分方程时各有优势和适用范围。

解析解适用于形式简单、已知解的微分方程,能够给出精确的解析结果,有助于深入理解微分方程的性质和规律。

然而,随着微分方程的复杂度增加,求解解析解的难度也会增加,有时甚至无法获得解析解。

这时就需要借助数值解的方法来求解微分方程。

数值解适用于各种类型的微分方程,无论是线性方程还是非线性方程,无论是常微分方程还是偏微分方程。

数值解方法可以通过逐步逼近的方式来求得近似解,可以通过调整步长和计算精度来控制计算结果的准确性。

数值解方法的实现相对简单,只需要编写相应的计算程序即可。

然而,数值解方法的计算结果通常是近似解,存在一定的误差。

此外,数值解方法的计算量较大,对计算资源的要求较高。

解析解和数值解是求解微分方程的两种常见方法。

解析解适用于形式简单、已知解的微分方程,能够给出精确的解析结果;而数值解适用于各种类型的微分方程,能够通过数值计算的方式求得近似解。

微分方程解析解方法总结

微分方程解析解方法总结

微分方程解析解方法总结微分方程是数学中的重要概念,它描述了自然界中各种变化的规律。

解析解是指能够用一种或多种函数表示出的微分方程的解。

本文将总结一些常见的微分方程解析解方法。

一、变量分离法变量分离法适用于可将微分方程中的变量分离的情况。

具体步骤如下:1. 将微分方程移项,将所有含有未知函数的项放在方程的一边,将不含未知函数的项放在另一边。

2. 对方程两边同时积分,得到两个不定积分。

3. 对两个不定积分进行求解,得到解析解。

二、常数变易法常数变易法适用于形如齐次线性微分方程的情况。

具体步骤如下:1. 假设微分方程的解为y=C(x)f(x),其中C(x)为待定常数函数,f(x)为未知函数。

2. 将假设的解代入微分方程,得到一个关于C(x)和f(x)的方程。

3. 通过求解该方程,得到C(x)和f(x)的表达式。

4. 将C(x)f(x)作为微分方程的解析解。

三、齐次方程法齐次方程法适用于形如齐次线性微分方程的情况。

具体步骤如下:1. 将微分方程改写为dy/dx=g(y/x),其中g为一元函数。

2. 令y=ux,将微分方程转化为关于u和x的方程。

3. 对关于u和x的方程进行求解,得到u的表达式。

4. 将u=x/y代入y=ux,得到微分方程的解析解。

四、特征方程法特征方程法适用于形如二阶常系数线性齐次微分方程的情况。

具体步骤如下:1. 将二阶微分方程写成特征方程r^2+pr+q=0的形式。

2. 求解特征方程,得到两个根r1和r2。

3. 根据根的情况,可得到微分方程的解析解的形式。

五、拉普拉斯变换法拉普拉斯变换法适用于解决常系数线性微分方程的情况。

具体步骤如下:1. 对微分方程两边同时进行拉普拉斯变换。

2. 根据拉普拉斯变换的性质,将微分方程转化为代数方程。

3. 求解代数方程,得到解析解的拉普拉斯反变换。

通过以上总结,我们可以看到不同类型的微分方程可以采用不同的解析解方法来求解。

在实际应用中,选择合适的方法能够提高解题的效率和准确性。

微分方程中的一阶常微分方程与解析解

微分方程中的一阶常微分方程与解析解

微分方程中的一阶常微分方程与解析解微分方程是数学中的一个重要分支,广泛应用于物理、工程、经济等领域。

在微分方程中,一阶常微分方程是最基础的类型之一。

本文将介绍一阶常微分方程的定义、解析解的概念以及求解方法。

一、一阶常微分方程的定义一阶常微分方程是指只包含一个未知函数及其导数的方程。

一般形式可以表示为:dy/dx = f(x,y)其中,dy/dx表示未知函数y关于自变量x的导数,f(x,y)是一个已知函数。

二、解析解的概念解析解是指通过解析方法求得的准确解。

在微分方程中,解析解是对方程的解进行代数表达的形式,而不仅仅是数值的近似解。

解析解可以用数学公式表示,并具有普遍适用性。

三、求解一阶常微分方程的方法1. 可分离变量法可分离变量法适用于可以将微分方程改写为dy=f(x)dx或者dx=f(y)dy的情况。

具体求解步骤如下:- 将方程两边分离变量;- 对两边同时积分,得到不含未知函数的解析解;- 注意需要考虑积分常数的引入。

2. 齐次法齐次法适用于可以通过将未知函数及其自变量同除以同一个函数来化简的情况。

具体求解步骤如下:- 将未知函数及其自变量同除以同一个函数,化简方程;- 引入新的未知函数,进行变量替换;- 求解新的未知函数,再通过变量替换得到原方程的解。

3. 线性微分方程的求解线性微分方程是指未知函数及其各阶导数与自变量的乘积的线性组合。

其求解方法如下:- 将线性微分方程写成标准形式,即将未知函数及其各阶导数写成系数和自变量的乘积的形式;- 根据方程的次数,选择合适的特解形式;- 代入方程,确定特解的具体形式,并考虑积分常数。

4. 其他方法除了以上几种方法外,还有一些特殊的一阶常微分方程可以通过其他方法进行求解,如变量替换、恰当方程等。

具体的求解方法需要根据方程的形式和特点进行选择。

四、应用举例下面以一个简单的一阶常微分方程为例,介绍如何使用可分离变量法求解。

例题:dy/dx = 2x解答:将方程重新整理为dy=2xdx的形式,然后两边同时积分:∫dy = ∫2xdx得到y = x^2 + C,其中C为积分常数。

第六讲 微分方程(含答案解析)

第六讲 微分方程(含答案解析)

dx xy x2 y 1 x
dx u 1
u
x
x
两端积分得:u ln | u | C1 ln | x |,或
ln |
xu | u c1,代入u

y x

(u 0)
得:ln
|
y
|
y x
C1,
因此
y

eC1
y x
eC1
y
e x,令C

eC1 , 得y
y
Ce x ,C R 。
例 3 微分方程 ( y x2ex )dx xdy 0 的通解是 y
【答案】 x(ex C)
【详解】微分方程 y x2ex dx xdy 0 可变形为 dy y xex dx x
所以
y

e
1 dx x
设其通解为: p ( y,C1),

dy dx
( y, C1)
y (x,C1)dx C2

dy ( y,C1)

x

C2
3、 y(n) f (x) 型的微分方程—直接积分降阶 (一般不考)
y(n1) f (x) dx C1; y(n2) f (x) dx C1 dx C2
考研数学基础班讲义 (高等数学)
第六讲 微分方程
姓名: 编号:
(内部资料)


第六讲 微分方程 ................................................................................................................................................... 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程的基础知识与练习(一)微分方程基本概念:首先通过一个具体的问题来给出微分方程的基本概念。

(1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。

解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足x dxdy 2= (1) 同时还满足以下条件:1=x 时,2=y (2)把(1)式两端积分,得⎰=xdx y 2 即 C x y +=2 (3)其中C 是任意常数。

把条件(2)代入(3)式,得1=C ,由此解出C 并代入(3)式,得到所求曲线方程:12+=x y (4)(2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程?解 设列车开始制动后t 秒时行驶了s 米。

根据题意,反映制动阶段列车运动规律的函数)(t s s =满足:4.022-=dt s d (5) 此外,还满足条件:0=t 时,20,0===dt ds v s (6) (5)式两端积分一次得:14.0C t dtds v +-== (7) 再积分一次得2122.0C t C t s ++-= (8)其中21,C C 都是任意常数。

把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得0 ,2021==C C把21,C C 的值代入(7)及(8)式得,204.0+-=t v (9)t t s 202.02+-= (10)在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间:)(504.020s t ==。

再把5=t 代入(10)式,得到列车在制动阶段行驶的路程).(5005020502.02m s =⨯+⨯-=上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。

1.微分方程的概念一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。

未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。

我们只研究常微分方程。

微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。

例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。

又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。

一般地,n 阶微分方程的形式是()(,,',...,)0,n F x y y y = (11)其中F 是个2+n 变量的函数。

这里必须指出,在方程(11)中,)(n y 是必须出现的,而)1(,...,',,-n y y y x 等变量则可以不出现。

例如n 阶微分方程01)(=+n y中,除)(n y 外,其他变量都没有出现。

由前面的例子我们看到,在研究某些实际问题时,首先要建立微分方程,然后找出满足微分方程的函数,就是说,找出这样的函数 ,把这函数代入微分方程能使该方程成为恒等式。

这个函数就叫做该微分方程的解。

例如,函数(3)和(4)都是微分方程(1)的解;函数(8)和(10)都是微分方程(5)的解。

如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。

例如,函数(3)是方程(1)的解,它含有一个任意常数,而方程(1)是一阶的,所以函数(3)是方程(1)的通解。

又如,函数(8)是方程的解,它含有两个任意常数,而方程(5)是二阶的,所以函数(8)是方程(5)的通解。

由于通解中含有任意常数,所以它还不能完全确定地反映某一客观事物的规律性,必须确定这些常数的值。

为此,要根据问题的实际情况提出确定这些常数的条件。

例如,例1中的条件(2),例2中的条件(6),便是这样的条件。

设微分方程中的未知函数为)(x y y =,如果微分方程是一阶的,通常用来确定任意常数的条件是0x x =时,0y y =,或写成 00|y y x x ==其中0x ,0y 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的条件是:0x x =时,0y y =,'1y y =或写成 00|y y x x ==,0'|1x x y y ==其中0x ,0y 和1y 都是给定的值。

上述条件叫做初始条件。

确定了通解中的任意常数以后,就得到了微分方程的特解。

例如(4)式是方程(1)满足条件(2)的特解;(10)式是方程(5)满足条件(6)的特解。

求微分方程),('y x f y =满足初始条件00|y y x x ==的特解这样一个问题,叫做一阶微分方程的初值问题,记作⎩⎨⎧===.|),,('00y y y x f y x x (13) 二阶微分方程的初值问题是00''(,,'),|,'|1x x x x y f x y y y y y y ===⎧⎪⎨==⎪⎩ 3、 例题例1 验证:函数kt C kt C x sin cos 21+= (14)是微分方程0222=+x k dtx d (15) 的解。

解 求出所给函数(14)的导数,cos sin 21kt kC kt kC dtdx +-= )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dtx d +-=--= 把22dtx d 及x 的表达式代入方程(15)得 )sin cos (212kt C kt C k +-+)sin cos (212kt C kt C k +0≡函数(14)及其导数代入方程(15)后成为一个恒等式,因此函数(14)是微分方程(15)的解。

用程序来实现:>> syms k t C1 C2;>> x=C1*cos(k*t)+C2*sin(k*t);>> diff(x,t,2)+k^2*xans =k^2*(C1*cos(k*t) + C2*sin(k*t)) - C1*k^2*cos(k*t) - C2*k^2*sin(k*t) >> simple(ans)(二)微分方程的解 一、几个会用到的函数:1、solve 函数:Matlab 中solve 函数主要是用来求解线性方程组的解析解或者精确解。

solve 函数的语法定义主要有以下四种:solve(‘eq’)solve(‘eq’, ‘var’)solve(‘eq1’,’eq2’, …,’ eqn’)g = solve(‘eq1’, ‘eq2’, …,’ eqn’, ‘var1’, ‘var2’, …, ‘varn’) eq 代表字符串形式的方程,var 代表的是变量。

例1:解方程02=++c bx ax程序是:syms a b c x;solve('a*x^2+b*x+c') ( 也可写成solve('a*x^2+b*x+c=0') )当没有指定变量的时候,matlab 默认求解的是关于x 的解,求解的结果为: ans =-(b + (b^2 - 4*a*c)^(1/2))/(2*a)-(b - (b^2 - 4*a*c)^(1/2))/(2*a)d当指定变量为b 的时候:solve('a*x^2+b*x+c','b')求解的结果为:ans =-(a*x^2 + c)/xs = -(a*x^2 + c)/x例2:对于方程组⎩⎨⎧=-=+5111y x y x 的情况 S=solve('x+y=1','x-11*y=5');S.x S.y>> S=[S.x,S.y](这里或者写成x=S.x y=S.y) 如果解得是一个方程组,而且采用了形如[a,b]=solve(a+b=1, 2a-b=4ab) 的格式,那么,在MATLAB R2014a 中没问题,可以保证输出的a ,b 就等于相应的解,但是在R2012b 等早先版本中不能保证输出的顺序就是你声明变量时的顺序。

所以最好采用g=solve(a+b=1, 2a-b=4ab)这种单输出格式,这样输出的是一个结构体,g.a 和g.b 就是对应的解。

S =[ 4/3, -1/3]一、 微分方程的解析解格式:dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)记号: 在表达微分方程时,用字母D 表示求微分,D2y 、D3y 等表示求高阶微分.任何D 后所跟的字母为因变量,自变量可以指定或由系统规则选定为确省,默认自变量是t例如,微分方程 022=dx yd 应表达为:D2y=0.例1:求解微分方程22x xe xy dxdy -=+,并加以验证. 求解本问题的Matlab 程序为:syms x y %line1y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2diff(y,x)+2*x*y-x*exp(-x^2) %line3simplify(diff(y,x)+2*x*y-x*exp(-x^2)) %line4说明:(1) 行line1是用命令定义x,y 为符号变量.这里可以不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3使用所求得的解.这里是将解代入原微分方程,结果应该为0,但这里给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() (simple())函数对上式进行化简,结果为 0, 表明)(x y y =的确是微分方程的解.例2:先求微分方程0'=-+x e y xy 的通解,再求在初始条件e y 2)1(=下的特解,并画出特解函数的图形.求解本问题的 Matlab 程序为:syms x yy=dsolve('x*Dy+y-exp(x)=0', 'x')结果y =(exp(x)+C1)/x求特解两个方法1.y=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)', 'x')结果y =(exp(x)+exp(1))/x2. C1= solve('2*exp(1)=exp(1)+C1','C1')结果C1 =exp(1)y =(exp(x)+exp(-x^2)结果(exp(x)+exp(1))/xezplot(y)例3:求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++035y x dtdy e y x dt dx t 在初始条件0|,1|00====t t y x 下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为:syms x y ta=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t');x=a.xy=a.ysimple(x);simple(y);ezplot(x,y,[0,1.3]);axis auto %坐标刻度选默认值例4 先求微分方程的通解,再求微分方程的特解. ⎪⎩⎪⎨⎧===++15)0(',0)0(029422y y y dx dy dx y d 程序是:dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') ans =(3*sin(5*x))/exp(2*x)例5 求微分方程组的通解. ⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+-=z y x dtdz z y x dt dy zy x dt dx 244354332程序是:A=dsolve('Dx=2*x-3*y+3*z,Dy=4*x-5*y+3*z,Dz=4*x-4*y+2*z','t'); >> x=A.xy=A.yz=A.z。

相关文档
最新文档