11正数与负数
沪科版数学七年级上册1.1《正数和负数》教学设计

沪科版数学七年级上册1.1《正数和负数》教学设计一. 教材分析《正数和负数》是沪科版数学七年级上册的第一课时内容。
这部分内容是学生初步接触负数的开始,对于学生理解数学中相反意义的量,以及后续学习有理数的加减法、乘除法等知识有重要意义。
本节课的内容主要包括正数和负数的定义,以及它们的表示方法。
教材通过具体的实例,引导学生理解正数和负数的概念,并通过实际操作,让学生掌握正数和负数的表示方法。
二. 学情分析七年级的学生在小学阶段已经接触过一些简单的数学概念,如加减法、乘除法等,但对负数的概念还没有接触过。
因此,对于这部分内容,学生可能会有新鲜感,但也需要通过具体的实例和操作来帮助他们理解。
此外,学生的学习习惯和方法可能各有不同,需要教师在教学过程中进行引导和调整。
三. 教学目标1.知识与技能目标:使学生理解正数和负数的概念,掌握正数和负数的表示方法。
2.过程与方法目标:通过具体实例和实际操作,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:正数和负数的概念,正数和负数的表示方法。
2.难点:理解正数和负数的概念,掌握正数和负数的表示方法。
五. 教学方法1.情境教学法:通过具体实例和实际操作,引导学生理解正数和负数的概念。
2.合作学习法:通过小组讨论和合作,培养学生的合作意识和探究精神。
3.引导发现法:教师引导学生观察、思考,发现正数和负数的表示方法。
六. 教学准备1.教学课件:制作正数和负数的课件,包括具体实例和操作步骤。
2.教学素材:准备一些实际的例子,如温度、海拔等,用于引导学生理解正数和负数的概念。
3.学生活动材料:准备一些卡片,上面写有正数和负数的表示方法,用于学生的实际操作。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾小学学过的数学知识,如加减法、乘除法等,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过具体的实例,如温度、海拔等,引导学生理解正数和负数的概念。
《正数和负数》PPT课件 (公开课获奖)2022年冀教版 (1)

C
(2)图中的直角有∠AOC,∠BOD,∠COE;
锐角有∠AOB,∠BOC,∠COD,∠DOE;
E
钝角有∠AOD,∠BOE。
如图,比较∠BAC,∠CAD,∠BAD,∠ADB的 大小,并说出其中的锐角、直角、钝角。
01 23 4 5
利用一副三角板,你能画出哪些度数的角?
〔画出的角是0~180度〕
18, -7.5, +10.
1.在以上各数中,哪些是在小学里学过的数?它们分别叫什么数?
2.在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明.
问题:什么数叫做正数? 问题:什么数叫做负数? 问题:正负数分别怎样表示?
“月有阴晴圆缺,人有悲欢离合。”,这是 _宋_代__词人_苏__东_坡__写下的被人们广为传诵的佳句, 其中,____阴_、与_晴___圆_ 与、缺____悲_ 与、欢____离_,与都合是 自然世界、人类生活中截然相反的意义的真实 描绘,这些矛盾的东西融为一体,营造出了和 谐而真实的氛围。
3.如果向东走12米记作+12米,则向西走120米记作_—__1_2_0_米。
4.如果向东走12米记作—12米,则向西走120米记作_+_1_2_0_米。
5.如果向东走12米记作_____米,则向西走120米记作_____米。
0可以有怎样的实际意义?
小结: 正负数的产生是实际的需要; 正负数的表示; 0的特殊性; 正负数的实际应用。
+10
活动1
110, 12.91, 12.96, 0, -52 1.1,
`
122.5, 182.5, +75, 305,
18, -7.5, +10.
110 -52
1. 1
0
正数和负数教学设计与反思

《正数和负数》第一课时教案教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:1在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
2使学生经历数学化,符号化的过程,体会负数产生的必要性。
3感受正、负数和生活的密切联系,享受创造性学习的乐趣.4教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念?3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
七年级数学《正数和负数》教案设计范文

七年级数学《正数和负数》教案设计范⽂ 正数与负数这节课是有理数这⼀章的第⼀节课,引⼊负数是实际的需要,也是学好后续内容的需要.本节先回顾前两个学段学过的数,然后通过引⾔中温度、净胜球数、加⼯允许误差的实例,引出负数,进⽽给出正数与负数的描述性定义并进⼀步介绍正负数在实际⽣活中的应⽤.接下来是⼩编为⼤家整理的七年级数学《正数和负数》教案设计范⽂,希望⼤家喜欢! 七年级数学《正数和负数》教案设计范⽂⼀ 1.1正数和负数教学设计(⼀) ⼀、教学⽬标 (⼀)知识与技能: 1.会判断⼀个数是正数还是负数 2.能⽤正、负数表⽰⽣活中具有相反意义的量 (⼆)过程与⽅法: 经历从现实⽣活中的实例引⼊负数的过程,体会引⼊负数的必要性与合理性 (三)情感态度价值观: 感知到数学知识来源于⽣活并为⽣活服务。
⼆、学法引导 1.教学⽅法:采⽤直观演⽰法,教师注意创设问题情境并及时点拨,让学⽣从实例之中⾃得知识。
2.学⽣学法:研究实际问题→认识负数→负数在实际中的应⽤。
三、重点、难点、疑点及解决办法 1.重点:会判断正数、负数,运⽤正负数表⽰具有相反意义的量。
2.难点:负数的引⼊。
3.疑点:负数概念的建⽴。
四、课时安排 2课时 五、教具学具准备 投影仪(电脑)、⾃制活动胶⽚、中国地图。
六、教学设计思路 教师通过投影给出实际问题,学⽣研究讨论,认识负数,教师再给出投影,学⽣练习反馈。
七、教学步骤 (⼀)创设情境,复习导⼊ 师:提出问题:举例说明⼩学数学中我们学过哪些数?看谁举得全? 学⽣活动:思考讨论,学⽣们互相补充,可以回答出:整数,⾃然数,分数,⼩数,奇数,偶数…… 师⼩结:为了实际⽣活需要,在数物体个数时,1、2、3……出现了⾃然数,没有物体时⽤⾃然数0表⽰,当测量或计算有时不能得出整数,我们⽤分数或⼩数表⽰。
【教法说明】学⽣对⼩学学过的各种数是⾮常熟悉的,教师提出问题后学⽣会⾮常积极地回忆、回答,这时教师注意理清学⽣的思路,点出⼩学学过的数的精华部分。
七年级(人教版)集体备课教学设计:1.1《正数和负数》

七年级(人教版)集体备课教学设计:1.1《正数和负数》一. 教材分析《正数和负数》是七年级数学的第一节内容,主要介绍正数、负数以及它们的性质。
通过本节课的学习,学生能够理解正数和负数的含义,掌握它们的运算规则,并能够运用正数和负数解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数,对数的概念有一定的了解。
但正数和负数是相对抽象的概念,需要通过实际例子让学生感知和理解。
此外,学生可能对负数的实际意义和应用存在困惑,需要通过生活情境进行引导和解释。
三. 教学目标1.了解正数和负数的定义及性质。
2.能够运用正数和负数解决实际问题。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正数和负数的定义及性质。
2.负数在实际问题中的应用。
五. 教学方法采用情境教学法、互动式教学法和小组合作法。
通过生活情境引入正数和负数的概念,引导学生主动探究和发现规律,通过小组合作解决问题,提高学生的参与度和积极性。
六. 教学准备1.教学PPT。
2.练习题。
3.教学素材(如人民币、温度计等)。
七. 教学过程导入(5分钟)利用人民币图片,让学生观察并说出人民币的单位,如“1元”、“2元”等。
引导学生思考:“如果是欠款,应该如何表示?”进而引出正数和负数的概念。
呈现(10分钟)1.讲解正数和负数的定义。
2.展示正数和负数的性质,如正数大于0,负数小于0,正数加负数等于0等。
操练(15分钟)1.让学生进行正数和负数的加减法运算。
2.引导学生发现运算规律,如正数加正数等于正数,负数加负数等于负数等。
巩固(10分钟)1.利用温度计图片,让学生举例说明正数和负数在实际生活中的应用。
2.让学生解决实际问题,如:“小明买了一本书,花费了20元,然后又卖掉了一件玩具,得到了30元,请问小明现在有多少钱?”拓展(10分钟)1.引导学生思考:“正数和负数还有哪些应用场景?”2.让学生举例说明,如股票、海拔等。
小结(5分钟)对本节课的内容进行总结,让学生复述正数和负数的定义及性质,以及它们在实际生活中的应用。
正数和负数教案 正数和负数教学反思优秀4篇

正数和负数教案正数和负数教学反思优秀4篇初一上册数学《正数和负数》教案篇一一、教学目标1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。
2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、学会用正负数表示实际问题中具有相反意义的量。
二、教学重点和难点重点:正负数的概念难点:负数的概念三、教具投影片、实物投影仪四、教学内容(一)引入师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4这些数,我们把它叫做什么数?生:自然数师:为了表示“没有”,又引入了一个什么数?生:自然数0师:当测量和计算的结果不是整数时,又引进了什么数?生:分数(小数)师:可见数的概念是随着生产和生活的需要而不断发展的。
请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。
请学生用数表示这些量,遭遇表示困难。
师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。
[板书:1、1正数与负数](二)新课教学1、相反意义的量师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)(1) 汽车向东行驶2.5千米和向西行驶1.5千米;(2) 气温从零上6摄氏度下降到零下6摄氏度;(3) 风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义请学生举出一些相反意义的量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、正数与负数师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。
数学正负基本规则

数学正负基本规则在数学中,正数和负数是基本的概念。
它们在数轴上表示了一个数的方向和大小。
了解正负基本规则对于解决各种数学问题至关重要。
本文将介绍数学中的正负基本规则及其应用。
1. 正数和负数的定义正数是大于零的数,负数是小于零的数。
在数轴上,正数位于原点的右侧,负数位于原点的左侧。
数轴上的原点表示零。
2. 正数和负数的比较正数和负数可以进行大小的比较。
正数比负数大,而负数比正数小。
例如,2是一个正数,而-3是一个负数,那么2大于-3。
另外,两个正数或两个负数之间的比较遵循常规的大小规则。
3. 正数和正数相加当两个正数相加时,结果仍为正数。
例如,2 + 3 = 5,两个正数相加后得到了一个更大的正数。
4. 负数和负数相加当两个负数相加时,结果仍为负数。
例如,-2 + (-3)= -5,两个负数相加后得到了一个更小的负数。
5. 正数与零相加正数与零相加的结果仍为正数。
例如,2 + 0 = 2,其中0表示零。
6. 负数与零相加负数与零相加的结果仍为负数。
例如,-2 + 0 = -2,其中0表示零。
7. 正数和负数相加正数与负数相加时,结果的正负取决于它们的绝对值大小。
绝对值大的数决定了结果的正负。
例如,2 + (-3)= -1,在这个例子中,绝对值较大的-3决定了结果的负号。
8. 正数和正数相减当一个正数减去另一个正数时,结果可以是正数或零。
如果被减数大于减数,则结果为正数;如果被减数等于减数,则结果为零。
例如,5 - 3 = 2,5 - 5 = 0。
9. 负数和负数相减当一个负数减去另一个负数时,结果可以是负数或零。
如果被减数的绝对值大于减数的绝对值,则结果为负数;如果被减数的绝对值等于减数的绝对值,则结果为零。
例如,-5 - (-3)= -2,-5 - (-5)= 0。
10. 正数和负数相减当一个正数减去一个负数时,规则类似于正数和正数相加。
绝对值较大的数决定了结果的正负。
例如,5 - (-3)= 8,在这个例子中,绝对值较大的5决定了结果的正号。
部编初中数学正数和负数要点练习含答案

部编初中数学正数和负数要点练习含答案正数和负数的概念(1) 像3、1.5、1/2、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2) 像-3、-1.5、-1/2、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3) 零即不是正数也不是负数,零是正数和负数的分界。
注意:(1) 为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5也可以写作+3、+1.5。
(2) 对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a 仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。
正数、负数表示:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6和零下等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
正数和负数同步练习题测试时间:15分钟一、选择题1.在0,-2,5,,-0.3中,负数的个数是()A.1B.2C.3D.4答案B在0,-2,5,,-0.3中,-2,-0.3是负数,共有两个负数,故选B.2.在下列四组数:①-3,2.3,;②,0,2;③,0.3,7;④,,2中,三个数都不是负数的是()A.①②B.②④C.③④D.②③④答案D①中-3是负数;②③④中的三个数都不是负数.故选D.3.如果向北走10米记作+10米,那么-6米表示()A.向南走-6米B.向北走4米C.向南走6米D.向北走6米答案C用正、负数可以表示一对具有相反意义的量,由于向北走为正,因此向南走为负.4.如果盈利5%记作+5%,那么-3%表示()A.亏损3%B.亏损8%C.盈利2%D.少赚3%答案A∵盈利5%记作+5%,∴“-”表示亏损,-3%表示亏损3%.故选A.5.如果温泉的水位升高0.8 m时,水位变化记作+0.8 m,那么水位下降0.5m时,水位变化记作()A.0 mB.0.5mC.-0.8 mD.-0.5 m答案D∵水位升高0.8 m时,水位变化记作+0.8 m,∴水位下降0.5 m时,水位变化记作-0.5 m,故选D.6.悉尼、纽约与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2-13当北京是6月15日23时时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时答案A悉尼的时间:6月15日23时+2小时=6月16日1时,纽约的时间:6月15日23时-13小时=6月15日10时.故选A.二、填空题7.已知下列各数:-,-2,3.14,0,0.2,-216,6,,其中正数是;负数是.答案 3.14,0.2,6,;-,-2,-216解析正数前带“-”号的数是负数.8.曾有微信用户提议应该弥补朋友圈只有点赞功能的缺陷,增加“匿名点呸”的功能,如果将点32个赞记作+32,那么点2个呸应记作.答案-2解析如果将点32个赞记作+32,那么点2个呸应记作-2.9.比海平面高850米的地方,其高度记为+850米,则-300米表示的高度.答案比海平面低300米的地方解析由于+850米表示比海平面高850米的地方的高度,因此-300米表示比海平面低300米的地方的高度.10.某水库正常水位为20米,记录表上的5次记录分别为(单位:米):+1.2,0,+2.6,-3,+3.5,这5次表示的实际水位分别为.答案21.2米,20米,22.6米,17米,23.5米三、解答题11.某同学语、数、外三科的成绩,高出平均分的部分记作正数,低于平均分的部分记作负数,列表如下:科目语文数学外语成绩(单位:分)+15-3-6请回答,该同学成绩最好和最差的科目分别是什么?解析语文成绩比平均分多15分,数学成绩比平均分低3分,外语成绩比平均分低6分,所以语文成绩最好,外语成绩最差.12.有10筐苹果,以每筐30 kg为标准,超过的质量记作正数,不足的质量记作负数,记录如下(单位:kg):2,-4,2.5,3.2,-0.5,1.5,3,-1,0,-2.5.(1)有几筐苹果的质量超过标准质量?有几筐苹果的质量不足标准质量?(2)哪一筐苹果的质量超过标准质量最多?超过多少?解析(1)有5筐苹果的质量超过标准质量,有4筐苹果的质量不足标准质量.(2)第4筐苹果的质量超过标准质量最多,超过3.2 kg.13.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的个数用正数表示,不足的个数用负数表示,其中8名男生的成绩分别为2,-1,0,3,-2,-3,1,0.(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?解析(1)这8名男生的达标率为×100%=62.5%.(2)这8名男生做俯卧撑的个数分别为9,6,7,10,5,4,8,7,故总个数为9+6+7+10+5+4+8+7=56.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数
导学案编者: 蔡雅丽
课题 1.1正数与负数
【学习目标】:1、了解正数与负数是从实际需要中产生的。
2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3、会用正、负数表示实际问题中具有相反意义的量。
【学习重点】:正、负数的概念
【学习难点】:负数的概念、正确区分两种不同意义的量
一、 回顾已知,引入新课:
举例小学数学中我们学过哪些数?
二、自主学习,边学边导
阅读教材P2页,完成并思考下列问题。
1、划记正数,负数的定义
2、如何用符号表示正数和负数
3、0与正数和负数的关系
三、精讲点拨,精练提升
例1、(1)一个月内,小明体重增加2kg ,小华体重减少1kg ,小强体重无变化,写出他们
这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%, 德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;
(2)六个国家2001年商品进出口总额的增长率:
美国___________ 德国__________
法国___________ 英国__________
意大利__________ 中国__________
四、当堂检测,达标过关
1、已知下列各数:51-,4
32-,3.14,+3065,0,-239. 则正数有_____________________;负数有____________________.
2、对于“0”的说法正确的有()
①0是正数与负数的分界;②0℃是一个确定的温度;
③0是正数;④0是自然数;⑤不存在既不是正数也不是负数的数
3、下列结论中正确的是…………………………………………()
A.0既是正数,又是负数B.O是最小的正数
C.0是最大的负数D.0既不是正数,也不是负数
4、填下列空
①小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
②如果一个物体向右移动1米记作+1米,那么这个物体又移动了-1米表示_______________________,记作_______ 。
③如果80m表示向东走80m,那么-60表示________________。
如果 -22 元表示亏损 22 元,那么 45 元表示.
④如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_______,水位不升不降时水位变化记作_______。
⑤月球表面白天平均温度零上126℃,记作_____℃,夜间平均温度零下150℃,记作___℃
⑥如果把海平面认为是0,那么高500米的山记作_______,深100米的海沟记作_______。
⑦一袋水泥标准质量为50kg,若比标准质量少2kg记作-2kg,那么比标准质量多1kg记作______,等于标准质量记作______。
总结反思。