中期报告,数学,极限思想的产生与发展,应用
极限思想方法及其在中学数学的应用研究

极限思想方法及其在中学数学的应用研究极限的概念首次出现于17世纪,是古典数学的重要组成部分。
它是数学家和物理学家用来衡量被测量的值的一种抽象的概念。
在研究生物和其他自然现象的概念中,极限是一种强大的理念,它可以用来描述数字和现象之间的关系。
极限思想在数学中具有重要的作用,它已经成为数学家研究和解决问题的重要工具。
今天,极限思想仍然被广泛用于学术研究中。
有许多学科使用极限思想来描述复杂的问题,如力学、热力学、电磁学和概率论等,并且极限思想正在改变科学家们对数学的看法。
在最近的发展中,极限思想已经被推广到中学的数学课程中,成为数学教学的重要组成部分。
本文将重点介绍极限思想的基本概念,并分析它在中学数学教学中的应用研究。
极限的定义和概念是数学和物理学的基础,它是用来表示数学问题的概念。
“极限是一个数字,表示运算结果无限接近,但不能达到它”[1]。
极限是一种抽象概念,因此,理解极限及其在数学中的作用,需要研究者有足够的抽象思维能力,而且对极限的计算需要相当复杂的数学算法。
极限的概念和定义不仅仅是理论上的,它也被广泛地用于实际应用中。
极限是数学中著名的难题之一,而且由于极限思想可以用来描述复杂的数学和物理问题,因此,极限思想在诸如力学、热力学、电磁学等学科中发挥着重要的作用。
极限思想在中学数学教学中的应用同样重要,可以有效地提高学生的数学能力。
在X数学课程,极限思想被广泛地用于解决一些复杂的问题,如求解一元函数的极限,求解二次函数的极限等。
此外,在学生学习初等数学的过程中,教师也需要引入极限思想来帮助学生理解一些复杂的数学概念,以及帮助他们进行抽象思维。
例如,在学习数据统计分析中,极限思想可以帮助学生看到数据的变化趋势,也可以帮助他们理解一些抽象的概念,如概率分布、期望值、抽样误差等。
总之,极限思想是数学和物理学中的重要概念,它可以帮助学习者理解复杂的数学概念,以及对抽象思维的掌握。
随着极限思想被应用到中学数学教学中,中学数学教学将在概念解释、问题解决等许多方面取得重要突破,从而帮助学生将极限思想融入到他们的数学知识体系中。
极限思想的产生与发展

极限思想的产生与发展内容摘要:极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限思想来定义的,极限思想的应用无处不在,合理应用极限思想,可以让我们在解决实际问题的过程中,能较快发现解决问题的方法,提高实际效果.本文主要对极限思想的产生与发展进行探究。
关键词:极限思想产生发展概念目录第一章极限思想的产生与发展 (1)1.1极限思想的产生 (1)1.2极限思想的发展 (1)1.3极限思想的完善 (4)1.4 极限的概念 (4)1.5极限思想的思维功能 (5)结论 (19)参考文献 ................................................. 致谢 (21)极限思想的产生与发展1、极限思想的产生极限思想的产生,是社会发展,科学进步的客观需求。
是人在探索改造自然过程中逐渐形成的一新的思想方法。
极限的思想可以追溯到古代,在《庄子·天下篇》中有:“一尺之棰,日取其半,万世不竭”其含义是:长为一尺的木棒,第一天截取它的一半,第二天截取剩下的一半,这样的过程无穷无尽地进行下去。
这样一直进行下去,留下来的木棒越来越短,可以再分的部分越来越小,一直到无穷小不可以再切割,但永远不会消失。
公元前5世纪,有关无穷小的概念就已经作为希腊人关于什么是世界的设想而进入了数学思潮,而希腊数学家所普遍接受的观点则是阿拿萨哥拉提出的:“在小的当中不存在最小的,但总有更小的”。
对于以严密著称的古希腊来说,古希腊学者观念上不能摆脱对无限的恐惧,而是借助于其它的方法来完成有关的证明。
刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也。
”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的。
浅析极限思想及其应用

浅析极限思想及其应用作者:赵莹然来源:《中国科技纵横》2019年第03期摘要:本文首先总结了极限思想的形成与发展,然后阐述了极限的数学概念,并給出了求解极限的几种常见方法,尤其是洛必达法则,最后论述了极限思想的应用。
关键词:极限思想;极限概念;极限计算方法;极限思想应用中图分类号:O171 文献标识码:A 文章编号:1671-2064(2019)03-0185-02极限思想在整个数学发展史上占有重要地位。
极限思想就是通过极限概念分析和解决问题的一种数学思想。
在数学历史发展的过程中,极限思想不断被完善。
随着近代严格极限理论的确立,极限思想成为了微积分理论的基础。
随后,在各个学科领域的分析中,也开始借助于极限来定义。
极限思想使得有限和无限、连续与不连续的相互转化成为现实。
1 极限思想的形成与发展极限思想的由来可以追溯到古代。
例如战国时期庄周所著的《庄子·天下篇》中记载了“一尺之棰,日取其半,万世不竭”;魏晋时期数学家刘徽在“割圆术”中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆和体而无所失矣”;古希腊数学家芝诺的“二分法”和阿基里斯悖论等[1],这些都是早期极限思想的生动体现。
公元前4世纪,古希腊数学家欧多克斯提出了关于计算面积和体积的穷竭法,证明了“圆的面积与直径的平方成正比”等结论。
阿基米德通过严密的计算,解决了求几何图形长度、面积、体积等性质的一系列问题,并提出了无穷小量的概念,这一概念成为了17世纪牛顿创建微积分的基础。
但贝克莱指出,牛顿在微分的推导过程中先是认为无穷小量不是零,最后又让它等于零,无穷小量是“已死的幽灵”,即著名的贝克莱悖论。
这一悖论引发了数学史上的第二次危机。
后来随着严格极限理论的建立,尤其是魏尔斯特拉斯创立的ε-δ语言,用静态的方法描述了动态的极限和连续的概念,才消除了无穷小量引起的混乱,从而使得第二次数学危机得以解决。
自此之后,极限理论以充实和严密的自身体系成为微积分的理论基础,使微积分摆脱了几何上的直观和运动上的不确切描述,进入了全新的发展时期。
极限思想的产生和发展

极限思想的产生和发展摘要:极限谈的是数学中的思维问题,它的广泛使用是由数学本身的发展所决定的。
本文以数学发展史为基础,从一些典型例子中寻找极限的产生与发展,主要是以历史辩证唯物主义观来重新分析、概述有关极限思想的问题。
关键词:极限思想产生发展完善思维功能1.极限思想的产生与一切科学的思想方法一样,极限思想也是社会实践的产物。
极限的思想可以追溯到古代,刘徽的割圆术就是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对无限的恐惧”,他们避免明显地“取极限”,而是借助于间接证法——归谬法来完成有关的证明。
到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。
如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。
2.极限思想的发展正因为当时缺乏严格的极限定义,微积分理论才受到人们的怀疑与攻击,例如,在瞬时速度概念中,究竟是否等于零?如果是零,怎么能用它去作除法呢?如果不是零,又怎么能把包含着它的那些项去掉呢?这就是数学史上所说的“无穷小悖论”。
英国哲学家、大主教贝克莱对微积分的攻击最为激烈,他说微积分的推导是“分明的诡辩”。
贝克莱之所以激烈地攻击微积分,一方面是为宗教服务,另一方面也由于当时的微积分缺乏牢固的理论基础,连牛顿自己也无法摆脱极限概念中的混乱。
这个事实表明,弄清极限概念,建立严格的微积分理论基础,不但是数学本身所需要的,而且有着认识论上的重大意义。
3.极限思想的完善到了18世纪,罗宾斯、达朗贝尔与罗依里埃等人先后明确地表示必须将极限作为微积分的基础概念,并且都对极限作出了各自的定义。
其中达朗贝尔的定义是:“一个量是另一个量的极限,假如第二个量比任意给定的值更为接近第一个量。
”它接近于极限的正确定义。
然而,这些人的定义都无法摆脱对几何直观的依赖。
事情也只能如此,因为19世纪以前的算术和几何概念大部分都是建立在几何量的概念上的。
极限思想及其在数学中的应用

极限思想及其在数学中的应用摘要:高等数学中极限教学作为重要内容,是高等数学计算分析的基础,也是高等数学问题分析的难题,极限的基本思考都是围绕高等数学计算分析开展的,高等数学中微积分、级数等基础概念和思想都是基于极限思想提出的,以极限作为工具去解决和处理数学问题是一种极其重要的方法。
许多学生在学习数列极限时感觉很困难,原因在于数列极限概念很抽象,而且计算也有一定的难度。
本文首先阐述极限的定义;接着从数列极限和函数极限两方面分析极限的求解方法;最后指出极限的应用状况,通过这些应用使我们对极限有一个更系统立体的了解。
关键词:极限;求解方法;应用状况Limit thought and its application inmathematicsAbstract:Limits in higher mathematics teaching as an important content, is the foundation of higher mathematics calculation and analysis, is also a difficult problem in higher mathematics problem analysis, limit the basic thinking about higher mathematics calculation and analysis, calculus of higher mathematics, series, and other basic concepts and ideas are put forward based on the limit state, in order to limit as a tool to solve and deal with the mathematics problem is a very important method. Many students find it difficult to learn the limit of the sequence because the concept of the limit is abstract and computationally difficult. Firstly, the definition of limit is described. Then the solution method of limit is analyzed from the limit of sequence and the limit of function. Finally, the application of the limit is pointed out. Through these applications, we have a more systematic understanding of the limit.Key words:limit; Solution method; Application status目录一、引言 (1)(一)选题背景 (1)(二)研究目的和意义 (1)二、极限的概念 (1)(一)数列极限的定义 (1)(二)函数极限的定义 (2)1 一元函数极限的定义 (2)2 多元函数极限的定义 (3)三、极限的求法 (3)(一)数列极限的求法 (3)1 极限定义求法 (3)2 极限运算法则法 (6)3 夹逼准则求法 (6)4 单调有界定理求法 (7)5 定积分定义法 (8)6 级数法 (8)(二)函数极限的求法 (9)1 一元函数极限的求解方法 (9)2 多元函数极限的求解方法 (15)四、极限的应用 (18)(一)在计算面积中的应用 (18)(二)在求方程数值解中的应用 (18)五、结论 (20)致谢 (22)一、引言(一)选题背景随着对变量间函数关系的不断深化,微积分由此产生。
极限思想在中学数学教学中的应用

极限思想在中学数学教学中的应用极限思想是一种重要的数学思想方法,在中学数学教学中运用极限思想,有助于学生对数列、定积分等复杂问题的理解,提高學生解决相关数学问题的能力。
如何引导学生掌握和应用极限思想,是中学数学教学中要认真思考的问题。
文章简单介绍了极限思想的内涵及在中学数学中的意义,并举出具体例子说明其在实际问题中的应用,以期提高学生的数学思维和解题能力。
标签:极限思想;中学数学教学;应用一、极限思想概述极限思想考察当变量按某种方式变化,譬如变量趋于无穷大或者趋于某一定值时,研究对象最终的变化趋势和趋向的唯一数值;是通过极限的概念,对研究对象从有限拓展到无限,从对常量的研究逐渐转化为对变量的研究,来分析和解决问题的一种思想方法。
二、极限思想在中学数学中的作用1.有利于提高数学思维能力新课标强调对学生数学思维能力和数学素养的培养。
教师通过极限思想教学的渗透,可让学生的思维从有限发散到无限,理解无限逼近的意义,掌握“分割、近似代替、求和、取极限”的思想方法,学会将极限思想应用到其他数学问题的学习和解决当中。
2.有利于解决复杂数学问题教学中灵活渗透极限思想,能降低问题难度,理顺解题思路,提高解题的效率和质量。
例如,求曲边梯形的面积,首先插入分点分割曲边梯形,每个小曲边梯形可近似看成小矩形,这些小矩形的面积和近似等于曲边梯形的面积,分划不同,得到的矩形面积和也不同,当分划足够细时求出极限从而得到曲边梯形面积。
利用这种极限思想,还能解决众多数学问题,如平面曲线的弧长问题。
3.有利于和大学数学知识衔接高等数学的许多概念和方法与极限密切相关,中学教学中让学生掌握极限思想方法,能促进中学与大学数学知识的衔接,为高等数学学习奠定基础。
三、极限思想在中学数学教学中的应用1.极限思想在函数中的应用函数是中学数学教学中的重要内容,贯穿于中学数学的始终,是变量数学的基础。
解决函数问题,可以充分利用极限思想。
通常可以用反函数的方法进行解答,答案为D,由于是选择题,也可以采用极限思想,迅速判断出大致范围,提高解题效率。
数学毕业论文:极限思想在中学数学中的应用

数学毕业论文:极限思想在中学数学中的应用分类号O211.4编号毕业论文题目极限思想在中学数学中的应用学院数学与统计学院姓名x x x专业数学与应用数学学号291010133研究类型x x x x x x指导教师x x x提交日期2013-5-10原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。
学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
本声明的法律责任由本人承担。
论文作者签名:年月日论文指导教师签名:目录摘要. (Ⅰ)Abstract (Ⅰ)引言 (Ⅱ)2、极限思想的发展 (2)2.1最早的极限思想 (2)2.2 极限思想的早期应用 (2)3、极限思想在中学数学中的应用 (3)3.1 在运动变化过程中把握极限位置 (3)3.2利用函数图像把握极限位置 (4)3.3极限思想在函数中的渗透 (6)3.4用极限思想解决立体几何中的有关问题 (8)总结 (9)参考文献 (10)极限思想在中学数学中的应用x x(天水师范学院数学与统计学院,甘肃,天水,741000,)摘要:极限在中学数学中有重要的地位,对中学数学学习有着重要意义.本文结合当前当前中学数学教学实际,介绍了极限的发展历史和极限思想在函数、解析几何、函数图像等方面的应用,通过对比,突出了极限思想在中学数学中的重要性,不但降低了问题难度,而且对开发学生思维、提升创造能力也有很大帮助. 关键字:极限思想中学数学教学Application of limit thought in mathematics teaching in high schoolWang Hui(School of mathematics and statistics, Tianshui NormalUniversity, Gansu, Tianshui, 741000,)Abstract: the limit is an important content in the middle school mathematics, has important significance to the middle school mathematics learning. According to the current state of the current middle school mathematics teaching practice, introduces the application of historical development and the ultimate limit thought in function, analytic geometry, function image etc, by contrast, highlight the importance of limit thought in middle school mathematics of, not only reduces the difficulty, but also on the development of students' thinking, creative ability also to have the very big help.Keywords: limit thought in mathematics teaching in middle school极限思想在中学数学中的应用引言极限是近代数学中一个重要的概念。
极限思想及其在数学中的应用

极限思想及其在数学中的应用作者:李美华来源:《科教导刊》2013年第36期摘要极限是高等数学中的重要概念,文章通过对极限思想发展历程的简述,分析了极限思想在数学尤其是微积分学中的应用,重点提到了其作为解决实际问题的方法论意义。
关键词极限思想研究方法应用中图分类号:G642 文献标识码:ALimit Idea and its Application in MathematicsLI Meihua(South China Business College, Guangdong University of Foreign Studies, Guangzhou,Guangdong 510545)Abstract Limit is an important concept in advanced mathematics. This article summarizes the development history of the limit idea, and analyzes the application of the limit idea in mathematics, especially in differential and integral calculus, finally, highlights its position as a methodological significance to solve practical problems.Key words limit idea; research methods; application1 极限思想的由来及其发展极限思想来源于生产生活实践,为求某些实际问题的精确解答而产生。
古希腊的安提芬(antiphon 480-403BC)采用“化圆为方”提出了用圆内接正多边形面积“穷竭”圆面积的方法,数学家欧多克斯(Eudoxus of Cnidus, 408-355 BC)发展了穷竭法,认为“在一个量中减去比其一半还大的量,不断重复这个过程,可以使剩下的量变得任意小”,即量是无限可分的,阿基米德进一步完善了“穷竭法”,并将其广泛应用于求解曲面面积和旋转体体积问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要: (2)关键词 (2)引言: (2)1 极限思想的产生 (3)2 极限思想的发展 (4)3 极限思想的概念 (4)3.1 极限的现代定义 (4)3.2 函数极限的性质 (5)4 极限思想的应用 (6)4.1极限思想在开方方面中的应用 (6)4.2极限思想在求解某一点问题的应用 (7)结论: (8)参考文献 (9)极限思想的产生﹑发展和应用摘要:本文主要论述极限思想的产生与发展、极限思想的概念及其应用。
极限思想是荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法时产生的,他借助几何直观,大胆地运用极限思想思考问题,放弃了归谬法的证明,而牛顿,莱布尼兹对极限思想的建立作出了创造性的贡献。
本文最后探讨了极限思想在开方和求解某一点方面的应用。
关键词:极限;产生;发展;应用The Developmemt and Application Of Limit Abstract: This paper discusses the emergence and development of the limits of thought, theconcept and application of the limits of thought. The ultimate idea is Tolstoy text, Dutch mathematician, in the process of inspection triangle center of gravity to improve the method of exhaustion of the ancient Greeks, by means of geometric, bold use the thinking of extreme to solve problem, give up the reductio ad absurdum proof, and Newton Leibniz made ??a creative contribution to the establishment of the extreme ideas. Finally, we discuss the thinking of limits in prescribing and solving of a certain point.Key words: Limit ;Generation;Development;Application引言数学是对现实世界数与形简洁的、高效的、优美的描述, 是有其内部抽象和外部有效性的一门学科。
数学科学是知识和思想方法的有机组合。
求解实际问题的正确解法是由一系列正确的程序组成, 即从已知量出发, 通过对已知条件与目标结果的联系, 并运用数学的各种运算, 最终得到正确的结果的过程。
微积分是解决实际问题的一个基础, 极限的思想是微分与积分的基础, 极限的思想贯穿整个微积分的内容。
理解并掌握好其中极限的重要思想, 可以让我们在解决实际问题的过程中, 能较快发现解决问题的方法, 提高实际效果。
本文就利用数学的极限思想在解决各个学科中的实际问题的思考过程作出初步的探索和分析。
1 极限思想的产生极限思想的产生和其他科学思想一样,是必须经过历代古人的思考与实践一步一步渐渐积累起来的,它也是社会实践的产物。
极限的思想可以追溯到古代,刘徽的割圆术是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对无限的恐惧”,他们避免明显的“取极限”,而是借助于间接证法—归谬法来完成有关的证明1。
到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归谬法的证明。
如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。
数学家拉夫纶捷夫曾说:“数学极限法的创造是对那些不能够用算术、代数和初等几何的简单方法来求解的问题进行了许多世纪的顽强探索的结果。
”极限思想的历史可谓源远流长,一直可以上溯到2000多年前。
这一时期可以称作是极限思想的萌芽阶段。
其突出特点为人们已经开始意识到极限的存在,并且会运用极限思想解决一些实际问题,但是还不能够对极限思想得出一个抽象的概念。
也就是说,这时的极限思想建立在一种直观的原始基础上,没有上升到理论层面,人们还不能够系统而清晰地利用极限思想解释现实问题。
极限思想的萌芽阶段以希腊的芝诺,中国古代的惠施、刘徽、祖冲之等为代表。
提到极限思想,就不得不提到著名的阿基里斯悖论——一个困扰了数学界十几个世纪的问题。
阿基里斯悖论是由古希腊的著名哲学家芝诺提出的,他的话援引如下:“阿基里斯不能追上一只逃跑的乌龟,因为在他到达乌龟所在的地方所花的那段时间里,乌龟能够走开。
然而即使它等着他,阿基里斯也必须首先到达他们之间一半路程的目标,并且,为了他能到达这个中点,他必须首先到达距离这个中点一半路程的目标,这样无限继续下去。
从概念上,面临这样一个倒退,他甚至不可能开始,因此运动是不可能的。
”就是这样一个从直觉与现实两个角度都不可能的问题困扰了世人十几个世纪,直至十七世纪随着微积分的发展,极限的概念得到进一步的完善,人们对“阿基里斯”悖论造成的困惑才得以解除。
无独有偶,我国春秋战国时期的哲学名著《庄子》记载着惠施的一句名言“一尺之锤,日取其半,万事不竭。
”也就是说,从一尺长的竿,每天截取前一天剩下的一半,随着时间的流逝,竿会越来越短,长度越来越趋近于零,但又永远不会等于零。
这更是从直观上体现了极限思想。
我国古代的刘徽和祖冲之计算圆周率时所采用的“割圆术”则是极限思想的一种基本应用。
所谓“割圆术”,就是用半径为R的圆的内接正多边形的边数n一倍一倍地增A就越来越接近于圆的面积πR。
在有限次的过程中,用正多边形的面积多,多边形的面积n来逼近圆的面积,只能达到近似的程度。
但可以想象,如果把这个过程无限次地继续下去,就能得到精确的圆面积2。
2 极限思想的发展极限思想是到了16世纪才得以进一步发展的,那时的极限思想是在欧洲资本主义萌芽时期,生产力得到极大发展,生产和技术中大量问题无法用初等数学解决的前提下,一批先进数学家们才进入极限思想的领域深入研究的,这时极限思想的发展与微积分的建立越来越紧密相连了。
科学家们为了获得更高的生产力,不断的进入了极限思想的研究中,这是促进极限发展、建立微积分的社会背景。
从这一时期开始,极限与微积分开始形成密不可分的关系,并且最终成为微积分的直接基础。
尽管极限概念被明确提出,可是它仍然过于直观,与数学上追求严密的原则相抵触。
例如,在瞬时速度这一问题上,牛顿曾说:“两个量和量之比,如果在有限时间内不断趋于相等,且在这一时间终止前互相靠近,使得其差小于任意给定的差,则最终就成为相等”牛顿所运用的极限概念,只是接近于下列直观性的语言描述:“如果当n 无限增大时,n a 无限地接近于常数A ,那么就说n a 以A 为极限”。
这只是“在运动观点的基础上凭借几何图像产生的直觉用自然语言做出的定性描述”。
这一概念固然直观、清晰、简单易懂。
但是从数学的角度审视,对极限的认识不能仅停留在直观的认识阶段。
极限需要有一个严格意义上的概念描述。
起初牛顿和莱布尼茨以无穷小概念为基础建立微积分,后来因遇到了逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。
牛顿的极限观念也是建立在几何直观上的,因而他无法得出极限的严格表述。
正因为当时缺乏严格的极限定义,微积分理论才受到了人们的怀疑与攻击。
英国哲学家、大主教贝克莱对微积分的攻击最为激烈,他说微积分的推导是“分明的诡辩”。
贝克莱之所以激烈地攻击微积分,一方面是为宗教服务,另一方面也由于当时的微积分缺乏牢固的理论基础,连牛顿自己也无法摆脱极限概念中的混乱。
这个事实表明,弄清极限概念,建立严格的微积分理论基础,不但是数学本身所需要的,而且有着认识论上的重大意义。
在极限思想的发展中,我们可以看出数学并不是自我封闭的学科,它与其他学科有着千丝万缕的联系。
正如一位哲人所说:“数学不仅是一种方法,一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系。
”在探求极限起源与发展的过程中,我发现数学确实是一个美丽的世界,享受数学是一个美妙的过程。
以前总是觉得数学枯燥艰涩,可是通过近段时间对极限思想的探究,我真切地感受到数学之美。
在数学推理的过程中,我们可以尽情发散自己的思维,抛开身边的一切烦恼,插上智慧的双翼遨游于浩瀚无疆的数学世界。
什么琐事都不要想,全身心投入其中,享受智慧的自由飞翔,这种感觉真的很美。
培根说:“数学使人精细。
”我觉得应该再加上一句——数学使人尽情享受思维飞翔的美感5。
3 极限思想的概念3.1 极限的现代定义极限是指无限趋近于一个固定的数值。
而极限又可分为数列极限和函数极限。
学习微积分,就会有引入极限的必要性,因为代数是无法处理“无限”的概念,所以为了要利用代数处理无限的量,于是就要构造“极限”的概念。
在“极限”的定义中,我们可以知道,极限的概念为了解决一个数除以0的麻烦,引入了一个过程小量可以取任意小, 只要满足在△δ的区间内,都小于该任意的小量,我们极限为该数,这样的定义可能不够信服力,但它的实用性证明,这个定义还是比较完善的,给出了正确的可能。
数列极限的标准定义:对数列{ n X },若存在常数a ,对于任意ε>0,总存在正整数N ,使得当n>N 时, n X a -<ε成立,那么称a 是数列{ n X }的极限。
[4]函数极限的标准定义:设函数()f x , x 大于某一正数时有定义,若存在常数A ,对于任意ε>0,总存在正整数X ,使得当x >X 时, ()f x A -<ε成立,那么称A 是函数()f x 在无穷大处的极限。
设函数()f x 在0x 处的某一去心领域内有定义,若存在常数A ,对于任意ε>0,总存在正数δ,使得当|x- 0x |<δ时,()f x A -<ε成立,那么称A 是函数()f x 在0x 处的极限4。
3.2 函数极限的性质定理3.1(唯一性) 若极限0lim ()x x f x →存在,则此极限是唯一的3。
证:设B A ,都是f 当0x x →时的极限,则对任给的0>ε,分别存在正数1δ与2δ,使得: 当100δ<-<x x 时有 ()ε<A -x f , )1( 当200δ<-<x x 时有 ()ε<B -x f , )2( 取()21,min δδδ=,则当δ<-<00x x 时,(1)式与(2)式同时成立,故有()()()B --A -=B -A x f x f )(()()ε2<B -+A -≤x f x f由ε的任意性得B =A ,这就证明了极限是唯一的。