交比(射影几何)

合集下载

射影几何学

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。

通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。

通过同一无穷远点的所有直线平行。

德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计划书》中提出用变换群对几何学进行分类在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。

由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。

平行射影可以看作是经过无穷远点的中心投影了。

这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。

射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。

交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。

在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。

在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。

这两个图形叫做对偶图形。

在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。

这两个命题叫做对偶命题。

这就是射影几何学所特有的对偶原则。

在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。

同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。

研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。

如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。

比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

论复变函数教材中交比的定义

论复变函数教材中交比的定义

点 , 义 这 四 个 点 的 交 比为 : 定
( , , Z )一 l 2 ‰ 4
Zl ~ 3

Z2 一

- Z3
如文 [ _ ] 但 是 在分 式 线 性 变 换 这 一 章 节 里 , 们 16 . 它
给 出的交 比的定义 却 不 尽 相 同. 于交 比 的定 义形 由
设 z ,2z ,4 任 意 给 定 的 四个 l z ,3 z 是

4 一


其 他 复 变 函 数 教 材 对 交 比 可 能 还 有 不 同 的 定
义 , 此不再 一 一列举 . 在
为 这 四 个 点 的 交 比 , 为 ( 2 , , . 这 些 点 记 2 ,。 2) 当 中有 无穷 远 点时 , 定 规
定义 3 [
设 z ,2z , 是 任 意 给 定 的 四个 l z ,3
点 , 义 这 四 个 点 的 交 比为 : 定
( , , 3 Z )一 1 2 z , 4
Z 4 —— 3


2 ——


定 义 45 设 z ,2 ,4 任 意 给 定 的 四个 [ ] l ,3 z 是
式 相 对 比 较 繁 琐 , 且 几 何 意 义 不 明 显 , 此 学 生 很 而 因 难 真 正 理 解 交 比 的 定 义 并 且 准 确 记 忆 某 一 具 体 定 义 下 交 比的表达 式. 本 文 试 图探 讨 各 种 不 同 定 义 下 交 比的 内 在关 系 , 指 出不 同定义 下 交 比的本 质. 并
通 过 繁琐但 平凡 的计 算 , 以发 现 其 中有 些 交 比 的 可 值 是相 同 的. 对 于扩 充复 平面 中给定 的 四点 2 ,: 2 , 若 2 , 2 ,

2024年高考数学19题新模式新结构新题型数学与阅读理解 学生版

2024年高考数学19题新模式新结构新题型数学与阅读理解  学生版

2024年高考数学19题新模式新结构新题型1(2023上·北京朝阳·高三统考期中/24南通)已知A m =a 1,1a 1,2⋯a 1,m a 2,1a 2,2⋯a 2,m ⋮⋮⋱⋮a m ,1a m ,2⋯a m ,m(m ≥2)是m 2个正整数组成的m 行m 列的数表,当1≤i <s ≤m ,1≤j <t ≤m 时,记d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t .设n ∈N *,若A m 满足如下两个性质:①a i ,j ∈1,2,3;⋯,n (i =1,2,⋯,m ;j =1,2,⋯,m );②对任意k ∈1,2,3,⋯,n ,存在i ∈1,2,⋯,m ,j ∈1,2,⋯,m ,使得a i ,j =k ,则称A m 为Γn 数表.(1)判断A 3=123231312是否为Γ3数表,并求d a 1,1,a 2,2 +d a 2,2,a 3,3 的值;(2)若Γ2数表A 4满足d a i ,j ,a i +1,j +1 =1(i =1,2,3;j =1,2,3),求A 4中各数之和的最小值;(3)证明:对任意Γ4数表A 10,存在1≤i <s ≤10,1≤j <t ≤10,使得d a i ,j ,a s ,t =0.2(镇海高三期末)19. 在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB ,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs =y 1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y 1+y3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.3(合肥一中期末)19.同余定理是数论中的重要内容.同余的定义为:设a,b∈Z,m∈N*且m>1.若m a-b则称a与b关于模m同余,记作a≡b(mod m)(“|”为整除符号).(1)解同余方程x2-x≡0(mod3);(2)设(1)中方程的所有正根构成数列a n,其中a1<a2<a3<⋯<a n.①若b n=a n+1-a n(n∈N*),数列b n的前n项和为S n,求S2024;②若c n=tan a2n+1⋅tan a2n-1(n∈N*),求数列c n的前n项和T n.4(北京西城)给定正整数N≥3,已知项数为m且无重复项的数对序列A:x1,y1,⋅⋅⋅,x m,y m,x2,y2满足如下三个性质:①x i,y i∈1,2,⋅⋅⋅,N,且x i≠y i i=1,2,⋅⋅⋅,m;③p,q与;②x i+1=y i i=1,2,⋅⋅⋅,m-1q,p不同时在数对序列A中.(1)当N=3,m=3时,写出所有满足x1=1的数对序列A;(2)当N=6时,证明:m≤13;(3)当N为奇数时,记m的最大值为T N ,求T N .5(如皋市)对于给定的正整数n ,记集合R n ={α |α =(x 1,x 2,x 3,⋅⋅⋅,x n ),x j ∈R ,j =1,2,3,⋅⋅⋅,n },其中元素α 称为一个n 维向量.特别地,0 =(0,0,⋅⋅⋅,0)称为零向量.设k ∈R ,α =(a 1,a 2,⋅⋅⋅,a n )∈R n ,β =(b 1,b 2,⋅⋅⋅,b n )∈R n ,定义加法和数乘:kα =(ka 1,ka 2,⋅⋅⋅,ka n ),α +β =(a 1+b 1,a 2+b 2,⋅⋅⋅,a n +b n ).对一组向量α1 ,α2 ,⋯,αs (s ∈N +,s ≥2),若存在一组不全为零的实数k 1,k 2,⋯,k s ,使得k 1α1 +k 2α2 +⋅⋅⋅+k s αs =0 ,则称这组向量线性相关.否则,称为线性无关.(1)对n =3,判断下列各组向量是线性相关还是线性无关,并说明理由.①α =(1,1,1),β =(2,2,2);②α =(1,1,1),β =(2,2,2),γ =(5,1,4);③α =(1,1,0),β =(1,0,1),γ =(0,1,1),δ =(1,1,1).(2)已知α ,β ,γ 线性无关,判断α +β ,β +γ ,α +γ 是线性相关还是线性无关,并说明理由.(3)已知m (m ≥2)个向量α1 ,α2 ,⋯,αm 线性相关,但其中任意m -1个都线性无关,证明:①如果存在等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 (k i ∈R ,i =1,2,3,⋅⋅⋅,m ),则这些系数k 1,k 2,⋯,k m 或者全为零,或者全不为零;②如果两个等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 ,l 1α1 +l 2α2 +⋅⋅⋅+l m αm =0 (k i ∈R ,l i ∈R ,i =1,2,3,⋅⋅⋅,m )同时成立,其中l 1≠0,则k 1l 1=k 2l 2=⋅⋅⋅=k m l m.6(江苏四校)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A,B,C,D是直线l上互异且非无穷远的四点,则称ACBC⋅BDAD(分式中各项均为有向线段长度,例如AB=-BA)为A,B,C,D四点的交比,记为(A,B;C,D).(1)证明:1-(D,B;C,A)=1(B,A;C,D);(2)若l1,l2,l3,l4为平面上过定点P且互异的四条直线,L1,L2为不过点P且互异的两条直线,L1与l1,l2,l3,l4的交点分别为A1,B1,C1,D1,L2与l1,l2,l3,l4的交点分别为A2,B2,C2,D2,证明:(A1,B1;C1,D1)= (A2,B2;C2,D2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG与ΔE F G 的对应边不平行,对应顶点的连线交于同一点,则ΔEFG与ΔE F G 对应边的交点在一条直线上.7(高考仿真)已知无穷数列a n满足a n=max a n+1,a n+2-min a n+1,a n+2(n=1,2,3,⋯),其中max {x,y}表示x,y中最大的数,min{x,y}表示x,y中最小的数.(1)当a1=1,a2=2时,写出a4的所有可能值;(2)若数列a n中的项存在最大值,证明:0为数列a n中的项;(3)若a n>0(n=1,2,3,⋯),是否存在正实数M,使得对任意的正整数n,都有a n≤M?如果存在,写出一个满足条件的M;如果不存在,说明理由.8(高考仿真)若项数为k(k∈N*,k≥3)的有穷数列{a n}满足:0≤a1<a2<a3<⋅⋅⋅<a k,且对任意的i,j(1≤i≤j≤k),a j+a i或a j-a i是数列{a n}中的项,则称数列{a n}具有性质P.(1)判断数列0,1,2是否具有性质P,并说明理由;(2)设数列{a n}具有性质P,a i(i=1,2,⋯,k)是{a n}中的任意一项,证明:a k-a i一定是{a n}中的项;(3)若数列{a n}具有性质P,证明:当k≥5时,数列{a n}是等差数列.9(安徽)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点Q ,P 的距离之比MQ MP=λ(λ>0,λ≠1),λ是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为x 2+y 2=4,定点分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与右顶点A ,且椭圆C 的离心率为e =12.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为k (k >0)的直线l 与椭圆C 相交于B ,D (点B 在x 轴上方),点S ,T 是椭圆C 上异于B ,D 的两点,SF 平分∠BSD ,TF 平分∠BTD .①求BS DS的取值范围;②将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为81π8,求直线l 的方程.10(郑州外国语)记U ={1,2,⋯,100}.对数列a n n ∈N * 和U 的子集T ,若T =∅,定义S T =0;若T =t 1,t 2,⋯,t k ,定义S T =a t 1+a t 2+⋯+a tk .例如:T =1,3,66 时,S T =a 1+a 3+a 66.现设a n n ∈N * 是公比为3的等比数列,且当T =2,4 时,S T =30.(1)求数列a n 的通项公式;(2)对任意正整数k 1≤k ≤100 ,若T 1,2,⋯,k ,求证:S T <a k +1;(3)设C ⊆U ,D ⊆U ,SC ≥SD ,求证:S C +S C ∩D ≥2S D .11(福建模拟)2022年北京冬奥会标志性场馆--国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为R 的球的体积公式时,可以构造如图所示的几何体M ,几何体M 的底面半径和高都为R ,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d 的平面β截两个几何体得到两个截面,请在图中用阴影画出与图中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆x 2a 2+y 2b2=1a >b >0 所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A ,B (如图),类比(Ⅰ)中的方法,探究椭球A 的体积公式,并写出椭球A ,B 的体积之比.12用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f'x 是f x 的导函数,f''x 是f'x 的导函数,则曲线y=f x 在点x,f x处的曲率K=|f (x)|1+[f (x)]232.(1)若曲线f x =ln x+x与g x =x在1,1处的曲率分别为K1,K2,比较K1,K2的大小;(2)求正弦曲线h x =sin x(x∈R)曲率的平方K2的最大值.13设P为多面体M的一个顶点,定义多面体M在点P处的离散曲率为1-12π(∠Q1PQ2+∠Q2PQ3+⋯+∠Q k-1PQ k+∠Q k PQ1),其中Q i(i=1,2,⋯,k,k≥3)为多面体M的所有与点P相邻的顶点,且平面Q ​1PQ ​2,平面Q ​2PQ 3,⋯,平面Q k -1PQ k和平面Q k PQ ​1遍历多面体M的所有以P为公共点的面.(1)任取正四面体的一个顶点,求该点处的离散曲率;(2)如图1,已知长方体A ​1B ​1C ​1D ​1-ABCD,AB=BC=1,AA1=22,点P为底面A ​1B ​1C ​1D ​1内的一个动点,则求四棱锥P-ABCD在点P处的离散曲率的最小值;(3)图2为对某个女孩面部识别过程中的三角剖分结果,所谓三角剖分,就是先在面部取若干采样点,然后用短小的直线段连接相邻三个采样点形成三角形网格.区域α和区域β中点的离散曲率的平均值更大的是哪个区域?(只需确定“区域α”还是“区域β”)14近些年来,三维扫描技术得到空前发展,从而催生了数字几何这一新兴学科.数字几何是传统几何和计算机科学相结合的产物.数字几何中的一个重要概念是曲率,用曲率来刻画几何体的弯曲程度.规定:多面体在顶点处的曲率等于2π与多面体在该点的所有面角之和的差(多面体的面角是指多面体的面上的多边形的内角的大小,用弧度制表示),多面体在面上非顶点处的曲率均为零.由此可知,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正方体在每个顶点有3个面角,每个面角是π2,所以正方体在各顶点的曲率为2π-3×π2=π2,故其总曲率为4π.(1)求四棱锥的总曲率;(2)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D,棱数为L,面数为M,则有:D-L+M=2.利用此定理试证明:简单多面体的总曲率是常数.。

射影几何几何运算

射影几何几何运算
数字图像处理
几何运算
1.引言
几何运算与点运算不同,它可改变图象中物体(像素)之间的空间关系。这种运算可以看成将各像素 在图像内移动的过程。 几何变换是图像处理和图像分析的重要内容,按照变换性质可以分为位置变换、形状变换以及复合变 换。图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。 几何变换常用于摄像机的几何校正过程,这对于利用图象进行几何测量的工作是十分重要的。在实际
3.几何变换基础
2.欧式几何是几何学的一门分科。又称欧几里德几何。公元前3世纪,古希腊数学家欧 几里德(英文Euclid,希腊文Ε'νκλειδη)把人们公认的一些几何知识作为定义和公理, 在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》, 形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认 识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何” 与“立体几何”。欧几里德几何指按照欧几里德的《几何原本》构造的几何学。欧式 几何有时就指平面上的几何,即平面几何。三维空间的欧式几何通常叫做立体几何。 数学上,欧式几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这 一术语表示具有相似性质的高维几何。
称为旋转变换矩阵(因子),θ 为旋转角度。
cos sin 0 sin cos 0 0 1 0
ห้องสมุดไป่ตู้
图像旋转变换程序
void RotIamge(const Mat &srcImage, Mat &dstImage, double angle) { //弧度 double sita = angle * CV_PI / 180; double a = (srcImage.cols - 1) / 2.0; double b = (srcImage.rows - 1) / 2.0; int srcRow = srcImage.rows; int srcCol = srcImage.cols; double x1 = -a * cos(sita) - b * sin(sita); double y1 = -a * sin(sita) + b * cos(sita); double x2 = a * cos(sita) - b * sin(sita); double y2 = a * sin(sita) + b * cos(sita); double x3 = a * cos(sita) + b * sin(sita); double y3 = a * sin(sita) - b * cos(sita); double x4 = -a * cos(sita) + b * sin(sita); double y4 = -a * sin(sita) - b * cos(sita); int w1 = cvRound(max(abs(x1 - x3), abs(x4 - x2))); int h1 = cvRound(max(abs(y1 - y3), abs(y4 - y2))); dstImage.create(h1, w1, srcImage.type()); ...... }

射影几何简介

射影几何简介


笛沙格把他的射影几何思想用于圆锥曲线,得到许多新颖的结果: – 直线可以看作具有无限长半径的圆的一部分; – 焦点相合的椭圆退化为圆; – 焦点之一在无穷远的椭圆是一抛物线,等等.
• • •
他不再把圆锥曲线看作圆锥与平面的交线,而是理解为圆的截景. 圆不仅可以变换为椭圆,而且可以变换为开口的抛物线或双曲线,这时的曲线仍看作封闭的, 只不过是一个点在无穷远而已. 笛沙格力图用投射、截景等射影几何概念统一处理各种圆锥曲线,从而为圆锥曲线的研究开 辟了广阔的前景.
• •
为什么笛沙格的书在当时被忽略呢?主要有两个原因. 一是它被差不多同时出现的解析几何掩盖了.从思想的深刻来讲,笛沙格的射影几何是可以 和笛卡儿的解析几何相媲美的.但笛卡儿的解析几何是用代数方法研究几何问题,可以迅速 得到数量结果,而射影几何主要是对几何的定性研究.当时的技术发展更需要解析几何这样 的有力工具. 第二个原因是,笛沙格的写作形式比较古怪,他引进了 70 个新术语,其中多是从植物学借 用的.例如,他用棕 (Palm)、干、树来表示三种不同性质的直线.这类语句以及不易理解的 思想,使他的书难于阅读. 除了笛卡儿、帕斯卡、费马等几位大数学家外,很少有人欣赏他的著作.
1
B′ O . A′
C′
B
C
D′ A
D
• • •
那么,截景与原形究竟有什么共性呢?这正是阿尔贝蒂苦苦思索而未找到答案的问题. 阿尔贝蒂还考虑到:如果在眼睛和景物之间插进两张玻璃板,它们上面的截景将是不同的; 如果从两个不同位置来观察景物,截景也将是不同的.但所有截景都反映同一景物,它们之 间必存在某种关系. 于是他进一步提出问题:同一景物的任意两个截景间有什么数学关系,或者说有什么共同的 数学性质?他留给后人的这些问题成为射影几何的出发点.

2024年高考数学新题型之19题压轴题专项汇编(学生版)

2024年高考数学新题型之19题压轴题专项汇编(学生版)

2024新题型之19压轴题1.命题方向2024新题型之19压轴题以大学内容为载体的新定义题型以数列为载体的新定义题型以导数为载体的新定义题型两个知识交汇2.模拟演练题型01以大学内容为载体的新定义题型1(2024·安徽合肥·一模)“q-数”在量子代数研究中发挥了重要作用.设q是非零实数,对任意n∈N*,定义“q-数”(n)q=1+q+⋯+q n-1利用“q-数”可定义“q-阶乘”n !q=(1)q(2)q⋯(n)q,且0 !q=1.和“q-组合数”,即对任意k∈N,n∈N*,k≤n,nk q=n !qk !q n-k!q(1)计算:53 2;(2)证明:对于任意k,n∈N*,k+1≤n,nk q=n-1k-1q+q kn-1kq(3)证明:对于任意k,m∈N,n∈N*,k+1≤n,n+m+1 k+1q -nk+1q=∑mi=0q n-k+in+ikq.2(2024·广东江门·一模)将2024表示成5个正整数x1,x2,x3,x4,x5之和,得到方程x1+x2+x3+x4+x5 =2024①,称五元有序数组x1,x2,x3,x4,x5为方程①的解,对于上述的五元有序数组x1,x2,x3,x4,x5,当1≤i,j≤5时,若max(x i-x j)=t(t∈N),则称x1,x2,x3,x4,x5是t-密集的一组解.(1)方程①是否存在一组解x1,x2,x3,x4,x5,使得x i+1-x i i=1,2,3,4等于同一常数?若存在,请求出该常数;若不存在,请说明理由;(2)方程①的解中共有多少组是1-密集的?(3)记S=5i=1x2i,问S是否存在最小值?若存在,请求出S的最小值;若不存在,请说明理由.3(2024·江苏四校一模)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A,B,C,D是直线l上互异且非无穷远的四点,则称ACBC⋅BDAD(分式中各项均为有向线段长度,例如AB=-BA)为A,B,C,D四点的交比,记为(A,B;C,D).(1)证明:1-(D,B;C,A)=1(B,A;C,D);(2)若l1,l2,l3,l4为平面上过定点P且互异的四条直线,L1,L2为不过点P且互异的两条直线,L1与l1,l2,l3,l4的交点分别为A1,B1,C1,D1,L2与l1,l2,l3,l4的交点分别为A2,B2,C2,D2,证明:(A1,B1;C1,D1)= (A2,B2;C2,D2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG与△E′F′G′的对应边不平行,对应顶点的连线交于同一点,则ΔEFG与△E′F′G′对应边的交点在一条直线上.题型02以数列为载体的新定义题型4(2024·安徽黄山·一模)随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列a n ,规定Δa n 为数列a n 的一阶差分数列,其中Δa n =a n +1-a n n ∈N * ,规定Δ2a n 为数列a n 的二阶差分数列,其中Δ2a n =Δa n +1-Δa nn ∈N *.(1)数列a n 的通项公式为a n =n 3n ∈N * ,试判断数列Δa n ,Δ2a n 是否为等差数列,请说明理由?(2)数列log a b n 是以1为公差的等差数列,且a >2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求a 的值;(3)各项均为正数的数列c n 的前n 项和为S n ,且Δc n 为常数列,对满足m +n =2t ,m ≠n 的任意正整数m ,n ,t 都有c m ≠c n ,且不等式S m +S n >λS t 恒成立,求实数λ的最大值.5(2024·辽宁葫芦岛·一模)大数据环境下数据量积累巨大并且结构复杂,要想分析出海量数据所蕴含的价值,数据筛选在整个数据处理流程中处于至关重要的地位,合适的算法就会起到事半功倍的效果.现有一个“数据漏斗”软件,其功能为;通过操作L M ,N 删去一个无穷非减正整数数列中除以M 余数为N 的项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列.设数列a n 的通项公式a n =3n -1,n ∈N +,通过“数据漏斗”软件对数列a n 进行L 3,1 操作后得到b n ,设a n +b n 前n 项和为S n .(1)求S n ;(2)是否存在不同的实数p ,q ,r ∈N +,使得S p ,S q ,S r 成等差数列?若存在,求出所有的p ,q ,r ;若不存在,说明理由;(3)若e n =nS n2(3n-1),n ∈N +,对数列e n 进行L 3,0 操作得到k n ,将数列k n 中下标除以4余数为0,1的项删掉,剩下的项按从小到大排列后得到p n ,再将p n 的每一项都加上自身项数,最终得到c n ,证明:每个大于1的奇平方数都是c n 中相邻两项的和.6(2024·山东青岛·一模)记集合S =a n |无穷数列a n 中存在有限项不为零,n ∈N * ,对任意a n ∈S ,设变换f a n =a 1+a 2x +⋯+a n x n -1+⋯,x ∈R .定义运算⊗:若a n ,b n ∈S ,则a n ⊗b n∈S ,f a n ⊗b n =f a n ⋅f b n .(1)若a n ⊗b n =m n ,用a 1,a 2,a 3,a 4,b 1,b 2,b 3,b 4表示m 4;(2)证明:a n ⊗b n ⊗c n =a n ⊗b n ⊗c n ;(3)若a n =n +12+1n n +1,1≤n ≤1000,n >100,b n =12203-n,1≤n ≤5000,n >500,d n =a n ⊗b n ,证明:d 200<12.7(2024·江苏徐州·一模)对于每项均是正整数的数列P:a1,a2,⋯,a n,定义变换T1,T1将数列P变换成数列T1P :n,a1-1,a2-1,⋯,a n-1.对于每项均是非负整数的数列Q:b1,b2,⋯,b m,定义S(Q)=2(b1+2b2+⋯+mb m)+b21+b22+⋯+b2m,定义变换T2,T2将数列Q各项从大到小排列,然后去掉所有为零的项,得到数列T2Q .(1)若数列P0为2,4,3,7,求S T1P0的值;(2)对于每项均是正整数的有穷数列P0,令P k+1=T2T1P k,k∈N.(i)探究S T1P0与S P0的关系;(ii)证明:S P k+1.≤S P k题型03以导数为载体的新定义题型8(2024·广东惠州·一模)黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数f x =x s-1e x-1(x>0,s>1,s为常数)密切相关,请解决下列问题.(1)当1<s≤2时,讨论f x 的单调性;(2)当s>2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.9(2024·湖北·一模)英国数学家泰勒发现的泰勒公式有如下特殊形式:当f x 在x=0处的n n∈N*阶导数都存在时,f x =f0 +f 0 x+f 02!x2+f3 03!x3+⋯+f n 0n!x n+⋯.注:f x 表示f x 的2阶导数,即为f x 的导数,f n x n≥3表示f x 的n阶导数,该公式也称麦克劳林公式.(1)根据该公式估算sin12的值,精确到小数点后两位;(2)由该公式可得:cos x=1-x22!+x44!-x66!+⋯.当x≥0时,试比较cos x与1-x22的大小,并给出证明;(3)设n∈N*,证明:nk=11(n+k)tan1n+k>n-14n+2.10(2024·山东菏泽·一模)帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=a0+a1x+⋯+a m x m1+b1x+⋯+b n x n,且满足:f(0)=R(0),f (0)=R (0),f (0)=R (0),⋯,f(m+n)(0)=R(m+n)(0).(注:f (x)=f (x),f (x)= f (x),f(4)(x)=f (x),f(5)(x)=f(4)(x),⋯;f(n)(x)为f(n-1)(x)的导数)已知f(x)=ln(x+1)在x=0处的1,1阶帕德近似为R(x)=ax1+bx.(1)求实数a,b的值;(2)比较f x 与R(x)的大小;(3)若h(x)=f(x)R(x)-12-mf(x)在(0,+∞)上存在极值,求m的取值范围.题型04两个知识交汇11【概率与数列】(2024·山东聊城·一模)如图,一个正三角形被分成9个全等的三角形区域,分别记作A,B1,P,B2,C1,Q1,C2,Q,C3. 一个机器人从区域P出发,每经过1秒都从一个区域走到与之相邻的另一个区域(有公共边的区域),且到不同相邻区域的概率相等.(1)分别写出经过2秒和3秒机器人所有可能位于的区域;(2)求经过2秒机器人位于区域Q的概率;(3)求经过n秒机器人位于区域Q的概率.12【概率与函数】(2024·广东汕头·一模)2023年11月,我国教育部发布了《中小学实验教学基本目录》,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到n颗番石榴(不妨设n颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前k(1≤k<n)颗番石榴,自第k+1颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设k=tn,记该学生摘到那颗最大番石榴的概率为P.(1)若n=4,k=2,求P;(2)当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k +1k+1+⋯+1n-1=ln nk)13【解析几何与立体几何】(2024·山东日照·一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12经过点F1且倾斜角为θ0<θ<π2的直线l与椭圆交于A,B两点(其中点A在x轴上方),且△ABF2的周长为8.将平面xOy沿x轴向上折叠,使二面角A-F1F2-B为直二面角,如图所示,折叠后A,B在新图形中对应点记为A ,B .(1)当θ=π3时,①求证:A O⊥B F2;②求平面A'F1F2和平面A'B'F2所成角的余弦值;(2)是否存在θ0<θ<π2,使得折叠后△A B F2的周长为152?若存在,求tanθ的值;若不存在,请说明理由.14【导数与三角函数】(2024·山东烟台·一模)如图,在平面直角坐标系xOy 中,半径为1的圆A 沿着x 轴正向无滑动地滚动,点M 为圆A 上一个定点,其初始位置为原点O ,t 为AM 绕点A 转过的角度(单位:弧度,t ≥0).(1)用t 表示点M 的横坐标x 和纵坐标y ;(2)设点M 的轨迹在点M 0(x 0,y 0)(y 0≠0)处的切线存在,且倾斜角为θ,求证:1+cos2θy 0为定值;(3)若平面内一条光滑曲线C 上每个点的坐标均可表示为(x (t ),y (t )),t ∈[α,β],则该光滑曲线长度为F (β)-F (α),其中函数F (t )满足F (t )=[x (t )]2+[y (t )]2.当点M 自点O 滚动到点E 时,其轨迹OE为一条光滑曲线,求OE 的长度.15【导数与数列】(2024·山东济宁·一模)已知函数f x =ln x -12ax 2+12a ∈R .(1)讨论函数f x 的单调性;(2)若0<x 1<x 2,证明:对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f (ξ)=f x 2 -f x 1 x 2-x 1成立;(3)设a n =2n +1n2,n ∈N *,数列a n 的前n 项和为S n .证明:S n >2ln (n +1).。

交比(射影几何)


交比
推论4 设 P0 , P1, P* 为点列l(P)中取定的相异三点, Pl(P). 则
(P*P0 , P1P) : P
x
为点列l(P)与 R 之间的一个双射. 其中
P P* P P0

x
无穷远点
x 0 分别“相当于”拓广直线上的原点
于是有, (P1P2,P3P)= (P1P2P3)为前三个通常点的简单比.
交比
3. 特殊情况
定理3 共线四点的交比值出现0, 1, 三者之一这四点中有 某二点相同.
证明 根据定理1,令P1=P2或P2=P3或P3=P4或P4=P1直接验证. 此时, 上述6个不同的交比值又只有3组:0, 1, .
时, 交比值变化规律如下:
(1).
不变
基点偶与分点偶交换 基点偶与分点偶的字母同换
rr
(2).
改变
基点偶或分点偶字母对换
r

1 r
换中间或首尾字母对换 r 1 r.
推论 由定理2, 相异的共线四点构成的24个交比只有6个不同
的值:
r, 1 , 1 1 ; 1 r, 1 , r .
(12,34) r
已知四点相异
(14,32) r 由题设 r r
r 1
r 1
r2 2r
r0 r2
(13, 24) 1 r 1.
5. 交比的计算 (1) 由坐标求交比
交比 此步不可省!若不共线则交比无定义!
例2 已知P1(3,1,1), P2(7,5,1), Q1(6,4,1), Q2(9,7,1). 求(P1 P2, Q1 Q2).
的6个交比值只有3个:
1,
1,
2.
2

射影几何简介.

l1
h
A
B
l2 CD
• 德沙格定理 如果两个三角形对应顶点 的连线交于一点,则对应边所在直线的 三个交点共线.
A
A1 C1 C
B1
B
• 帕斯卡定理 若一六边形内接于一圆锥曲
线,则每两条对边相交而得到的三点在同
一条直线上.
P
Q
R
• 布里昂雄定理 如果一个六边形外切于 圆锥曲线,则六边形对应顶点的三条连 线相交于一点. E
O
• 无穷远点 画家没影点(消点)的概念
实际上指的是无穷远点.几何学家受此启
发引入了无穷远点的概念.阿尔贝蒂指 出,画面上的平行线必须画成相交于某 一点,除非它们平行于画面.但是没影 点并不与原景中的任一点对应。为了保 持这种对应关系,德沙格(Desargues, 1593-1662) 在直线上引进了一个新的点, 即无穷远点。
D
F
O
C A
B
• 拓广平面
引入无穷远点的直线叫拓广 直线,在欧氏平面的每一条直线上 都引入一个无穷远点,所有无穷远 点的集合叫无穷远直线.引入无穷 远直线后的欧氏平面叫拓广平面.
• 射影平面
在拓广平面上,如果不区别 无穷远元素与通常元素,予以同等 看待,则称拓广平面为射影平 面.射影平面上的直线叫射影直线, 射影平面上的点叫射影点.
交比
射影变换不能保持长度,也不能保 持长度的比.但是,如果一条直线上 有4个有序点A,B,C,D,它们在另 一直线上的射影是A1,B1,C1,D1 ,则 这两组有序点的交比相等.即射影变 换能保持交比.
• 交比 比值
(ABCD) CA / DA CB DB
叫做4个有序点的交比.
AB C
D
• 定理 在射影变换下4个有序点的交比保 持不变. O第Fra bibliotek节 射影几何简介

交比

交比:射影几何研究的是射影变换之下的不变量。

长度、两直线的交角都不是,所以都不是射影几何研究的对象。

但是一条直线经过射影交换后还是一条直线,所以直线这个观念是属于射影几何学的。

在射影几何学中,任何两条直线都要相交于一点,就是平面几何中一组互相平行的直线也要相交于一无穷远点,而所有的不同(方向)的无穷远点组成一条无穷远直线。

在这种规约之下,「两直线相交」也是一个射影的不变量。

除了这些以外,交比是射影几何中一个很重要的不变量。

若A、B、C、D为一直线上的四点,则这四点的交比为(1)如图一,假设从直线外任一点P,引直线PA、PB、PC、PD,交另一直线于A'、B'、C'、D'。

我们可以把整个图形看成由P点发出的一个投影,而含的任一平面为截影。

如此,直线投影到,A、B、C、D分別投影到A'、B'、C'、D'。

交比之为投影的不变量就是说(AB,CD)=(A'B',C'D')(2)如果A'、B'、C'、D'经由另一点P'再投影到直线上的A"、B"、C"、D",则(AB,CD)=(A'B',C'D')=(A"B",C"D")(3)經一次或多次的投影就說是射影。

(3)式說:交比是射影的不變量。

交比這個觀念遠在亞歷山大希臘時代就有了。

而且Menelaus(約西元100年)及Pappus(三世紀)都證明過(1)式的特殊情形或變形,但真正把射影當做重要概念,而且認定交比為重要的射影不變量的是十七世紀的Desargue。

Desargue 也是第一個有系統地引入無窮遠點與無窮遠直線的人。

在圖一中,如果P為一無窮點,則PA、PB、PC、PD都互相平行,那麼(2)式的成立顯而易見。

高等几何(第三、四章)


➢由于交比经中心射影后不变,故交比在透 视对应下保持不变。
➢透视关系是对称的,但不具有传递性。 ➢定义2.3.透视对应链即为射影对应。
射影对应具有传递性。
2.2 一维基本形的射影对应
➢定义2.3.透视对应链即为射影对应。 射影对应具有传递性。
➢定理2.1 两个点列间的一一对应是射影对 应的充要条件是:任何四个对应点的交比相 等。 必要性显然; 下面证明充分性;
P3
m2 m2
m3 m1
P1
m3 m2
m1 m1
P2 ,
P4
m2 m4 m2 m1
P1
m4 m2
m1 m1
P2 ,
P3
P1
m3 m2
m1 m1
m2 m2
m1 m3
P2 ,
P4
P1
m4 m2
m1 m1
m2 m2
m1 m4
P2 ,
m3 m1 m2 m1
(P1P2 , P3P4 )
设一个对应T保持任何四对对应点的交比不变,我们证明 T可由两个透视对应结合而成。
怎样才算证明了T可由两个透视对应结合而成?
要证明T的任何一对对应点均可由两个透视对应结合得 到。
设 D, D’是T的任何一对对应点,我们证明D’可由D经过 两次透视对应得到。
题目条件是T保持任何四对对应点的交比不变,现在只 有一对对应点,无法用此条件,故我们设出三对对应点:
B
ac
b
C
ca b
§2 一维射影变换
➢点列与线束统称为一维基本形,本节研究一维基 本形间的一种对应关系。
➢本节讲授的顺序与课本有所不同,我们的思路是 从三个不同的角度去刻画一维射影对应,这三个 角度分别为几何直观、本质性质以及代数的角度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( p1 p 2 , p 3 p 4 ) sin ( p 1 p 3 ) sin ( p 2 p 4 ) sin ( p 2 p 3 ) sin ( p 1 p 4 ) .
其中(pi pj)表示由pi到pj的夹角.
推论5 设pi (i=1,2,3,4)为通常线束中四直线. 则p3, p4为p1, p2 夹角的内外平分线(p1p2, p3p4)= –1, 且p3p4 . 证明略. 本推论建立了垂直、角平分线与调和比间的关系.
1.
交比 (2) 由交比求坐标 定理4 设Pil(P) (i=1,2,3,4),并已知
( P1 P2 , P3 P4 ) k , ( k 0,1, )
还已知其中三点的坐标,则第四点的坐标可唯一确定。
例3 已知P1, P2分别是x轴、y轴上的无穷远点,P3是斜率为1的 方向上的无穷远点,且(P1P2,P3P4)=r,求P4的坐标。 解:由题设知P1, P2, P3的坐标分别为(1,0,0), (0,1,0), (1,1,0)。设
2 3 2 1
a '
3 1 2 1
b ',
2 4 2 1
4 1 2 4
a '
4 1 2 1
b'

a ', b ', a '
3 1 2 3
b ', a '
b '.
由交比的定义, 有
定理8 对于通常线束中以ki为斜率的 四直线pi (i=1,2,3,4),有
( p1 p 2 , p 3 p 4 ) ( k 1 k 3 )( k 2 k 4 ) ( k 2 k 3 )( k 1 k 4 ) .
注 容易看出,斜率参数 k R . ( k tan ).
( p1 p 2 , p 3 p 4 ) ( k 1 k 3 )( k 2 k 4 ) ( k 2 k 3 )( k 1 k 4 ) .
交比
(2) 三角函数表示 设直线pi与x轴正向的夹角为i (i=1,2,3,4). 将ki=tani代入 上式, 利用三角恒等式化简可得
定理9 对于通常线束中以ki为斜率的四直线pi (i=1,2,3,4), 有
解 第一步. 验证四点共线. 第二步. 以P1, P2为基点, 参数表示Q1, Q2. 令
i Q i P1 i P2 .
i=1,2.
2 3.
对于i=1, 有 1 3 . 对于i=2, 同理求得 2 -3 . 于是,
( P1 P2 , Q 1 Q 2 )
1 2
( P1 P2 , P3 P4 ) ( p 1 p 2 , p 3 p 4 ).
由定理6, 得下述重要结论 定理7 交比为射影不变量. 注 由定理7, 关于点的交比和关于直线的交比的讨论可以通过 对偶的方式相互移植、相互转化.
交比 4. 直线交比的初等几何意义
(1) 斜率表示 如图, 在以S(x0,y0)为束心的线束中,取 定基线xx0=0, yy0=0,则直线的斜率k可以 作为参数来表示线束S(p)。 由定理5可得
交比 设线束中的四直线li 与x 轴正向的夹角为
( p1 p 2 , p 3 p 4 ) (ta n 1 ta n 3 )(ta n 2 ta n 4 ) (ta n 2 ta n 3 )(ta n 1 ta n 4 )
(sin 1 c o s 3 c o s 1 sin 3 )(sin 2 c o s 4 c o s 2 sin 4 ) (sin 2 c o s 3 c o s 2 sin 3 )(sin 1 c o s 4 c o s 1 sin 4 ) sin 1 3 sin 2 4 sin 2 3 sin 1 4 ,
( p 1 p 2 , p 3 p 4 ) ( P1 P2 , P3 P4 ).
证明 设直线p1, p2, p3, p4的齐次坐标分 别为a, b, a+1b, a+2b, 直线s的齐次坐标为c. 可以求出点Pi的坐标分别为
a2 P1 c2 a3 c3 , a3 c3 a1 c1 , a1 c1 b2 a2 , P2 c2 c2 b3 c3 , b3 c3 b1 c1 , b1 c1 b2 , c2
( p1 p 2 , p 3 p 4 ) ( 1 3 )( 2 4 ) ( 2 3 )( 1 4 ) .
(6)
注 上述定义、定理与点列的交比有相同的代数结构. 因此有 相同的组合性质, 并可类似定义调和直线组.
交比 3. 交比为射影不变量 定理6 设线束S(p)中四直线pi被直线 s截于四点Pi(i=1,2,3,4),则
r r 1
r r 1
(1 2, 3 4 ) r(1 Βιβλιοθήκη , 3 2 ) 由题设 r
r 2r
2
已知四点相异
r 0
r 2
(1 3, 2 4 ) 1 r 1 .
交比
5. 交比的计算 (1) 由坐标求交比
此步不可省!若不共线则交比无定义!
例2 已知P1(3,1,1), P2(7,5,1), Q1(6,4,1), Q2(9,7,1). 求(P1 P2, Q1 Q2).
而 于是
P3 ( P1 1 P2 ),
P4 ( P1 2 P2 ).
( p1 p 2 , p 3 p 4 )
1 2
( P1 P2 , P3 P4 ).
交比 注 定理6也可看做:设Pi为点列l(P) 中四点, Pi与不在l上的定 点S连线依次为pi (i=1,2,3,4),则
基 点 偶 与 分 点 偶 交 换 (1). 不 变 r r 基 点 偶 与 分 点 偶 的 字 母 同 换 1 基 点 偶 或 分 点 偶 字 母 对 换 r ( 2 ). 改 变 r 换 中 间 或 首 尾 字 母 对 换 r 1 r.
推论 由定理2, 相异的共线四点构成的24个交比只有6个不同 的值:
交比
二、线束中四直线的交比
1. 线束的参数表示 设a, b为线束S(p)中取定的相异二直线. 则对于任意的pS(p), 其坐标可表示为
a b
R.
称a, b为基线, 为参数. 注1 这里a, b, p均表示直线的齐次坐标。容易看出 =0 ↔ a; =1 ↔ a+b; = ↔ b 注2 线束的参数表示与点列的参数表示有完全相同的代数结 构,因此可由点列的交比对偶地得到线束的交比.
则称
定义 若(P1P2,P3P4 )= –1,
点组P1,P2,P3,P4为调和点组 点偶P1,P2,与P3,P4(相互)调和分离 点偶P1,P2,与P3,P4(相互)调和共轭
点P4为P1,P2,P3的第四调和点 推论1 若(P1P2,P3P4 )= –1, 则此四点互异. 推论2 相异四点P1, P2, P3, P4可按某次序构成调和比这四点 的6个交比值只有3个: 1
交比 2. 定义 定义3 设p1, p2, p3, p4为线束S(p)中四直线,且p1p2,其齐次 坐标依次为a, b, a+1b, a+2b,则记(p1p2, p3p4)表示这四直线构成 的一个交比,定义为 (5) ( p1 p 2 , p 3 p 4 ) 1 ,
2
称p1, p2为基线偶, p3, p4为分线偶。 则 定理5 设线束S(p)中四直线pi的齐次坐标为a+ib (i=1,2,3,4).
P3 P1 1 P2 , P4 P1 2 P2 .
则显然 1
1,

( P1 P2 , P3 P4 )
1 2

1
2
r.
可得 2
1 / r,
从而P4的坐标为(r,1,0).
注 若要求P1, 或P2的坐标, 则需先据交比性质交换点的位置, 使 得交换后第1,2位置为已知点, 再计算.
( P1 P2 , P3 P4 ) ( 1 3 )( 2 4 ) ( 2 3 )( 1 4 ) .
注 定理可以作为交比的一般定义.
交比
2. 性质 (1) 交比组合性质 定理2 设(P1P2,P3P4 )=r. 当改变这四点在交比符号中的次序 时, 交比值变化规律如下:
交比
证明:设p1,p2,p3,p4 是通常线束S(p) 中的四条直线,它们 的斜率依次是k1,k2,k3,k4 。设S的直角坐标为(x0,y0) ,则 这四条直线的直角坐标方程为ki(x-x0)-y+y0=0 ,对应的 齐次方程为kix1-x2+(y0-kix0)x3=0 ,齐次坐标为pi[ki,-1,y0kix0] 。考虑两条固定的直线a:y=y0 和b:x=x0 ,则a,b 的 齐次坐标分别是[0,-1,y0] 和[1,0,-x0] 。于是pi 的齐次坐标 为 a+kib ,于是有
(2)
交比 证明. 以P1, P2,为基点, 参数表示P3, P4. 设 a+1b=a', a+2b=b'. 从中解出a, b, 得
a a ' 2 b ' 1
2 1
,
b
b ' a '
2 1
.
于是, P1, P2, P3, P4的坐标可表示为
a ', b ',
这表示P3为P1P2的中点. 推论3 设P1, P2, P为共线的通常点,P为此直线上的无穷远 点,则P为P1P2的中点 ( P1 P2 , P P ) 1 .
交比 例1 设1,2,3,4,5,6是6个不同的共线点. 证明:若(12,34)=(14,32), 则(13,24)= 1.
相关文档
最新文档