LTE功率计算
华为LTE功率配置说明

TD-LTE功率配置指导书华为技术有限公司版权所有侵权必究目录1基本知识 (3)1.1LTE导频图案 (3)1.2功率参数的概念 (3)1.3天线端口映射方式 (5)1.4RS Power Boosting (6)2导频功率对网络性能的影响 (6)2.1对覆盖的影响 (6)2.2对容量的影响 (7)3产品功率配置 (7)3.1基本概念 (7)3.2配置方法 (11)3.2.1已知RRU功率配置导频功率 (11)3.2.2已知导频功率计算RRU功率 (11)3.3功率配置原则 (13)3.4功率配置建议 (13)3.4.1两天线 (13)3.4.2四天线 (13)3.4.3八天线 (14)3.4.4继承TDS功率场景 (14)4结论 (15)附录A (15)1基本知识1.1LTE导频图案CP是OFDM系统的循环前缀,用来抵抗无线信道的多径衰落。
LTE支持的MBMS,采用了长CP。
本版本不考虑长CP的物理层帧格式。
图1是Normal CP下的导频图案:图1 Normal CP下的导频图案1)单天线端口下,每个符号上共有2个导频RE,两个RE之间隔5个子载波。
2)两天线端口下,每个端口的每个符号上有2个导频RE,相隔也是5个子载波。
如果一个天线端口的符号上的有一个RE位置作为RS RE,那么另一个端口上不发信号,避免两个端口之间的信号干扰。
3)四天线端口下,前两个天线端口的导频位置与两天线端口的位置一致;端口3和端口2的导频位置相对于前两个天线端口在时域上延迟一个OFDM符号;同时,在一个天线端口的导频位置上,其它天线端口在相应位置上,不发数据信号。
1.2功率参数的概念EPRE(Energy Per Resource Element):每个资源单元上的能量,可以理解为每个RE的功率。
TypeA符号:无RS的OFDM符号。
TypeB符号:含RS的OFDM符号。
A ρ:无导频的OFDM 符号上的PDSCH RE 功率相对于RS RE 功率的比值,线性值。
LTE功率换算表_ZTE

小区功率快速配置表格如“20M_1port”、“20M_2port”所示,由于Pa和rouB/rouA的组合太多,对于每一个E_RS,Pa和rouB/rouA共有32种组合,而rouB/rouA的变更实际意义不大,表中只列出了rouB/rouA=1的情况,如配置的rouB/rouA不为1,则小区实际最大的发射功率会有所不同,建议无特殊需求,请配置rouB/rouA=1。
小区功率配置详细说明如下:1、OMC根据实际配置的小区带宽、天线端口数、小区参考信号的功率E_RS、PA及PB,来计算小区实际最大的发射功率,并显示在DPC表中,计算公式如下:(1)小区为单端口时Pcell_real =10*log10(子载波数*10^(E_RS/10+PA/10)*10/14+1/6*子载波数*10^(E_RS/10)*4/14+5/6*子载波数*10^(E_RS/10+PA/10)*4/14 * rouB/rouA)(2)小区为两端口时Pcell_real =10*log10(子载波数*10^(E_RS/10+PA/10)*10/14+1/6*子载波数*10^(E_RS/10)*4/14+4/6*子载波数*10^(E_RS/10+PA/10)*4/14 * rouB/rouA)+3(3)小区为四端口时Pcell_real =10*log10(子载波数*10^(E_RS/10+PA/10)*8/14+1/6*子载波数*10^(E_RS/10)*4/14+4/6*子载波数*10^(E_RS/10+PA/10)*6/14 * rouB/rouA)+6其中,PB和rouB/rouA的对应关系如下:注:子载波数=小区带宽所对应的RB数*12,E_RS、PA和PB都在OMC的DPC表中进行配置,如下图所示,其中,E_RS的单位是dBm,步长是1dBm;PA的单位是dBm,共8个取值[-6、-4.77、-3、-1.77、0、1、2、3]dBm;PB是个索引值,无单位。
华为LTE功率配置说明

TD-LTE功率配置指导书华为技术有限公司版权所有侵权必究目录1基本知识 (3)1.1LTE导频图案 (3)1.2功率参数的概念 (3)1.3天线端口映射方式 (5)1.4RS Power Boosting (6)2导频功率对网络性能的影响 (6)2.1对覆盖的影响 (6)2.2对容量的影响 (7)3产品功率配置 (7)3.1基本概念 (7)3.2配置方法 (11)3.2.1已知RRU功率配置导频功率 (11)3.2.2已知导频功率计算RRU功率 (11)3.3功率配置原则 (13)3.4功率配置建议 (13)3.4.1两天线 (13)3.4.2四天线 (13)3.4.3八天线 (14)3.4.4继承TDS功率场景 (14)4结论 (15)附录A (15)1基本知识1.1LTE导频图案CP是OFDM系统的循环前缀,用来抵抗无线信道的多径衰落。
LTE支持的MBMS,采用了长CP。
本版本不考虑长CP的物理层帧格式。
图1是Normal CP下的导频图案:图1 Normal CP下的导频图案1)单天线端口下,每个符号上共有2个导频RE,两个RE之间隔5个子载波。
2)两天线端口下,每个端口的每个符号上有2个导频RE,相隔也是5个子载波。
如果一个天线端口的符号上的有一个RE位置作为RS RE,那么另一个端口上不发信号,避免两个端口之间的信号干扰。
3)四天线端口下,前两个天线端口的导频位置与两天线端口的位置一致;端口3和端口2的导频位置相对于前两个天线端口在时域上延迟一个OFDM符号;同时,在一个天线端口的导频位置上,其它天线端口在相应位置上,不发数据信号。
1.2功率参数的概念EPRE(Energy Per Resource Element):每个资源单元上的能量,可以理解为每个RE的功率。
TypeA符号:无RS的OFDM符号。
TypeB符号:含RS的OFDM符号。
A ρ:无导频的OFDM 符号上的PDSCH RE 功率相对于RS RE 功率的比值,线性值。
关于PA、PB及RS功率的计算——值得收藏

内容提要一、PA、PB二、RS功率三、参数设置四、计算例子一、PA、PBLTE下行信道或符号的功率控制基于两种方式:静态方式和动态方式。
所谓静态方式即为信道配置一个固定值,例如RS、PBCH、PCFICH、PSS+SSS信道采用静态值方式设置功率,并且PBCH、PCFICH、PSS+SSS信道功率值是相对于RS功率进行设置的一个偏置值。
而动态方式即所谓的功率分配,就是把基站总功率在某个时刻按照一定规则分配到各个信道上,例如PHICH、PDCCH, PDSCH信道。
(注:PHICH、PDCCH, PDSCH信道既可以采用静态值方式也可以采用动态功率分配方式,采用哪种方式取决于PDCCH或PDSCH信道传输的内容。
那么什么是功率分配呢?首先,要明确一个概念,EPRE(即每RE上的能量): Energy Per Resource Element,功率分配是基于EPRE的。
在时域上,由于OFDM符号是时分复用的,每个OFDM符号时刻(时域上=66.7us)都以基站的最大功率发射。
但在系统带宽内,每个OFDM符号时刻包含多个OFDM符号(例如20MHz带宽,每个OFDM时刻包含1200个OFDM 符号),那么每个OFDM符号可获取的发射功率为多少呢?于是就有了所谓的功率分配。
根据OFDM符号中是否存在RS信号,把PDSCH OFDM符号分为两类,即A类(TYPE A)和B类(TYPE B)。
A类符号:不存在RS的PDSCH OFDM符号B类符号:存在RS的PDSCH OFDM符号TYPEAρA:将A类符号的PDSCH RE功率(单位mw)与RS功率(单位mW)比值记作ρA=TYPE A/RSρB:将B类符号的PDSCH RE功率(单位mw)与RS功率(单位mw)比值记作ρB=TYPE B/RSLTE设备中,为了控制分配给UE的PDSCH RE功率,引入了PA参数,PB 参数。
PA是一个UE级参数,通过RRC信令发送给UE,可随时改变,PA越小则A类符号功率相对于RS符号功率比值越小;PB是一个小区级参数,由SIB2广播。
LTE无线网络PAPB及RS功率计算

PA、PB及RS功率的计算一、PA、PBLTE下行信道或符号的功率控制基于两种方式:静态方式和动态方式。
所谓静态方式即为信道配置一个固定值,例如RS、PBCH、PCFICH、PSS+SSS信道采用静态值方式设置功率,并且PBCH、PCFICH、PSS+SSS信道功率值是相对于RS功率进行设置的一个偏置值。
而动态方式即所谓的功率分配,就是把基站总功率在某个时刻按照一定规则分配到各个信道上,例如PHICH、PDCCH, PDSCH信道。
(注:PHICH、PDCCH, PDSCH信道既可以采用静态值方式也可以采用动态功率分配方式,采用哪种方式取决于PD CCH或P DSCH信道传输的内容。
那么什么是功率分配呢?首先,要明确一个概念,EPRE(即每RE上的能量): Energy Per Resource Elemen t,功率分配是基于EPRE的。
在时域上,由于OFDM符号是时分复用的,每个OFDM符号时刻(时域上=66.7us)都以基站的最大功率发射。
但在系统带宽内,每个OFDM符号时刻包含多个OF DM符号(例如20MH z带宽,每个OFDM时刻包含1200个O F DM符号),那么每个OF DM符号可获取的发射功率为多少呢?于是就有了所谓的功率分配。
根据OFDM符号中是否存在RS信号,把PDSCH OFDM符号分为两类,即A类(TYPE A)和B类(TYPE B)。
A 类符号:不存在RS 的PDSC H OFDM 符号B 类符号:存在RS 的P D SCH OFDM 符号ρA :将A 类符号的P DSC H RE 功率(单位mw )与RS 功率(单位mW)比值记作ρA = ρB :将B 类符号的P DSC H RE 功率(单位mw )与RS 功率(单位mw )比值记作ρLTE 设备中,为了控制分配给U E 的P D SCH RE 功率,引入了PA 参数,PB 参数。
LTE功率换算公式

LTE功率换算公式LTE(Long Term Evolution,长期演进)是第四代移动通信技术,它支持更快速度、更高容量和更低延迟的数据传输。
在LTE系统中,功率是一个关键参数,用于衡量无线信号的强弱。
在LTE系统中,功率一般用dBm(分贝毫瓦)来表示,下面将介绍一些计算LTE功率的常用公式。
1.dBm与mW之间的转换公式:dBm = 10 * log10(P/mW)其中,P为功率值,单位为mW(毫瓦)。
mW=10^(dBm/10)其中,dBm为功率值,单位为dBm。
例如,如果功率为10mW,则其对应的dBm为10 * log10(10) =10dBm;反过来,如果功率为20dBm,则其对应的mW为10^(20/10) = 100mW。
2.dBm与W之间的转换公式:dBm = 10 * log10(P/W) + 30其中,P为功率值,单位为W(瓦)。
W=10^((dBm-30)/10)其中,dBm为功率值,单位为dBm。
例如,如果功率为1W,则其对应的dBm为10 * log10(1) + 30 =40dBm;反过来,如果功率为30dBm,则其对应的W为10^((30-30)/10) = 1W。
3.dBm与电压之间的转换公式(假设阻抗为50Ω):dBm = 10 * log10(V^2/50)其中,V为电压值,单位为V(伏特)。
V = sqrt(10^(dBm/10) * 50)其中,dBm为功率值,单位为dBm。
例如,如果电压为1V,则其对应的dBm为10 * log10(1^2/50) = -27dBm;反过来,如果功率为-27dBm,则其对应的电压为sqrt(10^(-27/10) * 50) = 1V。
4.dBm与距离之间的关系在无线通信中,信号的功率与距离之间存在一个反比关系。
根据自由空间传播模型,信号功率按照距离的平方衰减。
因此,可以使用下述公式计算两个距离之间的功率差(单位为dB):ΔP(dB) = 20 * log10(d1/d2)其中,d1和d2分别为两个距离,单位可为米、千米等。
LTE功率与LIC计算公式更新

频率范围(MHz) 1880~1915 2320~2370 1880~1915 2320~2370 1880~1915/1885~1915 2320~2370 1880~1910 1880~1915 1880~1915 1880~1915/1885~1915 1880~1910 1880~1915 1880~1915/1885~1915 2575~2635 1885~1915 2575~2635 1885~1915 2575~2635 2320~2370 2320~2370 2575~2635 1885~1915 2575~2635 1880~1915 2575~2635 2570~2620 2575~2615 2575~2635 2575~2635 2575~2635 2575~2635 703~803,宽带滤波器 738~758,窄带滤波器 2320~2370 2320~2370 2575~2635
需要添加lic,如果为正值,该值即是需求的lic数量
LIC总功率 当前RS 限制 功率 20 20 20 20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 PB
2、需求lic为负值即不需要添加lic,如果为正
每通道功 总功率 率(W) 20 20 30 50 30 50 12 16 20 22 20 30 30 40 10 10 35 60 50 60 40 30 30 15 30 20 16 25 10 25 30 20 0.125 0.125 5 20 20 30 50 30 50 96 128 160 176 40 60 60 80 20 20 70 120 100 120 160 240 240 30 60 40 128 200 20 200 240 40 0.25 0.25 10
LTE主要参数

参数核查分析报告目录参数核查分析报告 (1)1、小区属性参数 (3)1、cellReferenceSignalPower (3)2、PA(paForDTCH) (3)3、PB(pb) (5)2.小区选择和重选参数 (6)1、小区选择所需的最小RSRP接收水平(selQrxLevMin) (6)2、小区同频重选所需的最小RSRP接收水平(selQrxLevMin) (7)3、小区异频重选所需的最小RSRP接收水平(eutranRslPara_interQrxLevMin Min) (8)4、系统内重选触发时长(eutranRslPara_tReselectionInterEUTRA) (9)5、TreselectionCDMA_HRPD (9)6、小区重选迟滞(QHyst) (9)7、小区重选偏置(qofStCell)(小区对小区) (9)8、同频测量启动门限(sIntraSearch) (9)9、异频/异系统测量启动门限(snonintrasearch) (10)10、重选到异载频高优先级的RSRP高门限(interThrdXHigh) (10)11、同/低优先级RSRP测量判决门限(snonintrasearch) (11)12、重选到异载频高优先级的RSRP高门限(interThrdXHigh) (11)13、异频频点低优先级重选门限(interThrdXLow) (11)14、服务载频低门限(threshSvrLow) (12)15、重选到低优先级HRPD小区的低门限(cdmaHRPDPara_hrpdThrdXLow) (12)3.网内切换测量参数 (13)3.1 A1事件测量参数 (13)1、事件判决的RSRP门限(thresholdOfRSRP) (14)2、判决迟滞范围(hysteresis) (15)3、事件发生到上报的时间差(timeToTrigger) (15)4、事件触发量(triggerQuantity) (15)3.2 A2异频测量参数 (15)1、事件判决的RSRP门限(thresholdOfRSRP) (16)2、判决迟滞范围(hysteresis) (17)3、事件发生到上报的时间差(timeToTrigger) (17)4、事件触发量(triggerQuantity) (17)A3事件测量参数 (17)1、层3滤波系数(filtercoeffrsrp) (18)2、A3事件偏移(a3Offset) (18)3、A3事件迟滞值(Hysteresis) (19)4、事件发生到上报的时间差(timeToTrigger) (19)5. A4事件测量参数 (19)6、小区个体偏置(cellIndividualOffset) (20)7、事件触发量(triggerQuantity) (20)8、事件触发周期报告间隔(reportInterval) (20)9、事件触发周期报告次数(reportAmount) (21)4、系统内测量其他参数 (21)1、判决同频/异频/系统间测量的绝对门限(measureThresh) (21)2、Gap激活/去激活所需要的时延(gapDelay) (22)功率控制参数 (22)上行功率控制算法: (22)PUSCH功率控制算法: (22)PUSCH半静态调度授权方式发送数据所需小区名义功率(p0NominalPUSCH) (26)PUCCH功率控制算法: (26)PUCCH物理信道使用的小区相关名义功率(poNominalPUCCH) (28)5、SRS功率控制 (29)SRS相对于PUSCH的功率偏差(powerOffsetOfSRS) (29)接入参数 (29)接入规划参数及算法: (29)高低速场景(highSpeedFlag): (31)NCS: (31)产生64个前缀序列的逻辑根序列的起始索引号(rootSequenceIndex): (32)基于竞争冲突的随机接入前导签名(numberOfRAPreambles): (32)随机接入配置序列(prachConfigIndex) (32)接入功率控制: (32)接入功控算法: (32)1、PRACH初始前缀接收功率(preambleIniReceivedPower) (33)2、Message 3 最大发送次数(maxHarqMsg3Tx) (33)3、PRACH的功率攀升步长(powerRampingStep) (34)4、PRACH前缀最大发送次数(preambleTransMax) (34)5、Group A中前导签名数(sizeOfRAPreamblesGroupA) (34)6、随机接入前缀组的消息长度(messageSizeGroupA (34)7、Mac层判决时间(mac-ContentionResolutionTimer (35)8、UE对随机接入前缀响应接收的搜索窗口(毫秒)(raResponseWindowSize) (35)9、设置PHICH可用资源数(ng) (35)寻呼参数 (36)寻呼算法: (36)defaultPagingCycle (37)nB (37)2. 零相关配置(zeroCorrelationZoneConfig) (38)2.31、判决同频/异频/系统间测量的绝对门限(measureThresh) (39)1、小区属性参数1、cellReferenceSignalPower定义:RS参考信号功率功率的计算方法:(2)RS功率计算方法:该参数决定了小区的覆盖范围,设定后为定值。