【名师部编版】初中人教版七年级数学角(基础)知识讲解
七年级数学角的知识点讲解

七年级数学角的知识点讲解数学是现代社会非常重要的一门学科,而数学的角也是学习数学的一个基本知识点。
在七年级学习数学时,必须掌握角的相关知识。
在本文中,我们将会对七年级数学角的知识点进行详细讲解,以帮助学生们更好地掌握这些知识。
一、角的基本概念角是由两条射线所组成的一部分平面。
其中,两条射线的公共端点称为角的顶点,而另外的两个端点则被称为角的端点。
角的度数是用来度量角大小的单位。
在角的度数中,一个圆被分成了360份,而一个直角又被分成了90份。
因此,在一个直角中,角的度数为90度。
类似地,在一周中,角的度数为360度。
二、角的分类在七年级学习数学时,有很多种不同的角需要进行分类。
这些角的分类如下:1. 锐角:角的度数小于90度,且大于0度。
2. 直角:角的度数等于90度。
3. 钝角:角的度数大于90度,且小于180度。
4. 平角:角的度数等于180度。
三、角的度数计算在七年级数学的学习过程中,需要掌握如何计算角的度数。
以下是计算角度数的公式:1. 角的度数 = 弧长 / 半径 × 180度/ π2. 角的度数 = 弧度 × 180度/ π在这两个公式中,弧长代表弧的长度,而半径代表弧的半径。
弧度是用来度量角度大小的单位。
四、角的性质在学习七年级数学的角时,还需要知道角的性质。
以下是角的一些基本性质:1. 对于一周的角,两个角度数之和等于360度。
2. 对于一个直角,角的度数为90度。
3. 对于两个互补角,它们的度数之和等于90度。
4. 对于两个补角,它们的度数之和等于180度。
五、常见角的名称在七年级数学的学习过程中,需要掌握某些常见角的名称。
以下是一些常见角的名称:1. 尖角:小于90度的角度。
2. 直角:等于90度的角度。
3. 钝角:大于90度小于180度的角度。
4. 顶角:由共同的线段分成的两个相邻的角。
5. 对顶角:形状对称的角。
6. 平行线上的对应角:由平行线所形成的角度。
初一数学角知识点讲解

初一数学角知识点讲解
初一数学角知识点讲解
除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初一上册数学角知识点讲解,希望对大家的学习有一定帮助。
1、角:由公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
锐角直角钝角平角周角
范围 090=90 90 =180=360
5、角的比较方法
(1)度量法
(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15的倍数的角,在0~180之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
8、角的'平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.
图形:
符号:
9、互余、互补
(1)若2=90,则1与2互为余角.其中1是2的余角,2是1的余角.
(2)若2=180,则1与2互为补角.其中1是2的补角,2是1的
补角.
(3)余(补)角的性质:等角的补(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
店铺为大家整理的初一上册数学角知识点讲解相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!。
人教版七年级上册4.角课件

答案:A
感悟新知
知1-练
1-1. 下列说法:
①平角就是直线;② 两条射线组成的图形叫角;
③ 角的大小与边的长短无关;
④角的两边是两条线段.
其中正确的有( B )
A. 0 个
B. 1 个
C. 2 个
D. 3 个
感悟新知
知1-练
1-2. 用5 倍的放大镜看10°的角,视察到角的度数为( A )
秒是一样的.
2. 使用三角尺可以画出30°,45°,60°,90°等特殊角,
使用量角器可以画出任意给定度数的角.
感悟新知
知3-练
例 3 计算:
(1)将57.32°用度、分、秒表示;
(2)将10°6′36″用度表示.
解题秘方:利用高级单位和低级单位相互转化的方
法进行计算.
感悟新知
知3-练
解:(1)57.32°
∠ACB ∠ 2 可以表示成________.
感悟新知
知识点 3 角的单位及换算
知3-讲
1. 角的度量单位
度、分、秒是常用的角的度量单位. 把一个周角360
等分,每一份就是1 度的角,记作1°;把1 度的角60 等分,
每一份叫做1 分的角,记作1′;把1 分的பைடு நூலகம்60 等分,每一
份叫做1 秒的角,记作1″ .
个平角. 其中,正确说法的个数为(
A. 1
B. 2
C. 3
D. 4
)
感悟新知
解题秘方:紧扣定义中的关键词进行辨析.
知1-练
解:①是错误的,因为若两条射线无公共端点,则构成的
图形不是角;②是错误的,因为角的大小与所画边的
长短无关;③是正确的;④是错误的,因为直线和平
七年级数学图形初步认识——角基础讲义

七年级数学图形初步认识——角基础讲义一、基础知识总结1、角:⑴有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
⑵角也可以看做是由一条射线绕着它的端点旋转而形成的图形。
射线旋转时经过的平面部分称为角的内部,平面的其余部分称为角的外部。
注意:①角的大小与边的长短无关,只与构成角的两边张开的幅度大小有关;②角的大小可以度量,可以比较,也可以参与运算。
2、角的表示方法:角可以用大写英文字母、阿拉伯数字或小写希腊字母表示。
角的符号是“∠”。
具体表示方法如下:①用角的符号和数字表示一个角;②用角的符号和小写的希腊字母表示一个角;③用角的符号和一个大写的英文字母表示一个独立的角(在一顶点处只有一个角);④用角的符号和三个大写的英文字母表示任意一个角,表示顶点的字母要写在中间。
3、角的分类:按角的大小可分为锐角、直角、钝角、平角、周角等。
4、角的度量单位及换算:度、分、秒是常用的角的度量单位。
把一个周角等分成360份,每一份就是1度的角,记做1°;把1度角等分成60份,每一份就是1分的角,记做1′;把一分的角等分成60份,每一份就是1秒的角,记做1″。
1°=60′,1′=60″,1周角=360°,1平角=180°,1直角=90°, 1周角=2平角=4直角=360°,1平角=2直角=180°。
5、角的大小的比较方法:①叠合法:比较两个角的大小时,把角叠合起来使两个角的顶点及一边重合,另一边落在同一条边的同旁,则可比较大小;②度量法:量出角的度数,就可以按照角的度数的大小来比较角的大小。
③比较的结果有三种:①两角相等;②一角大于另一角;③一角小于另一角。
角的和、差、倍、分的度数等于角的度数的和、差、倍、分。
6、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
如图,射线OC 将∠AOB 分成两个相等的角,即∠1=∠2,则OC 是∠AOB 的平分线。
(2024秋季新教材)人教版数学七年级上册6.3.1角的概念 课件(共30张PPT)

新知探究 知识点1 角的概念
例1 给出下列说法:①两条射线组成的图形是角;②将一条线 段绕它的一个端点旋转得到的图形是角;③把一个角放在放大镜 下观察,角的度数不变;④平角是一条直线,周角是一条射线.其
∠α的度数是48度56分37秒, 记作:∠α=48°56′37″.
角的度、分、秒是60进制,这和计量 时间的时、分、秒是一样的.
新知探究 知识点3 角的度量和换算
以度、分、秒为单位的角的度量制,叫作角度制. 此外,还有其他度量角的单位制. 例如,以后将要学到的以弧度为基本度量单位的弧度制, 在军事上经常使用的角的密位制,等等.
我们常用量角器量角,度、分、秒是常用的角的度量单位. 如图,把一个周角360等分,每一份就是1度的角,记作1°; 把1度的角60等分,每一份叫作1分的角,记作1′; 把1分的角60等分,每一份叫作1秒的角, 记作1″.
1周角= 360 °;1平角= 180°.
1°= 60′;1′= 60″.
新知探究 知识点3 角的度量和换算
O
始边 A
如果射线OB继续旋转,还会形成什么角呢?
新知探究 知识点1 角的概念
一条射线绕它的端点旋转,当终边和始边成一条直线时, 所成的角叫作平角.
B
O
A
当终边又和始边重合时,所成的角叫作周角.
O
A (B)
新知探究 知识点1 角的概念 归纳:角的概念 (1)静态:角由两条具有公共端点的射线组成. (2)动态:角也可以看成是由一条射线绕着它的端点旋转而成的.
七年级角的基础知识点

七年级角的基础知识点角是我们数学中常见的一个概念,也是初中数学学习中比较基础但又十分重要的知识点之一。
七年级角的基础知识点包括角的度数、角的分类以及角的计算等方面。
本篇文章将分别就这些方面来进行阐述。
一、角的度数1. 角的定义在平面内,由两条有公共端点的线段类似夹起来的图形称为角,公共端点称为角的顶点,用字母标记。
通常用大写字母表示角,如$\angle{ABC}$。
2. 角的度数基本概念角的度数是用角所对的弧长所对应的圆心角的度数来定义的。
一度是指圆的周长的$\dfrac{1}{360}$,度数用$\degree$表示。
3. 角的度数计算(1)角度数= $\dfrac{弧长}{周长} \times 360\degree$(2) 已知角度数,求圆扇弧长扇形占用了圆的一部分,其度数为$α$。
这时用所有圆周长$C$来度量圆,所以圆弧长即为:弧长=$\dfrac{α}{360}\times C$二、角的分类1. 按角度大小分类按照角的度数大小可以将角分为三种类型,即锐角、直角和钝角。
(1)锐角:角度小于$90\degree$。
(2)直角:角度为$90\degree$。
(3)钝角:角度大于$90\degree$,小于$180\degree$。
2. 按角的位置分类按照角所在的位置,角可以分为以下两种类型:(1)内角:在图形内部的角,如三角形和多边形内角。
(2)外角:在图形外部的角,与多边形内角相对应,对顶角相等。
三、角的计算1. 角的加减法(1)角对应部分之和的公式$\angle{AOB}$,$\angle{BOC}$对应部分相加等于$\angle{AOC}$。
(2)补角和余角①补角两个角的和等于直角,则这两个角互为补角,如图:$\angle{AOB}+\angle{BOC}=90\degree$,则$\angle{AOB}$和$\angle{BOC}$互为补角。
②余角两个角的和等于$\angle{180\degree}$,则这两个角互为余角,如图:$\angle{AOB}+\angle{BOC}=180\degree$,则$\angle{AOB}$和$\angle{BOC}$互为余角。
人教版数学七年级上册36角(基础)知识讲解

角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α) .显然一个锐角的补角比它的余角大90°。
七年级数学角知识点人教版

七年级数学角知识点人教版数学是一门基础性极强的学科,角的概念和运算是其重要构成部分。
在七年级数学中,角的知识点是非常重要的,本文将为您简单阐述七年级数学角知识点人教版的相关内容,以期帮助您更好地掌握这一知识点。
一、角的概念
角是由两条射线(或直线段)共同端点形成的几何图形。
通常用字母"∠"表示,如∠ABC、∠A。
角的度量单位是度,常用符号是"°"。
二、角的分类
按角的大小,角可以分为3个类别:锐角、直角和钝角。
锐角的角度小于90度,直角等于90度,钝角的角度大于90度。
方向相同,大小不同的角叫做同向角;大小相同,方向不同的角叫做对顶角;相邻的两个角互为补角,其和为90度。
三、角的运算
1、角的加减法:∠A + ∠B = ∠C
2、角的度数:角度的度数是衡量角大小的标准单位,一个整
圆的角大小为360度。
3、同向角和对顶角的关系:同向角互为补角且对顶角相等。
四、角的相关概念
1、角的平分线:角的平分线是指将一个角平分为两个相等的
角的射线,该射线被称为角的平分线。
平分线始于顶点。
2、角度量角法:角度量角法是指通过量角器等器具来测定角
的大小。
3、直角三角形和三角函数:直角三角形是以一个直角为一端,其他两个端点分别与直角相对的三角形。
三角函数指以三角形边
长比值为基础,定义正弦、余弦和正切等函数。
以上是七年级数学角知识点人教版的相关内容,希望本文能够帮助您更好地掌握这一知识点。
不断学习,不断进步,愿您能在数学的道路上走得更加稳健、更加成功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】【高清课堂:角397364 角的概念】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的为1分,记作“1′”,1′的为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2)利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC=∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α) .显然一个锐角的补角比它的余角大90°。
要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念及表示1.下列语句正确的是().A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】判断下列说法是否正确(1)两条射线组成的图形叫做角()(2)平角是一条直线()(3)周角是一条射线()【答案】(1)×(2)×(3)×2. 写出图中(1)能用一个字母表示的角;(2)以B为顶点的角;(3)图中共有几个角(小于180°).【答案与解析】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.【总结升华】(1)顶点处只有一个角时,才可以用一个字母表示; (2)一般数角时不包括平角和大于平角的角.类型二、角度制的换算3. (1)把25.72°用度、分、秒表示;(2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″.(2),所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】解: (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×=33°+24′+0.6′=33°+24.6′=33°+24.6×=33.41°提示:在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算。
类型三、角的比较与运算4.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.【答案】作法:(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.5.如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB =∠BOC=∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.【高清课堂:角397364 角的有关计算例3】举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80︒,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=∠AOB,∠BON=∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=∠AOB+∠BOC=(∠AOB+∠BOC)=∠AOC=×80︒=40︒.即∠MON=40︒.类型四、余角和补角【高清课堂:角397364角的有关计算例1】6. 已知角α的余角比角α的补角的还少20︒,求角α的余角.【答案与解析】解:由题意可得:角α的余角为(90︒-α),补角为(180︒-α),于是得:90︒-α=(180-α)-20︒,解得:α=75︒90︒-α=90-75︒=15︒答:角α的余角为15︒.【总结升华】此题的关键是掌握互为余角、补角的定义,然后根据题中的关键语句列出方程或代数式,求出相应角的度数.类型五、方位角7.A看B的方向是北偏东30°,那么B看A的方向是().A.南偏东60°B.南偏西60°C.南偏东30°D.南偏西30°【答案】D【解析】依题意画出示意图.由图可知,图中∠1即表示从A看B的北偏东30°,∠2是从B看A的方位角.由此可确定从B看A是南偏西30°.【总结升华】从本例的分析与结果来看,从A看B与从B看A正好是一对对立的观察过程,其方向是一种“相反”的对应关系.方位角的确定首先以什么点为基点(即人站在此处观察)要弄清楚,再由正南或正北到视线夹角测量出来.举一反三:【变式】小王从家出发向南偏东30°的方向走了1000米到达小军家,此时小王家在小军家的________方向.【答案】北偏西30°类型六、钟表上有关夹角问题8.计算:4时15分时针与分针的夹角.【答案与解析】解法一:如图(1),设4时15分时针与分针的夹角为∠α(注:夹角指小于180°的角),时针转过的角度为:30°×4+0.5°×15,分针转过的角度为:6°×15,所以∠α=30°×4+0.5°×15-6°×15=37.5°.解法二:如图(1),∠AOC=30°×1=30°,∠BOC=0.5°×15=7.5°.所以∠AOB=37.5°.即4时15分时针与分针的夹角为37.5°最新人教版小学资料【总结升华】求钟表中时针与分针的夹角有两种方法:第一种方法利用时针与分针的每分钟转速求解,比如解法一;第二种方法直接根据图形求夹角,如解法二.举一反三:【变式】2时48分时针与分针的夹角.【答案】解法1:如图(2),设2时48分时针与分针的夹角为∠α,所以∠α=360°-(48×6°-2×30°-48×0.5°)=360°-204°=156°解法2:如图(2)∠BOD=30°×4=120°,∠COD=2×6°=12°,∠AOB=48×0.5°=24°,所以∠AOC=∠BOD+∠COD+∠AOB=156°.即2时48分时针与分针的夹角为156°.部编本资料欢迎下载!。