模式识别第三章 感知器算法
人工智能之模式识别_北京理工大学中国大学mooc课后章节答案期末考试题库2023年

人工智能之模式识别_北京理工大学中国大学mooc课后章节答案期末考试题库2023年1.采用非线性激活函数可以实现感知器解决非线性分类问题。
参考答案:错误2.下列关于最大池化的说法中错误的是?参考答案:LeNet采用的是最大池化方法3.填充树法由顶向底的方法和由底向顶填充相反。
参考答案:正确4.语言可以是无限的但是句子必须是有限的。
参考答案:正确5.文法是由下列哪些参数构成的?参考答案:起始符S_终止符V_T_非终止符V_N_产生式P6.感知器算法应用什么方法求解准则函数的最优值?参考答案:梯度下降法7.下列关于对比散度算法的说法中错误的是?参考答案:深度信念网中多层受限玻尔兹曼机同时通过对比散度算法完成预训练8.下列选项中,属于模式识别系统的环节是?参考答案:分类器训练_模式采集_分类决策_预处理与特征生成9.分类器函数的VC维h越大,将使下列选项中的哪些数据发生变化?参考答案:置信风险越大_结构风险越大_分类器泛化能力越差10.利用SVM将低维空间中的非线性问题映射到高维空间,存在哪些问题?参考答案:不确定需要映射到多少维的空间上,非线性问题才会转化为线性问题_如何找到合适的映射函数φ_增加计算量,可能会因为维数灾难无法解决11.本课程中介绍的与句法模式识别相关的基本概念有?参考答案:字母表_句子(链)_文法_语言12.下列选项中属于贝叶斯分类器的特点的是?参考答案:分类决策存在错误率_先验概率已知,以新获得的信息对先验概率进行修正13.贝叶斯分类器的训练,是从样本集数据中估计出____。
参考答案:类条件概率_先验概率14.下列选项中属于特征降维的优点的是?参考答案:降低模式识别任务的复杂度_提升分类决策的正确率_用更少的代价设计出更加优秀的模式识别系统15.下列说法中正确的是?参考答案:聚类结果受特征选取和聚类准则的影响_数据聚类没有预先分好类的样本集_聚类结果受各特征量纲标尺的影响_数据聚类没有已知的分类决策规则16.设计一个组合分类器需要满足什么要求?参考答案:每个基分类器的训练集和训练结果要有差异_组合分类器需要重点考虑方差和偏差_基分类器的分类正确率大于50%17.下列选项中属于决策树分类器的特点的是?参考答案:需选择分支后两个子节点纯度最高的特征作为一个节点的测试特征_速度快,分类决策规则明确_未考虑特征间的相关性_有监督学习方法18.下列选项中属于Adaboost算法的特点的是?参考答案:异常数据(离群点)影响大_不易实现并行化训练_只能解决二分类问题_算法的组合过程能减小偏差19.下列选项中属于反馈型神经网络的是?参考答案:Hopfield网络_受限玻尔兹曼机20.调节以下哪些部分可以对神经网络的性能造成影响?参考答案:权值_激活函数_隐层单元_阈值21.下列选项中关于前馈网络和反馈网络的说法中正确的是?参考答案:前馈网络输出不作用在网络的输入中_前馈网络为静态网络_反馈网络下一时刻的输出与上一时刻的输出有关_反馈网络为动态网络22.下列选项中属于BP网络的不足的是?参考答案:容易陷入局部极小值_全连接网络计算大_隐层神经元数量难以确定_无法做到深度很深,会产生梯度消失23.下列选项中属于深度学习的特点的是?参考答案:需要大量样本进行训练_逐层抽象,发现数据集的特征_是层数较多的大规模神经网络_需要大规模并行计算能力的支持24.利用链式求导法则需要哪些信息?参考答案:损失函数与网络输出向量之间的函数关系_激活函数输出对净激励的导数25.深度信念网不能用于图像识别的原因是?参考答案:深度信念网为一维向量输入,不能直接用于二位图像_需要进行认知-重构的双向计算,学习速度不够快_受限玻尔兹曼机的层间全连接,权值数量太多26.Jp作为类内、类间可分性的概率距离度量时应该满足下列选项中哪些条件?参考答案:当两类完全不可分时,Jp等于0_当两类完全可分时,Jp取得最大值27.特征选择的算法包括以下哪些?参考答案:分支定界法_顺序后退法_穷举法_顺序前进法28.特征降维的方法包括特征选择和特征提取。
模式识别复习资料答案

一、感知器算法流程图:二、矩阵分解的方法:所谓矩阵分解,就是将一个矩阵写成结构比较简单的或性质比较熟悉的另一些矩阵的乘积。
其分解的方法有很多种,常用的有三角分解、QR 分解、奇异值分解。
三角分解定义:如果方阵A 可分解成一个下三角形矩阵L 和上三角形矩阵U 的的乘积,则称A 可作三角分解或LU 分解。
QR 分解(正交分解)定义:如果实(复)非奇异矩阵A 能化成正交(酉)矩阵Q 与实(复)非奇异上三角矩阵R 的乘积,即A=QR ,则称上式为A 的QR 分解。
奇异值分解定理:设A 是一个m n ⨯的矩阵, 且()r A r =,则存在m 阶酉矩阵U 和n 阶酉矩阵V ,使得000H U AV ⎛⎫⎪= ⎪ ⎪⎝⎭∑ (2), 其中,1()rdiag σσ=∑L ,且120r σσσ≥≥≥≥L 。
由(2)知000H A U V ⎛⎫⎪= ⎪ ⎪⎝⎭∑ (3), 该式称为A 的奇异值分解,(1,2,)i i r σ=L ,称为A 的奇异值,U 的第i 列称为A 对应i σ的左奇异向量,V 的第i 列称为A 对应的i σ右奇异向量。
三、非负矩阵分解:在NMF 中要求原始的矩阵V 的所有元素的均是非负的,那么矩阵V 可以分解为两个更小的非负矩阵的乘积,这个矩阵V 有且仅有一个这样的分解,即满足存在性和唯一性。
分解方法:已知数据举矩阵V 和所能忍受的误差e ,求非负分解矩阵W ,H 。
(1) 随机初始化矩阵,要求非负;(2) 应用迭代公式进行迭代。
如果噪声服从高斯分布,则根据式()()Tik ik ikTikVH W W WHH ←g和式()()T kjkj kj TkjW V H H W WH ←g进行,如果噪声服从Poisson 分布,则根据式()kj ijij jik ik kjjH VWH W W H⎡⎤⎣⎦←∑∑g和 ()ik ikijikj kjik iW V WH H H W⎡⎤⎣⎦←∑∑g进行;(3)当||||V WH -误差小于e 时,或者达到最大迭代次数时,停止迭代。
感知器算法

y = f (∑ wi xi − θ )
i =1
d
而且f为一阶跃函数, 而且 为一阶跃函数,即: 为一阶跃函数
d 1, ∑ wi xi − θ ≥ 0 i =1 y = f ( x) = = sgn( w0T x − θ ) d −1, w x − θ < 0 ∑ i i i =1
四、感知器训练算法在多类问题中的应用 就第二章中的第三种情况为例说明) (就第二章中的第三种情况为例说明) 判决规则:对于c种类型 存在k个判决函 种类型, 判决规则:对于 种类型,存在 个判决函 数 d j ( x)( j = 1, 2,⋯, k ) ,若 di ( x) > d j ( x)( j = 1, 2,⋯ , k , j ≠ i) , x ∈ ωi 则判: 则判: 假设k=c, 多类问题的感知器算法的步骤如下: 多类问题的感知器算法的步骤如下: 假设 (1) 赋给初值: 赋给初值: 赋初值,选择正常数c, 给 Wi 赋初值,选择正常数 把训练样本 变成增广型, 变成增广型,k=0; x (2) 输入训练样本 xk,k ∈{x1 , x2 ,⋯, xn },假定 x ∈ ωi ;
训练样本
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 1011 0111 1101 0101 1011 0111 1101 0101 1011 0111 1101 0101 1011 0111 1101 0101
W(K)Tx
+ + + 0 0 + 0 + + + -
(3) 计算 个判决函数值: 计算c个判决函数值 个判决函数值:
di ( xk ) = [Wi (k )]T xk , i = 1, 2,⋯ , c
模式识别总结

模式识别压轴总结
另外,使用欧氏距离度量时,还要注意模式样本测量值的选取,应该是有效 反映类别属性特征(各类属性的代表应均衡) 。但马氏距离可解决不均衡(一个 多,一个少)的问题。例如,取 5 个样本,其中有 4 个反映对分类有意义的特征 A,只有 1 个对分类有意义的特征 B,欧氏距离的计算结果,则主要体现特征 A。
信息获取 预处理 特征提取与选择 聚类 结果解释
1.4 模式识别系统的构成 基于统计方法的模式识别系统是由数据获取, 预处理, 特征提取和选择, 分类决策构成
2
模式识别压轴总结
1.5 特征提取和特征选择 特征提取 (extraction):用映射(或变换)的方法把原始特征变换为较少 的新特征。 特征选择(selection) :从原始特征中挑选出一些最有代表性,分类性能最 好的特征 特征提取/选择的目的,就是要压缩模式的维数,使之便于处理。 特征提取往往以在分类中使用的某种判决规则为准则,所提取的特征使在 某种准则下的分类错误最小。为此,必须考虑特征之间的统计关系,选用 适当的变换,才能提取最有效的特征。 特征提取的分类准则:在该准则下,选择对分类贡献较大的特征,删除贡 献甚微的特征。 特征选择:从原始特征中挑选出一些最有代表性、分类性能最好的特征进 行分类。 从 D 个特征中选取 d 个,共 CdD 种组合。 - 典型的组合优化问题 特征选择的方法大体可分两大类: Filter 方法:根据独立于分类器的指标 J 来评价所选择的特征子集 S,然后 在所有可能的特征子集中搜索出使得 J 最大的特征子集作为最优特征子 集。不考虑所使用的学习算法。 Wrapper 方法:将特征选择和分类器结合在一起,即特征子集的好坏标准 是由分类器决定的,在学习过程中表现优异的的特征子集会被选中。
模式识别(山东联盟)智慧树知到课后章节答案2023年下青岛大学

模式识别(山东联盟)智慧树知到课后章节答案2023年下青岛大学青岛大学第一章测试1.关于监督模式识别与非监督模式识别的描述正确的是答案:非监督模式识别对样本的分类结果是唯一的2.基于数据的方法适用于特征和类别关系不明确的情况答案:对3.下列关于模式识别的说法中,正确的是答案:模式可以看作对象的组成成分或影响因素间存在的规律性关系4.在模式识别中,样本的特征构成特征空间,特征数量越多越有利于分类答案:错5.在监督模式识别中,分类器的形式越复杂,对未知样本的分类精度就越高答案:错第二章测试1.下列关于最小风险的贝叶斯决策的说法中正确的有答案:条件风险反映了对于一个样本x采用某种决策时所带来的损失;最小风险的贝叶斯决策考虑到了不同的错误率所造成的不同损失;最小错误率的贝叶斯决策是最小风险的贝叶斯决策的特例2.我们在对某一模式x进行分类判别决策时,只需要算出它属于各类的条件风险就可以进行决策了。
答案:对3.下面关于贝叶斯分类器的说法中错误的是答案:贝叶斯分类器中的判别函数的形式是唯一的4.当各类的协方差矩阵相等时,分类面为超平面,并且与两类的中心连线垂直。
答案:错5.当各类的协方差矩阵不等时,决策面是超二次曲面。
答案:对第三章测试1.概率密度函数的估计的本质是根据训练数据来估计概率密度函数的形式和参数。
答案:对2.参数估计是已知概率密度的形式,而参数未知。
答案:对3.概率密度函数的参数估计需要一定数量的训练样本,样本越多,参数估计的结果越准确。
答案:对4.下面关于最大似然估计的说法中正确的是答案:在最大似然函数估计中,要估计的参数是一个确定的量。
;在最大似然估计中要求各个样本必须是独立抽取的。
;最大似然估计是在已知概率密度函数的形式,但是参数未知的情况下,利用训练样本来估计未知参数。
5.贝叶斯估计中是将未知的参数本身也看作一个随机变量,要做的是根据观测数据对参数的分布进行估计。
答案:对第四章测试1.多类问题的贝叶斯分类器中判别函数的数量与类别数量是有直接关系的。
模式识别感知器算法求判别函数

模式识别感知器算法求判别函数
y = sign(w · x + b)
其中,y表示分类结果(1代表一个类别,-1代表另一个类别),x 表示输入特征向量,w表示权重向量,b表示偏置项,sign表示取符号函数。
判别函数的求解过程主要包括以下几个步骤:
1.初始化权重向量和偏置项。
一般可以将它们设置为0向量或者随机向量。
2.遍历训练集中的所有样本。
对于每个样本,计算判别函数的值。
4.如果分类错误,需要调整权重和偏置项。
具体做法是使用梯度下降法,通过最小化误分类样本到超平面的距离来更新权重和偏置项。
对于权重向量的更新,可以使用如下公式:
w(t+1)=w(t)+η*y*x
对于偏置项的更新,可以使用如下公式:
b(t+1)=b(t)+η*y
5.重复步骤2和步骤4,直到所有样本都分类正确或达到停止条件。
需要注意的是,如果训练集中的样本不是线性可分的,则判别函数可能无法达到100%的分类准确率。
此时,可以通过增加特征维度、使用非线性变换等方法来提高分类效果。
总结起来,模式识别感知器算法通过判别函数将输入数据分类为两个类别。
判别函数的求解过程是通过调整权重向量和偏置项,使用梯度下降法最小化误分类样本到超平面的距离。
这个过程是一个迭代的过程,直到所有样本都分类正确或达到停止条件。
模式识别复习资料
(4)如果 Z j( k 1 ) Z j( k )j 1 ,2 , ,K ,则回到(2),将模式 样本逐个重新分类,重复迭代计算。
.
15
例2.3:已知20个模式样本如下,试用K-均值算法分类。
X1 0,0T X2 1,0T X3 0,1T X4 1,1T X5 2,1T X6 1,2T X7 2,2T X8 3,2T
x1
20
8 聚类准则函数Jj与K的关系曲线
上述K-均值算法,其类型数目假定已知为K个。当K未知时,
可以令K逐渐增加, 此时J j 会单调减少。最初减小速度快,但当 K 增加到一定数值时,减小速度会减慢,直到K =总样本数N 时,
Jj = 0。Jj-K关系曲线如下图:
Jj
曲线的拐点 A 对应着接近最优
④ 判断:
Zj(2)Zj(1)
j 1,2 ,故返回第②步。 .
17
② 从新的聚类中心得:
X 1: D D12||||X X11ZZ12((22))|||| X1S1(2) ┋
X 20:D D12||||X X2200Z Z12((22))|||| X20S2(2) 有: S 1 ( 2 ) { X 1 ,X 2 , ,X 8 } N 1 8
(2)将最小距离 3 对应的类 G1(0) 和G2 (0) 合并为1类,得 新的分类。
G 1( 1 2 ) G 1 ( 0 )G , 2 ( 0 ) G 3(1)G 3(0) G 4(1 )G 4(0 ) G 5(1)G 5(0) G 6(1 )G 6(0)
计算聚类后的距离矩阵D(1): 由D(0) 递推出D(1) 。
3)计算合并后新类别之间的距离,得D(n+1)。
4)跳至第2步,重复计算及合并。
模式识别——感知器准则与Fisher算法实验-推荐下载
1、复习感知器算法; 2、写出实现批处理感知器算法的程序 1)从 a=0 开始,将你的程序应用在 ω1 和 ω2 的训练数据上。记下收敛的步 数。 2)将你的程序应用在 ω2 和 ω3 类上,同样记下收敛的步数。 3)试解释它们收敛步数的差别。 3、提高部分:ω3 和 ω4 的前 5 个点不是线性可分的,请手工构造非线性映 射,使这些点在映射后的特征空间中是线性可分的,并对它们训练一个感
本实验通过编制程序让初学者能够体会 Fisher 线性判别的基本思路,理解线性判别的 基本思想,掌握 Fisher 线性判别问题的实质。
2、[实验内容]
1.实验所用样本数据如表 2-1 给出(其中每个样本空间(数据)为两维, x 1 表示第一维的值、x 2 表示第二维的值),编制程序实现 ω1、ω 2 类 ω 2、ω 3 类的分类。分析分类器算法的性能。
x1 X
xd
根据 Fisher 选择投影方向 W 的原则,即使原样本向量在该方向上的投影能兼顾类间分
布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向 W 的函数为:
J F (W ) (m~S~112m~S~222)2
W * SW1(m1 m2 )
上面的公式是使用 Fisher 准则求最佳法线向量的解,该式比较重要。另外,该式这种
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
模式识别试题库
2.6 简述最小张树算法的优点。
2.7 证明马氏距离是平移不变的、非奇异线性变换不变的。 2.8 设,类 有
p
、
q
的重心分别为
xp
、
xq
,它们分别有样本
np
、
nq
个。将和
q
合并为
l ,则 l
nl n p n q
个样本。另一类
2 Dkl
k 的重心为 x k 。试证明 k 与 l 的距离平方是
1 n z xi n i 1 小时,有 。
(x z ) T ( xi z )
为最
2.14 假设 s 为模式矢量集 X 上的距离相似侧度,有 x, y 0, s ( x, y ) 0 且当 a 0 时,
d ( x, y ) a / s ( x, y ) 。证明 d 是距离差异性测度。
《模式识别》试题库
一、基本概念题 1.1 是: 1.2、模式分布为团状时,选用 1.3 欧式距离具有 。 马式距离具有 模 式 识 、 别 的 三 大 、 聚类算法较好。 。 核 心 问 。 题
(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: (1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度 ;(2) 个技术途径。 ; 。
(1)
Tr[ S S B ]
1 w
SB (2) SW
(3)
SB SW S B
)情况下,可使用聂曼-皮尔逊
1.10 作为统计判别问题的模式分类,在( 判决准则。
1.11 确定性模式非线形分类的势函数法中,位势函数 K(x,xk)与积累位势函数 K(x)的关系为 ( )。
模式识别试题及总结
模式识别试题及总结一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3) (4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A ? 0A1 , A ? 1A0 , B ? BA , B ? 0}, A) (2)({A}, {0, 1}, {A?0, A ? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A ? 0A1, A ? 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
因 (13) x5 (1,1,1,1)(0,0,-1,1) 0 不大于 0,故 (14) (13) x5 (1,1,2,0)
T T
T
因 (14) x6 (1,1,2,0)(0,-1,-1,1) 3 大于 0,故 (15) (14) (1,1,2,0)
T T T
T
因大于 0,故 (33) (32) ( 2,-2,-2,1) 第五轮迭代:
T
因 (33) x1 ( 2,2,-2,1)(0,0,0,1) 1 大于 0,故 (34) (33) ( 2,2,2,1)
T T
T
因 (34) x2 ( 2,-2,-2,1)(1,0,0,1) 3 大于 0,故 (35) (34) ( 2,2,2,1)
fprintf('%d ',w(j));
fprintf(')\n');
fprintf('相应的判别函数为d(x)='); for j=1:n-1 end fprintf('(%d)x%d+',w(j),j);
fprintf('(%d)\n',w(j));
模式识别第三章
感知器算法
一.用感知器算法求下列模式分类的解向量 w:
1 : {(0,0,0)T , (1,0,0)T , (1,0,1)T , (1,1,0)T } 2 : {(0,0,1)T , (0,1,1)T , (0,1,0)T , (1,1,1)T }
将属于 2 的训练样本乘以(-1) ,并写成增广向量的形式:
T T T
T
因 (3) x3 (0,0,0,1)(1,0,1,1) 1 大于 0,故 ( 4) (3) (0,0,0,1)
T T T T
T
因 ( 4) x4 (0,0,0,1)(1,1,0,1) 1 大于 0,故 (5) ( 4) (0,0,0,1)
T
因 T (37) x5 (2,2,2,1)(0,0,-1,1)T 1 大于 0,故 (38) (37) ( 2,2,2,1)
T T
T
因 (38) x6 ( 2,2,2,1)(0,-1,-1,1) 3 大于 0,故 (39) (38) ( 2,2,2,1) 因 (39) x7 ( 2,2,2,1)(0,-1,0,1) 1 大于 0,故 ( 40) (39) ( 2,-2,-2,1)
第一轮迭代:取 C 1 , (1) (0,0,0,0)
T T T
因 (1) x1 (0,0,0,0)(0,0,0,1) 0 不大于 0,故 ( 2) (1) x1 (0,0,0,1) 因 ( 2) x2 (0,0,0,1)(1,0,0,1) 1 大于 0,故 (3) ( 2) (0,0,0,13 ( 2,2,2,1)(1,0,1,1) 1 大于 0,故 (36) (35) ( 2,2,2,1)
T T
T
因 (36) x4 ( 2,2,2,1)(1,1,0,1) 1 大于 0,故 (37) (36) ( 2,2,2,1)
T
因 (17) x1 (1,1,-2,0)(0,0,0,1) 0 不大于 0,故 (18) (17) x1 (1,1,2,1)
T T
T
因 (18) x2 (1,-1,-2,1)(1,0,0,1) 2 大于 0,故 (19) (18) (1,1,2,1)
T T
T
因 (15) x7 (1,1,2,0)(0,-1,0,1) 1 大于 0,故 (16) (15) (1,-1,-2,0)
T T T T
T
因 (16) x8 (1,-1,-2,0)(-1,-1,-1,1) 2 大于 0,故 (17) (16) (1,-1,-2,0) 第三轮迭代:
T T T
T
因 ( 40) x8 ( 2,-2,-2,1)(-1,-1,-1,1) 1 大于 0,故 ( 41) ( 40) ( 2,-2,-2,1)
T T
T
该轮迭代全部正确,因此解向量 ( 2,2,2,1) ,相应的判别函数为:
T
d ( x) 2 x1 2 x2 2 x3 1
flag=1;%迭代继续标志,当迭代全部正确时,flag=0,迭代结束
flag=0; k=k+1; for i=1:N
if w'*x(i,:)'<=0%当迭代错误,w加上相应的x w=w+x(i,:)'; end flag=1;
end
end
fprintf('迭代次数%d\n',k); fprintf('解向量为w=('); for j=1:n end
T T T
T
第二轮迭代: 因 (9) x1 (0,1,-1,-1)(0,0,0,1) 1 不大于 0,故 (10) (9) x1 (0,1,-1,0)
T T T
因 (10) x2 (0,-1,-1,0)(1,0,0,1) 0 不大于 0,故 (11) (10) x2 (1,1,1,1)
x1 (0,0,0 ,1)T , x2 (1,0,0,1)T , x3 (1,0,1,1)T , x4 (1,1,0 ,1)T x5 (0,0,-1,1)T , x6 (0,-1,-1,1)T , x7 (0,-1,0,1)T , x8 (-1,-1,-1,1)T
T T T T
T
因 (19) x3 (1,1,2,1)(1,0,1,1) 0 不大于 0,故 ( 20) (19) x3 ( 2,1,1,2) 因 ( 20) x4 ( 2,1,1,2)(1,1,0,1) 3 大于 0,故 ( 21) ( 20) ( 2,1,1,2)
T T
T
因 (5) x5 (0,0,0,1)(0,0,-1,1) 1 不大于 0,故 (6) (5) x5 (0,0,-1,0) 因 (6) x6 (0,0,-1,0)(0,-1,-1,1) 1 大于 0,故 (7) (6) (0,0,-1,0)
T T
T
T
因 T (29) x5 (2,2,2,1)(0,0,-1,1)T 1 大于 0,故 (30) ( 29) ( 2,2,2,1)
T T
T
因 (30) x6 ( 2,2,2,1)(0,-1,-1,1) 3 大于 0,故 (31) ( 20) ( 2,2,2,1) 因 (31) x7 ( 2,2,2,1)(0,-1,0,1) 1 大于 0,故 (32) (31) ( 2,-2,-2,1)
二.编写求解上述问题的感知器算法程序
1. 实验结果截图
2. 程序代码
%程序功能:实现感知器算法 %时间:2014.10.5 clc; clear all; %作者:赵晓梅 201428014628066
fprintf('感知器算法\n');
%输入模式样本 x=[0,0,0,1;1,0,0,1;1,0,1,1;1,1,0,1;0,0,-1,-1;0,-1,-1,-1;0,-1,0,-1;-1, -1,-1,-1]; [N,n]=size(x);%获取样本数目和维数;N为样本数目;n为样本维数 C=1; w0=[0,0,0,0]';%初始化解向量 w=w0; k=0;%记录迭代次数 while(flag)
T T T
T
第四轮迭代: 因 ( 25) x1 ( 2,2,-2,0)(0,0,0,1) 0 不大于 0,故 ( 26) ( 25) x1 ( 2,2,2,1)
T T T
因 ( 26) x2 ( 2,-2,-2,1)(1,0,0,1) 3 大于 0,故 ( 27) ( 26) ( 2,2,2,1)
T T
T
因 (11) x3 (1,1,1,1)(1,0,1,1) 1 大于 0,故 (12) (11) (1,1,1,1)
T T T T
T
因 (12) x4 (1,1,1,1)(1,1,0,1) 1 大于 0,故 (13) (12) (1,1,1,1)
T T T T
T
因 ( 27) x3 ( 2,2,2,1)(1,0,1,1) 1 大于 0,故 ( 28) ( 27) ( 2,2,2,1) 因 ( 28) x4 ( 2,2,2,1)(1,1,0,1) 1 大于 0,故 ( 29) ( 28) ( 2,2,2,1)
T T T T T
T
因 (7) x7 (0,0,-1,0)(0,-1,0,1) 0 不大于 0,故 (8) (7) x7 (0,1,-1,-1) 因 (8) x8 (0,1,-1,-1)(-1,-1,-1,1) 3 大于 0,故 (9) (8) (0,1,-1,-1)
T T T
T
因 T (21) x5 (2,1,1,2)(0,0,-1,1)T 1 不大于 0,故 ( 22) ( 21) x5 ( 2,1,2,1) 因 ( 22) x6 ( 2,1,2,1)(0,-1,-1,1) 2 大于 0,故 ( 23) ( 22) ( 2,1,2,1)
T T T T T
T
因 ( 23) x7 ( 2,1,2,1)(0,-1,0,1) 0 不大于 0,故 ( 24) ( 23) x7 ( 2,-2,-2,0) 因 ( 24) x8 ( 2,-2,-2,0)(-1,-1,-1,1) 2 大于 0,故 ( 25) ( 24) ( 2,-2,-2,0)