汽车悬架系统综述
汽车悬挂系统

采用先进的阻尼和减震技术,减小车辆行驶过程中产生的振动和噪音,提高乘坐 舒适性。
智能悬挂系统的发展
传感器和控制单元
通过在悬挂系统中集成传感器和控制单元,实现对悬挂系统 的实时监测和控制,提高车辆的操控性和乘坐舒适性。
自适应悬挂系统
通过传感器实时监测车辆行驶状态和路面状况,自动调整悬 挂系统的阻尼和高度等参数,以适应不同路况和驾驶需求。
弹簧的刚度和阻尼特性对汽车的行驶 平顺性和稳定性有着重要影响。
减震器
减震器是悬挂系统中的重要组 成部分,它能够有效地减小车
身的振动和冲击。
减震器通常采用筒式减震器或 叶片式减震器等形式,其工作 原理是通过阻尼力来消耗振动 的能量,从而减小车身的振动
。
减震器的阻尼力大小可以通过 调节减震器的油液粘度和内部 结构来实现,从而适应不同的 行驶工况和路面条件。
减震器的性能对汽车的行驶平 顺性和操控稳定性有着重要影 响。
导向机构
导向机构是悬挂系统中的另一个重要组成部分,它负责传递车轮与车身之间的力和 扭矩。
导向机构通常采用独立悬挂或非独立悬挂等形式,其结构形式和设计参数对汽车的 行驶稳定性和操控性能有着重要影响。
导向机构的性能对汽车的侧倾、制动点头、加速抬头等运动特性有着重要影响。
模块化设计
将悬挂系统划分为不同模块,针对每 个模块进行独立优化,再组合在一起 进行整体性能评估。
智能化控制
引入传感器和控制系统,实现悬挂系 统的智能化调节,以适应不同路况和 驾驶需求。
04
悬挂系统的特性
悬挂系统的运动特性
减震性
悬挂系统通过减震器吸收地面不 平整引起的震动,保持车身稳定
。
弹性支撑
悬挂系统中的弹簧元件提供弹性支 撑,使车辆在行驶过程中保持稳定 。
汽车空气悬架系统全面介绍

目录一、引言 (1)二、汽车空气悬架结构组成 (1)(一)空气弹簧 (1)(二)导向机构 (2)(三)高度控制阀组件 (3)(四)减振器 (4)(五)横向稳定器 (4)(六)缓冲限位块 (4)三、汽车空气悬架系统的特性 (4)(一)空气弹簧的特性 (4)(二)空气悬架对整车的影响 (5)四、汽车空气悬架的优缺点 (6)(一)汽车空气悬架的优点 (6)(二)汽车空气悬架的缺点 (6)五、电子控制空气悬架系统ECAS (7)(一)ECAS系统组成和工作原理 (7)(二)ECAS系统的功能和优势 (9)六、汽车空气悬架的发展及我国研发对策思考 (10)(一)国外空气悬架的发展历程和现状 (10)(二)国内空气悬架的发展历程和现状 (11)(三)国内常用的空气悬架 (12)(四)对策思考我国空气悬架的研发状态 (14)七、结论 (15)汽车空气悬架系统综述【摘要】文章介绍了空气悬架系统的发展过程,阐述了汽车空气悬架的工作原理及其结构特性,介绍了电子控制空气悬架的工作原理及其功能和优势。
也介绍了国内空气悬架系统的发展现状及其发展的历程,并且分析了我国汽车空气悬架系统的发展趋势。
【关键词】汽车空气悬架结构特性发展一、引言空气悬架系统是高档商用车的关键部件,是汽车钢板弹簧悬挂系统的更新换代产品,现已成为汽车性能提升的主要部件之一,具有独特的变刚度、低振动频率、抗道路凹凸冲击的特性,更加有效地提高了汽车乘坐舒适性、行驶平顺性及操纵稳定性,同时还具有可以减少汽车自重、提高运行速度、减少路面破坏等多项性能。
由于以上的诸多优越性,空气悬架系统的研究及发展正越来越受到人们的重视。
对空气悬架系统的研究始于二十世纪五十年代,最初应用在载重车、小轿车、大客车及铁道车辆上。
到了六十年代已经进入蓬勃发展阶段,不仅取得了丰富的理论成果,并且在德国、美国等发达国家所生产的大部分公共汽车、豪华旅游车等领域中得到了广泛应用。
虽然我国早在六十年代就设计生产了汽车空气悬架系统,但由于当时工业技术条件有限,生产的产品使用效果不是很理想。
悬架系统介绍

工作过程:
主动悬架系统的控制中枢是一个微电脑控制模块,在整车行驶过程中,悬架上 的多种传感器分别收集各种行车信息(车速、制动力、踏板速度、车身垂直方向 的振幅及频率、转向盘角度及转向速度等数据 ),电脑不断接收这些数据并与预 先设定的临界值进行比较,选择相应的悬架状态。 同时,微电脑独立控制每一只车轮上的执行元件,通过动力装置产生的作用 力控制执行单元相应的功能特性,从而能在任何时候、任何车轮上产生符合要求 的悬架运动。 另外,主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起 弹簧变形时,主动悬架会产生一个与惯性力相对抗的力,减少车身位置的变化。 例如当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据 传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多 大的负载加到悬架上,使车身的倾斜减到最小。
4)多连杆式独立悬架 所谓多连杆悬挂,顾名思义就是通过各种连杆配置把车轮与车身相连的 一套悬挂机构。而连杆数量在3根以上才称为多连杆,目前主流的连杆数量 为5连杆。因此其结构要比双叉和麦弗逊复杂很多。
汽车悬架概述

(2)弹簧刚度。弹性元件的变形程度与对它施加的力 (载荷)成正比。作用力除以变形量所得到的常数称 为弹簧刚度。
悬架 转 向
• (3)弹簧振动。当车轮驶过凸 起路面时,弹性元件迅速压缩。由于每个弹性元件有弹性, 要立即恢复原状,就会回弹,使车身向上运动。
二、弹性元件的类型
悬架 汽车悬架系统所使用的弹性元件分为金属弹簧(如钢板弹簧、螺旋弹簧和 扭杆弹簧)和非金属弹簧(如橡胶弹簧和气体弹簧)。
(1)在悬架压缩行程(车桥与车架互相移近的行程)内,减振器阻尼力应较小,以 便充分利用弹性元件的弹性,以缓和冲击; (2)在悬架伸张行程(车架与车桥相对远离的行程)内,减振器的阻尼力应较大, 以便迅速减振; (3)当车桥(或车轮)与车架的相对速度过大时,减振器应当能自动加大液流通道 截面积,使阻尼力始终保持在一定限度内,以避免承受过大的冲击载荷。 压缩行程
伸张行程
悬架 转 向
减振器与螺旋弹簧的配合
2.减振器类型 .
悬架 转 向 (1)减振器按工作原理分为
单向作用式减振器 双向作用式减振器。 在压缩和伸张两个行程中均能起减振作用的减振器称为双向 作用式减振器,只在伸张行程中起减振作用的减振器称为单向作 用式减振器。
(2)按结构可分
双筒式减振器 单筒式减振器。
悬架 转 向
阻尼力的大小随着车架与车桥相对运动速度的增减而增减,并且与 油液粘度、孔道截面面积等因素有关。 阻尼力越大,振动衰减的也越快,但却使与其并联安装的弹性元件 的缓冲作用不能充分发挥。另外,过大的阻尼力还可能导致减振器连接 零件及车架损坏。为解决弹性元件和减振之间的这一矛盾,对减振器有 如下要求:
3.扭杆弹簧 .
悬架 转 向
扭杆弹簧一般是用弹簧钢制成的杆件,如图所示。
汽车悬架系统简介55

汽车悬架系统简介2005-8-15 13:27:02来源: 编辑:一.悬架的功用汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。
它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力;保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。
悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。
由此可见悬架系统在现代汽车上是重要的总成之一。
图1 悬架总成二、悬架的组成一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。
1.弹性元件弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。
弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧等。
1)钢板弹簧:由多片不等长和不等曲率的钢板叠合而成。
安装好后两端自然向上弯曲。
钢板弹簧除具有缓冲作用外,还有一定的减震作用,纵向布置时还具有导向传力的作用,非独立悬挂大多采用钢板弹簧做弹性元件,可省去导向装置和减震器,结构简单。
2)螺旋弹簧:只具备缓冲作用,多用于轿车独立悬挂装置。
由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。
3)油气弹簧:以气体作为弹性介质,液体作为传力介质,它不但具有良好的缓冲能力,还具有减震作用,同时还可调节车架的高度,适用于重型车辆和大客车使用。
4)扭杆弹簧;将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。
2.减振器减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。
车辆悬架知识

车辆悬架知识车辆悬架是指车辆的底盘系统,它连接了车身和车轮,起到支撑车身、降低震动以及保持车辆稳定性的作用。
悬架系统的设计和性能直接影响着车辆的行驶舒适性、操控性以及安全性。
本文将介绍车辆悬架的基本原理和常见类型。
我们来了解一下车辆悬架的基本原理。
悬架系统的主要任务是通过减震器和弹簧来吸收道路不平和车辆运动带来的震动,保持车身相对稳定。
减震器是悬架系统中的核心部件,它通过控制车轮的运动,使车身保持相对稳定。
弹簧则起到支撑车身的作用,使车辆在通过不平路面时能够保持相对平稳。
悬架系统还包括控制臂、转向节、横拉杆等部件,它们协同工作,使车辆具备良好的操控性。
根据悬架系统的构造和工作原理,可以将车辆悬架分为多种类型。
常见的悬架类型有独立悬架、非独立悬架和半独立悬架。
独立悬架是指每个车轮都有独立的悬挂系统,它能够使车轮在行驶过程中保持相对独立的运动,从而提高车辆的行驶稳定性和操控性。
非独立悬架是指两个相邻车轮共用一个悬挂系统,它的结构相对简单,但对车辆的行驶稳定性和操控性要求较低。
半独立悬架则是介于独立悬架和非独立悬架之间的一种类型,它在结构上介于两者之间。
不同类型的悬架系统适用于不同的车辆和使用环境。
一般来说,高速公路上的轿车多采用独立悬架,因为它能够提供更好的操控性和行驶稳定性。
而越野车和SUV等车型则更适合采用非独立悬架或半独立悬架,因为它们可以更好地适应复杂的路况和颠簸的路面。
悬架系统还可以根据其结构特点进行更细分。
常见的细分类型有麦弗逊悬架、双叉臂悬架、多连杆悬架等。
麦弗逊悬架是一种常见的独立悬架类型,它通过麦弗逊支撑结构来支持车轮的运动。
双叉臂悬架则采用了两个控制臂来支撑车轮,它具备较好的悬架刚度和操控性能。
多连杆悬架是一种较为复杂的独立悬架类型,它通过多个连杆和支撑杆来实现车轮的运动控制,具有较高的工作效率和稳定性。
除了常见的悬架类型外,还有一些特殊的悬架系统。
例如,空气悬架系统可以通过改变气囊的气压来调节车身的高度和硬度,提供更好的行驶舒适性和通过性。
车辆悬架知识

车辆悬架知识车辆悬架是汽车重要的组成部分之一,它承担着车身支撑和缓解路面震动的重要任务。
悬架系统的设计和调校直接影响到车辆的操控性、舒适性以及安全性。
本文将介绍车辆悬架的基本原理、类型和调校方法,以及对车辆性能的影响。
一、悬架系统的基本原理悬架系统是连接车身和车轮的重要组件,其主要功能是支撑车身并缓解路面的冲击。
悬架系统通常由弹簧、减震器和悬架结构组成。
其中,弹簧起到支撑车身的作用,减震器则用来吸收和控制弹簧的振动。
二、悬架系统的类型根据结构和工作原理的不同,悬架系统可以分为独立悬架和非独立悬架两种类型。
独立悬架系统的特点是每个车轮都有独立的悬架装置,能够独立响应路面的不平,提高车辆的操控性和舒适性。
而非独立悬架系统则是多个车轮共用一个悬架装置,其结构简单但对路面的响应能力较差。
根据弹簧的类型,悬架系统又可以分为螺旋弹簧悬架、气囊悬架和叶片弹簧悬架等。
螺旋弹簧悬架广泛应用于大多数汽车上,它具有结构简单、制造成本低的优点。
气囊悬架则主要用于高档车型,具有可调节车身高度和硬度的特点。
叶片弹簧悬架则常见于商用车辆,其悬架结构坚固耐用。
三、悬架系统的调校方法悬架系统的调校是指根据车辆的用途和要求,调整悬架的刚度、行程和减震特性,以达到最佳的操控性和舒适性。
调校悬架系统需要考虑到车辆的质量、型号、悬架结构和使用环境等因素。
调校悬架系统的方法主要包括调整弹簧预紧力、更换弹簧和减震器、调整减震器的阻尼力和行程等。
通过这些方法,可以改变悬架系统的刚度和减震特性,从而提高车辆的操控性和舒适性。
四、悬架系统对车辆性能的影响悬架系统对车辆的操控性、舒适性和安全性都有重要的影响。
一个好的悬架系统可以提高车辆的操控性,使驾驶者更容易控制车辆,并提高车辆的稳定性和操纵性。
同时,良好的悬架系统还能提供舒适的乘坐感受,减少车辆在行驶过程中的颠簸感。
悬架系统对车辆的安全性也有重要的影响。
一方面,良好的悬架系统可以保持车轮与地面的接触,提供良好的抓地力,从而减少制动距离和转向距离。
汽车悬架和转向系统设计

汽车悬架和转向系统设计1. 概述汽车悬架和转向系统是汽车中至关重要的部分,对汽车的操控性、行驶稳定性和乘坐舒适性有着重要的影响。
悬架系统负责支撑汽车车身,保证车轮与地面的接触,同时吸收来自路面的冲击力;而转向系统则负责使车辆按照驾驶员的指令实现转向操作。
在汽车设计中,悬架和转向系统的设计需要综合考虑多种因素,包括车辆的用途、性能需求、成本以及使用环境等。
本文将介绍汽车悬架和转向系统设计中的关键要点,并探讨一些常见的设计策略和优化方法。
2. 悬架系统设计2.1. 悬架类型常见的汽车悬架类型包括独立悬架和非独立悬架。
独立悬架指的是四个车轮各自独立悬挂,相互之间没有连接,可以独立运动。
非独立悬架指的是四个车轮之间通过悬架系统相连接,受到相互影响。
独立悬架相较于非独立悬架具有更好的悬挂效果,能够提供更好的操控性和乘坐舒适性。
常见的独立悬架类型包括麦弗逊悬架、多连杆悬架和双叉臂悬架等。
2.2. 悬架参数设计悬架系统的参数设计对于汽车的行驶稳定性、乘坐舒适性和操控性都有重要影响。
其中一些关键的参数包括减振器刚度、悬架弹簧刚度、悬架几何参数等。
减振器刚度决定了汽车在受到冲击力时的反应速度,过大或过小的减振器刚度都会影响汽车的乘坐舒适性。
悬架弹簧刚度则负责车身的支撑和回弹,也对乘坐舒适性有重要影响。
悬架几何参数则涉及到悬架的运动轨迹和相对位置,对悬架系统的整体性能起着决定性作用。
2.3. 悬架系统优化悬架系统的优化设计旨在提升汽车的行驶性能和乘坐舒适性。
在悬架系统设计中,常见的优化手段包括材料选择、刚度调整、阻尼控制和减重等。
材料选择是悬架系统设计中的一个重要环节。
采用合适的材料可以提高悬架系统的刚度,同时减轻悬架组件的重量。
刚度调整可以通过调整减振器和弹簧的硬度来实现,以获得更好的悬架效果。
阻尼控制则可以通过控制减振器的阻尼力来实现,以提升汽车的稳定性和乘坐舒适性。
减重是悬架系统设计中的一个重要目标,通过使用轻量化材料和结构设计优化来减轻悬架组件的重量,从而提高汽车的燃油经济性和操控性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车悬架系统综述
现代汽车中的悬架有两种,一种是从动悬架,另一种是主动悬架。
从动悬架即传统式的悬架,是由弹簧.减振器(减振筒).导向机构等组成,它的功能是减弱路面传给车身的冲击力,衰减由冲击力而引起的承载系统的振动。
其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动。
由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。
而主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。
由于这种悬架能够自行产生作用力,因此称为主动悬架。
主动悬架是近几年发展起来的,由电脑控制的一种新型悬架,具备三个条件:(1)具有能够产生作用力的动力源;
(2)执行元件能够传递这种作用力并能连续工作;(3)具有多种传感器并将有关数据集中到微电脑进行运算并决定控制方式。
因此,主动悬架汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。
例如装置了主动悬架的法国雪铁龙桑蒂雅,该车悬架系统的中枢是一个微电脑,悬架上有5 种传感器,分别向微电脑传送车速.前轮制动压力.踏动油门踏板的速度.车身垂直方向的振幅及频率.转向盘角度及转向速度等数据。
电脑不断接收这些数据并与预
先设定的临界值进行比较,选择相应的悬架状态。
同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候.任何车轮上产生符合要求的悬架运动。
因此,桑蒂雅桥车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬架状态,以求最好的舒适性能。
另外,主动悬架具有控制车身运动的功能。
当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬架会产生一个与惯力相对抗的力,减少车身位置的变化。
例如德国奔驰2000 款CL 型跑车,当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬架上,使车身的倾斜减到最小。
汽车主动悬架悬架结构。
悬架作用悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。
从外表上看,轿车悬架仅是由一些杆.筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”.加速“抬头”以及左右侧倾严重
的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
因此,如果悬架结构设计不当,就会大大影响汽车产品的使用性能(如转向沉重.摆振.轮胎偏磨.影响轮胎使用寿命等)。
7。