一维有限深势阱
量子力学-第二章-一维势阱

3
时间依赖薛定谔方程
根据能量守恒和时间演化,推导出薛定谔方程。
薛定谔方程的解析解
无限深势阱
假设粒子被限制在一个 无限深的势阱中,无法 逃逸。
波函数的边界条件
在势阱的边界处,波函 数必须满足特定的边界 条件。
波函数的对称性
在势阱中,波函数可能 具有对称或反对称的性 质。
薛定谔方程的数值解
有限差分法
含时薛定谔方程的一维势阱模型
含时薛定谔方程是一维势阱模型中描述粒子动态行为的方 程。该方程包含了时间依赖的势能项,可以描述粒子在时 间演化过程中受到的外部作用力。
含时薛定谔方程的解可以用来研究粒子在一维势阱中的动 态行为,例如粒子在受到激光脉冲作用时的运动轨迹和能 量变化。通过求解含时薛定谔方程,可以深入了解粒子在 一维势阱中的动力学性质。
01
将薛定谔方程转化为差分方程,通过迭代求解。
网格化方法
02
将连续的空间离散化为有限个网格点,对每个网格点上的波函
数进行求解。
量子隧穿效应
03
当势阱深度较小时,粒子有一定的概率隧穿势垒,从势阱中逃
逸。
03
一维势阱中的粒子行为
BIG DATA EMPOWERS TO CREATE A NEW
ERA
粒子在无限深势阱中的行为
时间依赖的一维势阱模型
时间依赖的一维势阱模型描述了粒子在一维空间中受到随时 间变化的势能作用的情况。这种模型可以用来研究粒子在时 间依赖的外部场中的动态行为,例如粒子在激光场中的运动 。
时间依赖的一维势阱模型需要求解含时薛定谔方程,该方程 描述了粒子在时间演化过程中的波函数变化。通过求解含时 薛定谔方程,可以了解粒子在时间依赖的势阱中的动态行为 。
163一维势阱和势垒问题

0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
U
(
x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d 2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
定态薛定谔方程变为
d 2
一维无限深方势阱的图形表达形式 :
∞∞
U(x)
粒子只能在宽为 a 的两个无限 高势壁间运动,这种势称为一 维无限深方势阱。
0
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r )
E
(r )
————定态薛定谔方程
①列出各区域的定态薛定谔方程
若在样品与针尖之间
加一微小电压Ub电子 就会穿过电极间的势
垒形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。 若控制隧道电流不变,则探针在垂直于样品 方向上的高度变化就能反映样品表面的起伏。
一维深势阱波函数

一维深势阱波函数深势阱是一种常见的量子力学模型,用于描述粒子在有限区域内运动的行为。
而一维深势阱波函数则是描述粒子在一维深势阱中的运动状态的数学函数。
本文将从人类的视角出发,用准确无误的中文描述深势阱波函数的特点和相关概念。
一维深势阱波函数是指粒子在一维空间中受限运动时的波函数。
一维深势阱通常由两个势能壁夹击而成,形成一个有限的区域。
在这个区域内,粒子的运动受到势能的约束,而超出这个区域则势能趋于无穷大,形成了一个“深势阱”。
波函数是用来描述粒子运动状态的数学函数,它包含了粒子的位置和动量等信息。
在一维深势阱中,波函数的形式可以用数学公式描述,但为了遵守本文的要求,我们将用文字来描述波函数的特点。
一维深势阱波函数的形状是由粒子的能量决定的。
当粒子的能量较低时,波函数呈现出类似正弦波的形状,其中包含了若干个波峰和波谷。
这些波峰和波谷代表了粒子在深势阱中的位置概率分布,即在某个位置上发现粒子的概率。
一维深势阱波函数的振幅也受到能量的影响。
能量越高,波函数的振幅越大,意味着粒子在深势阱中的位置分布更广。
而能量越低,波函数的振幅越小,意味着粒子在深势阱中的位置更加局限。
一维深势阱波函数还具有一些特殊的性质。
例如,波函数在深势阱内部是连续的,表示粒子在不同位置上的概率是连续变化的。
而在势能壁处,波函数会突然变为零,表示在势能壁之外几乎不可能发现粒子。
一维深势阱波函数还存在能级的概念。
能级是指粒子在深势阱中的不同能量状态。
每个能级对应着一个特定的波函数,其形状和特点与能量有关。
当粒子的能量足够高时,它可以跃迁到更高的能级,从而改变波函数的形状和特征。
总的来说,一维深势阱波函数是描述粒子在一维深势阱中运动状态的数学函数。
它的形状和特点由粒子的能量决定,包括位置概率分布、振幅和能级等。
通过研究波函数,我们可以更深入地理解粒子在深势阱中的运动规律和量子力学的基本原理。
希望通过本文的描述,读者能够对一维深势阱波函数有一个初步的了解。
高二物理竞赛课件一维无限深势阱

满足归一化条件,另外
z
和
1 me
z
z
还要满足边界条件.
有限深势阱能带
有限
无限
有效质量
En k
E n,0
2k 2 2m 0
2
m
2 0
nn
un0 k p un0 2 En0 En0
E n,0
2k 2
2
1
m
0
m 022k2
nn
un0
k
p
un0
En0 En0
2
E n,0
2k 2 2me
2 2
z
1
me z z
nz
zV
z nz
z
Enz
nz
z,
波函数形式为
B expz,z lz 2
nz
Acoskz, lz A sinkz, lz
B exp z
2
2
,
z z z
lz
lz lz 2
2 2
其中 k
2meI Enz 2
,
2meII V0 Enz 2
,
nz z
一维无限深势阱
一维无限深势阱
E nz
2 2 2me ,hLz2
nz2 ,nz
1,2,3,
有限深真实势阱,仅存在着几个束缚态,
E nz nz2, 系数变小,能级降低.这是由于
势垒降低,电子产生贯穿(Δx↑→ Δ p↓
→ p↓).当 lz 0,Enz (发散)电子 态接近于势垒中的布洛赫态.
.
1
me1m0 Nhomakorabeam 022k2
nn
un0 k p un0 En0 En0
一维有限深势阱

答案:对
题号:60822005 分值:2 分 难度系数等级:2 级
微观粒子在一维无限深势阱中各能级的阱壁处出现的概率为零
答案:对
3.填空题
题号:60834001 分值:2 分 难度系数等级:4 级
一维无限深势阱中粒子的定态波函数为 n (x)
在 x=0 到 x a 之间被找到的概率
3
sin 2 x d x 1 x (1/ 4) sin 2x C )
一维无限深势阱
2. 判断题
题号:60821001 分值:2 分 难度系数等级:1 级
在一维无限深势阱中粒子运动的能量不能连续地取任意值,只能取分立值,即能量是 量子化的。
答案:对
题号:60821002 分值:2 分 难度系数等级:1 级
在一维无限深势阱中粒子运动的能量的量子化是强行引入的。
答案:错
题号:60822003 分值:2 分 难度系数等级:2 级
在一维无限深势阱中粒子运动的能量的最小值为零。
答案:错
题号:60821004 分值:2 分 难度系数等级:1 级
在一维无限深势阱中微观粒子在各处出现的概率不均匀。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
量子力学3.2一维方势阱

sin kx(奇宇称态) 或 cos kx (偶宇称态)形式。
1、偶宇称态
2 (x) ~ cos kx
| x | a 2
1(x) A1e x
2 (x) B2 cos kx
3 (x) C2e x
xa 2
a x a
2
2
xa 2
由于这里内外解 (x)和 '(x)在 | x | a 处是连续的,
2a
0
x a x a
n 当 为偶数时, n (x) n (x) ,即 n (x) 具有奇宇称。 n 当 为奇数时, n (x) n (x) ,即 n (x) 具有偶宇称。
本征函数具有确定宇称是由势能对原点对称: U (x) U (x) 而导致的。
由定态薛定谔方程求能量本征值和本征函数的步骤:
1 sin n (x a),
a 2a
0
x a x a
En
n222 2(2a ) 2
n222 8a 2
( n 1,2,3,...)
1 sin n x a 2a
n
(x)
1 cos n x a 2a
0
n 2,4,6 n 1,3,5,
x a x a x a
或表示 为
n(
x
)
1 a
sin n ( x a )
V0→∞时,结果与无限深势阱的偶宇称态能量一致。
2、奇宇称态
2 (x) ~ sin kx
| x | a 2
与上类似,由连续条件可得:
k cot(ka / 2)
cot
与(2)式联立,可确定
参数 和,从而确定能
量本征值。如右图。
2
2
一粒子在一维无限深势阱中运动,求粒子的能级和波函数

一粒子在一维无限深势阱中运动,求粒子的能级和波函数一维无限深势阱是量子力学中常用的模型之一,它能够帮助我们理解粒子在一维空间中的运动以及对应的能级和波函数。
首先,我们来看一下什么是一维无限深势阱。
这是一个理想化的模型,由两堵非常高的无限高势垒所夹,其中粒子的运动只能在这一段距离内进行,并且在势垒外是无法找到粒子的。
这种模型可以用来描述电子在原子中的运动,或者光子在光导纤维中的传播。
在量子力学中,波函数是描述粒子性质的数学函数。
对于一维无限深势阱模型,波函数可以通过解薛定谔方程获得。
薛定谔方程可以用来描述波函数随时间的演化,它是量子力学的基本方程之一。
对于一维无限深势阱,薛定谔方程可以简化为亥姆霍兹方程的形式。
亥姆霍兹方程是一个常微分方程,它的解由定态波函数给出。
定态波函数允许我们计算粒子在一维无限深势阱中的能量和波函数。
解一维无限深势阱的亥姆霍兹方程,我们可以得到一系列能量的解,这些能量称为能级,用n来表示。
每个能级都对应着一个定态波函数,这些波函数描述了粒子在势阱内的运动方式。
对于一维无限深势阱,能级的表达式为En = (n^2 *h^2)/(8*m*L^2),其中n为能级的序数,h为普朗克常数,m为粒子的质量,L为势阱的宽度。
对应于每个能级,还有一个对应的波函数。
波函数用Ψ(x)来表示,描述了在不同位置概率密度的分布。
在一维无限深势阱中,波函数能够取到零点以外的任意位置。
波函数的形式为Ψn(x) = sqrt(2/L) * sin(n * π * x / L),其中x为位置,L为势阱的宽度,n为能级的序数。
通过求解亥姆霍兹方程,我们可以得到多个能级和对应的波函数,它们描述了粒子在一维无限深势阱中的运动和性质。
这些能级和波函数不仅在理论计算中起到了重要作用,而且在实验中也得到了验证。
总之,一维无限深势阱模型是量子力学中研究粒子运动和性质的重要工具。
通过解亥姆霍兹方程,我们可以得到一系列能级和对应的波函数,这些能级和波函数描述了粒子在势阱中的行为。
量子力学中一维无限深势阱问题两种解题方法的比较

量子力学中一维无限深势阱问题两种解题方法的比较一维无限深势阱是量子力学中一个经典的问题,可以用两种方法进行求解:定态微扰论和定态井底近似。
1. 定态微扰论:定态微扰论是量子力学中解决简单势场问题常用的一种方法。
在无限深势阱问题中,可以将无穷深方势阱视为定态问题的微扰,将该势场加入到系统的哈密顿量中,然后使用微扰论进行求解。
定态微扰论的步骤如下:- 首先,将无限深方势阱问题的哈密顿量记为H0,并找到H0的本征函数和本征能量。
- 然后,将无穷深势阱视为微扰,将微扰项H'加入到哈密顿量。
- 使用微扰论的公式,展开本征函数和本征能量的泰勒级数,得到微扰的一阶修正项。
- 最后,将微扰项的一阶修正项加到H0的本征能量上,得到精确的能级修正。
2. 定态井底近似:定态井底近似是另一种求解一维无限深势阱问题的常用方法。
该方法的核心思想是将无穷深方势阱问题看作是薛定谔方程在势能井底附近的近似解。
定态井底近似的步骤如下:- 首先,将无限深方势阱的势能井底近似为一个宽度为a的矩阵势阱,且矩阵势阱的势垒高度为无穷大。
- 然后,将定态薛定谔方程在矩阵势阱内求解,得到在该势阱内的本征函数和本征能量。
- 最后,将势能井底趋于无穷深,即将势阱的势垒高度取极限使其趋于无穷大,此时得到的本征函数和本征能量就是无限深方势阱问题的精确解。
比较两种方法:- 定态微扰论适用于一般情况下的微扰问题,可以求得很多物理量的修正。
但是在计算过程中需要进行级数展开,需要考虑到每一阶的修正项,计算较为复杂。
- 定态井底近似是一种近似方法,适用于无穷深方势阱问题的求解。
它将无穷深方势阱问题转化为一个简单的矩阵势阱问题,简化了问题的求解过程。
- 在求解一维无限深势阱问题时,定态井底近似更加简单快速,能够直接得到问题的精确解。
而定态微扰论的应用范围更广,在求解一些复杂问题时更具有优势。
综上所述,定态井底近似适用于一维无限深势阱问题的精确解,而定态微扰论适用于更一般的微扰问题,并具有更广泛的应用范围。