初二上几何证明题题专题训练好题大全

合集下载

八年级几何证明题集锦及解答值得收藏

八年级几何证明题集锦及解答值得收藏

八年级几何证明题集锦及解答值得收藏八年级几何全等证明题归纳1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE,∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE⊥CF.3.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证明:CF =EF解:过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC且AD=GD,∴△ADE≌△GDC,∴DE=DC且AE=GC.在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF≌△CDF,∴EF=CF4.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。

初二上几何证明题100题专题训练-

初二上几何证明题100题专题训练-

初二上几何证明题100题专题训练-八年级上册几何题专题训练1000题1、已知:在⊿ABC中,A=900,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA 于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。

RQDCABP2、已知:在⊿ABC中,A=900,AB=AC,D是AC的中点,AEBD,AE延长线交BC于F,求证:ADB=FDC。

EFDCAB3、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MANA。

4、已知:如图(1),在△ABC中,BP、CP分别平分ABC和ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC.MNDEBCAABCDEP 图⑴5、在Rt△ABC中,AB=AC,BAC=90,O为BC的中点。

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。

6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,A =90,BD平分ABC,DEBC且BC=10,求△DCE的周长。

8.如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,A =C=35,CDE=100,DEB=10,求AEC的度数.ABCOMN9.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知CAE=DBF,AC=BD.求证:C=D10.如图,OP平分AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.11.已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E,求证:BE=EC。

12.如图,在△ABC中,AB=AD=DC,BAD=28,求B和C的度数。

初二上几何证明题50题专题训练

初二上几何证明题50题专题训练

实用标准文档文案大全FOEDCBA八年级上册几何题专题训练50题1. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.2. 如图,点E、A、B、F在同一条直线上,AD与BC交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D3.如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.4. 已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E,求证:BE=EC。

5. 如图,在△ABC中,AB=AD=DC,∠BAD=28°,求∠B和∠C的度数。

6. 如图,B、D、C、E在同一直线上,AB=AC,AD=AE,求证:BD=CE。

实用标准文档文案大全7. 写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明.命题:有两边上的高相等的三角形是等腰三角形.8. 如图,在△ABC中,∠ACB=90o,D是AC上的一点,且AD=BC,DE AC于D,∠EAB=90o.求证:AB=AE.9. 如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.10. 如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为多少?实用标准文档文案大全11.如图所示,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,求证:CE=DF.12. 如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D. (1)判断直线BE与AD的位置关系是____;BE与AD之间的距离是线段____的长;(2)若AD=6 cm,BE=2 cm,求BE与AD之间的距离及AB的长.13. 如图,已知△ABC、△ADE均为等边三角形,点D是BC延长线上一点,连结CE,求证:BD=CE14. 如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC?于点D,求证:?BC=3AD.15. 如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证:MN ⊥AC.[来源: B AE D C实用标准文档文案大全16、已知:如图所示,在△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE ⊥AC于点E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:DG=DF.17. 如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数.18. 如图所示,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD,CE相交于F.求证:AF平分∠BAC.19. 如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB20. 已知:如图,在△ABC中,AB=AC,点D在边BC上,DE⊥AB,DF⊥AC,且DE=DF,求证:△ABD≌△ACD实用标准文档文案大全21. 如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.22. 已知:如图,在△ABC中,AB=AC,BD平分∠ABC,E是底边BC的延长线上的一点且CD=CE. (1)求证:△BDE是等腰三角形(2)若∠A=36°,求∠ADE的度数.23. 如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上且BE=BD,连结AE、DE、DC.(1)求证:AE=CD;(2)若∠CAE=30°,求∠BDC的度数.24. 如图,在ABC?中,点D在AC边上,DB=BC,点E是CD的中点,点F是AB的中点,则可以得到结论:12EFAB?,请说明理由.A BC DE实用标准文档文案大全EFDBCA25. 已知:如图,在ABC?中,CABC???,点D为边AC上的一个动点,延长AB至E,使BE=CD,连结DE,交BC于点P.(1)DP与PE相等吗?请说明理由.(2)若60C???,AB=12,当DC=_________时,BEP?是等腰三角形.(不必说明理由)26. 如图,C为线段BD上一点(不与点B,D重合),在BD同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G。

八年级上册几何证明题专项练习 (附答案)

八年级上册几何证明题专项练习 (附答案)

八年级上册几何证明题专项练习(附答案)1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.25.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.26.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.27.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.30.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.参考答案1.证明:,ACB DCEACB ACE DCE ACE BCE ACD ABC BC AC EC DC BC DC BCE ACD EC AC CDA CEB ∠=∠∴∠-∠=∠-∠∠=∠∴===⎧⎪∠=∠⎨⎪=⎩∴≅Q QV V V V V 即为等腰直角三角形同理在BCE 与ACD 中,得证.2.证明:9090,.BD AC ADB AEC ADB AECADB AECAD AE A A SDB AEC AB ACAB AE AC AD BE CD ⊥∴∠=︒∠=︒∴∠=∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=∴-=-=Q V V V V 同理,在ADB 与AEC 中即得证 3.(1)证明:,.AB DF A D AC DE ABC DFE AC DE =⎧⎪∠=∠⎨⎪=⎩∴≅∴V V V V 在ABC 与DFE 中∥得证(2)解(1)21351329ABC DFE BC EFBC EC EF EC BE CFBC BF ECBF ECBF ≅∴=∴-=-=∴=--=--=-=V V 由知,即4.证明:.C AE AC CE AB CD A ECD AC CE ABC CDE B D ∴==⎧⎪∠=∠⎨⎪=⎩∴≅∴∠=∠Q V V V V 点是的中点在ABC 与CDE 中,得证5.证明:.AD FC ADF CEF CFE ADF DFC DE EFAED CEF ADE CFE AE CE ∴∠=∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=Q V V V V ∥在ADE 与中,得证 6.证明:t .BE CD BC BCBDC CEB ABC ACB AB AC =⎧⎨=⎩∴≅∴∠=∠∴=V V V V 在Rt BDC 与R CEB 中,得证7.证明:.CE DF ACE BDF AC FD ACE BDF EC BD ACE BDF AE FB ∴∠=∠=⎧⎪∠=∠⎨⎪=⎩∴=∴=Q V V V V ∥在ACE 与BDF 中,得证 8.证明:.,90451,2,1.2,90,45.90CD ABC AC BC C ABC A D AB CD Rt ABC AD AB CD AB DCF ACB CD AD CDA DCF A DCF DE DF EDF ADC EDFADC CDE EDF CDE A =∠=︒∴∴∠=︒∴∠∴⊥∠=∠=∠=︒∠=︒∴∠=∠⊥∴∠=︒∴∠=∠∴∠-∠=∠-∠∠QV V Q V Q 连接中是等腰直角三角形点是的中点是等腰中的中线,且是AB 边上的高,且是ACB 的角平分线.CD=即即.DE CDF A DCF AD CDADE CDF ADE CDF DE DF =∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=V V V V 在ADE 与CDF 中,得证9.证明:.AC BDAC DC BD DC AD BD A B AD BDADE BCF AED BFC DE CF =∴+=+=∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=Q V V V V 即在AED 与BFC 中,得证10.证明:.CBA DAB AB ABDBA CAB ABC BAD BC AD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=V V V V 在ABC 与BAD 中,得证 11.证明:.BE CFBE EC CF EC BC EF AB DE BC EF AC DF ABC DEF ABC DEF AB DE =∴+=+==⎧⎪=⎨⎪=⎩∴≅∴∠=∠∴Q V V V V 即在ABC 与DEF 中,∥得证12.证明:.AB CD ABE BED AFB DFE ABE BED EF BFAFB DFE AFB DFE AF DF ∴∠=∠∠=∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=Q Q V V V V ∥又在AFB 与DFE 中,得证13.(1)证明:12.AB AC AD AE ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴≅∴=V V V V 在ABD 与ACE 中,得证 (2)证明:.B C AB ACBAN CAM ABN ACM M N ≅∴∠∠∠∴∠∠∠∠∠∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴∠=∠V V Q V V V V 由(1)知,ABD ACE B=C 11+MAN=2+MAN 即BAN=CAM 在ABN 与ACM 中,得证14.证明:909090.ACB BCE ACE BE CE CEB Rt CEB E ADC A ACE BC AC BCE CAD ∠=︒∴∠+∠=︒⊥∴∠=︒∴∠∠︒∴∠∠⊥∴∠︒∴∠∠∠=∠⎧⎪∠=∠⎨⎪=⎩∴≅Q Q V Q V V V V 在中,BCE+B=90B=ACE AD CE ADC=90E=ADC 在BCE 与CAD 中,得证15.证明:36090180180.EAB BAE BCE B AEC AEC CED B CED AB DE B CED BC DE ABC DEC ︒∠∠∠∠=︒∠=∠=︒∴∠+∠=︒∠+∠=︒∴∠=∠=⎧⎪∠=∠⎨⎪=⎩∴≅Q Q Q V V V V 四边形ABCE 的内角和为360即B+BCE+CEA+又在ABC 与DEC 中,得证16.①证明:36090180180.EAB BAE BCE B AEC AEC CED B CED AB DE B CED BC DE ABC DEC ︒∠∠∠∠=︒∠=∠=︒∴∠+∠=︒∠+∠=︒∴∠=∠=⎧⎪∠=∠⎨⎪=⎩∴≅Q Q Q V V V V 四边形ABCE 的内角和为360即B+BCE+CEA+又在ABC 与DEC 中,得证②,;90.45453015180()180(1590)75,75ABC AB CD ABC ABC BAC ABE BAC EAC AEB BAE ABC ABE CBD BDC AEB =∠=︒∴∴∠=︒∴∠=∠-∠=︒-︒=︒∴∠=︒-∠+∠=︒-︒+︒=︒≅∴∠=∠=︒QV V V V 中是等腰直角三角形由①知 17.证明:(1).AD BC D ECF E CD DE EC AED CEF D ECF DE EC AED F ADE FCE FC AD ∴∠=∠∴=∠=∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=Q Q Q V V V V ∥点为的中点又在ADE 与FCE 中,得证(2)1,901,.ADE FCE AE FEBE AEBEA BEF BE BE BEA BEF AE FE BEA BEF AB BF CF AD AB BC AD ≅∴=⊥∴∠=∠=︒=⎧⎪∠=∠⎨⎪=⎩∴≅∴==∴=+V V Q V V V V 由()知在BEA 与BEF 中,即AB=BC+CF 由()知得证18.解:(1),15DM AC AM MC BN NCAB AM MN NC MC MN NC C CMN cm∴==∴=++=++==Q V 垂直平分同理(2)90,90360360()180110:,,.2.,1102218070,4DM AC CDM CEN DCE DCE F DCM x MCN y BCN z CMN x CNM y x y z x y z x y z ∴∠=︒∠=︒︒∠∠∠∠=︒∴∠=︒-∠∠∠=︒-∠=︒∠=∠=∠=∠=∠=++=︒⎧⎨++=︒⎩+=︒-=Q Q 垂直平分同理四边形CDFE 的内角和为360即CDM+F+CEF+CDM+F+CEF 设则依题意得①②由②-①得,③由①③得040MCN ︒∴∠=︒19.证明:111222.EF AD AEF DEF EAF EDF EDF B EAF B AD BAC EAF B EAF CAF B CAFACF B BAC CAF BAC ACF BAF ∴≅∴∠=∠∠=∠+∠∴∠=∠+∠∠∴∠=∠∴∠=∠+∠∠=∠+∠∴∠=∠∴∠=∠+∠=∠+∠∠=∠Q V V Q Q Q 垂直平分平分即得证20.证明:.,90,90DF AB N CE AD Rt AEC CAE ACE Rt AADC CAE EDC CAE DCE BF AC CBF ACD CAE DCE AC CBACD CBF ADC CFB CD BF D BC BD CD BD BF AC BC CAB CBA BF AC CAB FBA C ⊥∴∠+∠=︒∠+∠=︒∴∠=∠=∴∠=∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=∴=∴==∴∠=∠∴∠=∠∴∠Q V Q V Q V V V V Q Q Q 连接交于点中中在ADC 与CFB 中,点为的中点∥,90.BA FBA BD BF CBA FBA BN BN BND BNF BND BNF DN FND N F BND BNF AB DF DN FN AD DF =∠=⎧⎪∠=∠⎨⎪=⎩∴≅∴∠=∠=∴∠=∠=︒⊥=∴V V V V Q Q 在BND 与BNF 中,点、、共线即垂直平分得证21.证明:(1).AD BAC CD EDEDF CD ED DF DBRt CDF Rt DEF CF EB ∠∴==⎧⎨=⎩∴≅∴=Q V V V V 平分在Rt CDF 与Rt 中,得证(2)(1),2.AD BAC Rt ACD Rt AED AC AE AB AE EB AC EBAC AF FCAB AF FC EB FC EBAB AF EB EB AF EB ∠∴≅∴=∴=+=+=+∴=++=∴=++=+Q V V Q 平分由知得证22.证明:(1).,..OE DC F OE BOA Rt ODE Rt OCE DE EC OED OEC DE EC OED OEC EF EF DEF CEF ECD EDC ∠∴≅∴=∠=∠=⎧⎪∠=∠⎨⎪=⎩∴≅∴∠=∠Q V V V V V V 标记交于点平分在DEF 与CEF 中,得证(2)(1),.OED OECOD OC ≅∴=V V 由知得证(3)(1),,.90.DEF CEF DF CF DFE CFE D DFE CFE OE CD DF CF OE CD ≅∴=∠=∠∴∠=∠=︒⊥=∴V V Q Q 由知点、F 、C 共线即垂直平分得证23.证明:,.M MN AD N ⊥过点作垂足于点(1)1802,22218090180()1809090.AB CDBAD ADC AM BAD BAD MAD ADC ADMMAD ADM MAD ADM AMD MAD ADM AM DM ∴∠+∠=︒∠∴∠=∠∠=∠∴∠+∠=︒∠+∠=︒∠=︒-∠+∠=︒-︒=︒∴⊥Q Q Q ∥平分同理即得证(2)1809090,,.,.AB CD C B BC CD B BC CD AM BAD BM AB MN AD BM MN CM MN BM CM M BC ∴∠=︒-∠=︒∴⊥∠=︒∴⊥∠⊥⊥∴==∴=Q Q Q ∥平分同理即点为的中点得证24.证明:.,..90.90AD BE F ABC AB AC ABC AD AD BC BAC AD BC BDF DAC DAB BE AC AEF AEF BDF AEF BFDDB =∴∴∠∴⊥∠=︒∠=∠⊥∴∠=︒∠=∠∠=∠∠︒∠∠∠∠︒∠∠∴∠∠∠∠∴∠QV V Q Q Q Q Q 标记交于点中是等腰三角形是BC 边上的中线是边上的高线;且是的平分线,即;即又EAF=180-(AEF+AFE)DBF=180-(BDF+BFD)EAF=DBF DAC=DAB .F DABCBE BAD =∠∠=∠即得证25.证明:22.AD BC DBC D AD AB ADB DABC ABD DBCD AB AC C ABC C D ∴∠=∠=∴∠=∠∴∠=∠+∠=∠=∴∠=∠∠=∠Q Q Q ∥即得证26.(1)证明:90.BD CE ADB AEC ADB AEC A A AB AC ABD ACE BD CEBEC BD CE BC BCRt BEC Rt CDB OCB OBC OB OC ∴∠=∠=︒∠=∠⎧⎪∠=∠⎨⎪=⎩∴≅∴==⎧⎨=⎩∴≅∴∠=∠∴=Q V V V V V V V V 、是高线在ABD 与ACE 中,在Rt 与Rt CDB 中,得证(2)解,180()180(9050)40(1),40,180()180(4040)100Rt BEC OCB BEC ABC OB OCOBC OCB BOC BOC OBC OCB ∠=︒-∠+∠=︒-︒+︒=︒=∴∠=∠=︒∠=︒-∠+∠=︒-︒+︒=︒V V 在中有知中27.(1)证明:AB AC C B BD EC B C BE CF BED CFE DE EFDEF =∴∠=∠=⎧⎪∠=∠⎨⎪=⎩∴≅∴=∴Q V V V V 在BED 与CFE 中,是等腰三角形(2)解:(1),.180218040270,18018070110180()18011070C B AB BDE BED DEB B DEF BED CEF ∠=∠︒-∠∴∠=︒-︒==︒∴∠+∠=︒-∠=︒-︒=︒∴∠=︒-∠+∠=︒-︒=︒V 由知中28.解:(1)6090180()180(6090)30ABC B DE DE EF DEF F EDC DEF ∴∠=︒∴∠∠︒⊥∴∠=︒∴∠=︒-∠+∠=︒-︒+︒=︒QV Q Q 是正三角形∥ABEDC=B=60(2)601,60.180()180(6060)602909060301,60.2224ABC ACB EDC DEC ACB DEC CDE EC DC DEF CEF DEF DEC F CAF F CF ECCF EC DC DF DC CF ∴∠=︒∠=︒∴∠=︒-∠+∠=︒-︒+︒=︒∴∴==∠=︒∴∠=∠-∠=︒-︒=︒∠=︒∴∠=∠∴=∴===∴=+=+=QV V Q 是正三角形由()知是正三角形由()知29.(1).,,60.,,60..AN BM AMC AC MC ACM CN CB NCB ACM NCBACM MCN MCN NCB ACN MCB AC MC ACN MCB CN CB ACN MCB AN BM =∴=∠=︒=∠=︒∴∠=∠∴∠+∠=∠+∠∠=∠=⎧⎪∠=∠⎨⎪=⎩∴≅∴=QV V V V V 证明如下是正三角形同理即在ACN 与MCB 中,得证(2),1,.,60.,60.180()180(6060)60CEF ACN MCB NAC BMC AMC AC MC ACM MCB A C B ECF ACM MCB ACM ECF NAC BMC AC MCACM ECF AEC MFC EC FCC ≅∴∠=∠∴=∠=︒∠=︒∴∠=︒-∠+∠=︒-︒+︒=︒∴∠=∠∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=∴V V V QV Q V V V V V 是等边三角形.证明如下由()知是等边三角形同理点、、共线在AEC 与MFC 中,EF CEF ∠︒∴Q V 是等腰三角形ECF=60是等边三角形30.(1)5.①图中有个等腰三角形12,12,.,.,.EF BE FC ABCOBC ABO ABCOCB ACO ACBABC ACBOBC ABO OCB ACO OBC OCB BOC EF BC EOB OBC FOC OCB EBO OBC FCO OCB EBO EOB FCO FOC BEO CFO =+∠∴∠=∠=∠∠=∠=∠∠=∠∴∠=∠=∠=∠∠=∠∴∴∠=∠∠=∠∠=∠∠=∠∴∠=∠∠=∠∴Q Q Q V Q Q V V V ②证明如下,BO 平分同理是等腰三角形∥、是等腰三角形在BEO .EBO FCO BO COEOB FOC BEO CFO BE FCBE ED FO FC EF EO FO BE FC AB ACAB BE AC FC AE AFAEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴≅∴=∴===∴=+=+=∴-=-=∴V V V Q V V V V V V 与CFO 中,②得证即是等腰三角形综上,图中的等腰三角形有:AEF 、ABC 、BED 、CFD 、BOC 五个.②得证.(2).1.,,,.,.,..BED CFO EF BE CF BO EBC BEO OBC FCO OCB EF BC EOB OBC FOC OCB EBO OBC FCO FOC BE EO FC FO EF EO FO BE CF =+∠∴∠=∠∠=∠∴∠=∠∠=∠∴∠=∠∠=∠∴==∴=+=+V V Q Q ①、是等腰三角形②()中命题依然成立证明如下平分同理∥得证(3),..BEO CFO EO BC EOB OBC EBC EOB BE EO FC FO EF EO FO EF BE CF ∠∴∠∠∴∠=∠∴∠=∠∴===-∴=-V V Q Q Q ①、是等腰三角形.②EF=BE-CF.证明如下,BC 平分ABC EBO=OBC ∥同理得证。

八年级几何证明题集锦及解答值得收藏

八年级几何证明题集锦及解答值得收藏

For personal use only in study and research; not for commercial use八年级几何全等证明题归纳1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB 于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE ,∴∠BCF=∠CDE ,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE ⊥CF .3.如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90º,AB =AD ,DE ⊥CD 交AB 于E ,DF 平分∠CDE 交BC 于F ,连接EF .证明:CF =EF解:过D 作DG ⊥BC 于G .由已知可得四边形ABGD 为正方形, ∵DE ⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG ,∴∠ADE=∠GDC .又∵∠A=∠DGC 且AD=GD ,∴△ADE ≌△GDC ,∴DE=DC 且AE=GC .在△EDF 和△CDF 中∠EDF=∠CDF ,DE=DC ,DF 为公共边,∴△EDF≌△CDF ,∴EF=CF4.已知:在⊿ABC 中,∠A=900,A EB F CDAB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。

八年级上册几何证明题

八年级上册几何证明题

八年级上册几何证明题一、三角形内角和定理相关证明题。

1. 已知:在△ABC中,∠A = 50°,∠B = 60°,求证:∠C = 70°。

解析:根据三角形内角和定理,三角形内角和为180°。

在△ABC中,因为∠A+∠B +∠C=180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°-50° 60° = 70°。

2. 如图,在△ABC中,AD是∠BAC的平分线,∠B = 70°,∠C = 30°,求∠ADC的度数。

解析:根据三角形内角和定理,在△ABC中,∠BAC=180°∠B ∠C = 180°-70° 30° = 80°。

因为AD是∠BAC的平分线,所以∠BAD = 1/2∠BAC = 40°。

在△ABD中,根据三角形外角性质,∠ADC = ∠B+∠BAD,所以∠ADC = 70°+40° = 110°。

二、等腰三角形性质证明题。

3. 已知:在等腰△ABC中,AB = AC,∠A = 80°,求∠B和∠C的度数。

解析:因为AB = AC,所以△ABC是等腰三角形,根据等腰三角形两底角相等的性质,设∠B =∠C=x。

根据三角形内角和定理,∠A+∠B +∠C = 180°,即80°+x + x = 180°,2x=180° 80°,2x = 100°,x = 50°,所以∠B =∠C = 50°。

4. 如图,在等腰三角形ABC中,AB = AC,BD⊥AC于点D,求证:∠CBD=(1)/(2)∠A。

解析:设∠A=x。

因为AB = AC,所以∠ABC =∠ACB=(1)/(2)(180° x)=90°-(x)/(2)。

2024年数学八年级几何证明专项练习题1(含答案)

2024年数学八年级几何证明专项练习题1(含答案)

2024年数学八年级几何证明专项练习题1(含答案)试题部分一、选择题:1. 在三角形ABC中,若∠A = 90°,AB = 6cm,BC = 8cm,则AC 的长度为()。

A. 2cmB. 10cmC. 4cmD. 5cm2. 下列哪个条件不能判定两个三角形全等?()A. SASB. ASAC. AASD. AAA3. 在直角坐标系中,点A(2,3)关于原点对称的点是()。

A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个比例式是正确的?()A. 若a∥b,则∠1 = ∠2B. 若a∥b,则∠1 + ∠2 = 180°C. 若a⊥b,则∠1 = 90°D. 若a⊥b,则∠1 + ∠2 = 180°5. 在等腰三角形ABC中,若AB = AC,∠B = 70°,则∠C的度数为()。

A. 70°B. 40°C. 55°D. 110°6. 下列哪个条件可以判定两个角相等?()A. 对顶角B. 邻补角C. 内错角D. 同位角7. 在平行四边形ABCD中,若AD = 8cm,AB = 6cm,则对角线AC 的长度()。

A. 10cmB. 14cmC. 12cmD. 15cm8. 下列哪个图形是轴对称图形?()A. 等腰三角形B. 等边三角形C. 矩形D. 梯形9. 在三角形ABC中,若a = 8cm,b = 10cm,c = 12cm,则三角形ABC是()。

A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定10. 下列哪个条件不能判定两个直线平行?()A. 内错角相等B. 同位角相等C. 同旁内角互补D. 两直线垂直二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。

()2. 在等腰三角形中,底角相等。

()3. 平行线的同位角相等,内错角相等。

()4. 若两个角的和为180°,则这两个角互为补角。

完整初二上几何证明题50题专题训练好题汇编推荐文档

完整初二上几何证明题50题专题训练好题汇编推荐文档

八年级上册几何题专题训练50题1.如图,已知△ EAB^A DCE AB, EC分别是两个三角形的最长边,/ A=Z C= 35°, / CDE= 100°, / DEB= 10求/ AEC的度数.2.如图,点E、A、B F在同一条直线上,AD与BC交于点O,已知/ CAE=Z DBF,AC=BD求证:/ C=Z D4. 已知:如图,AB= AC, DB= DC, AD的延长线交BC于点E,求证:BE= EG5. 如图,在△ ABC中,AB=AD=DC / BAD=28,求/ B和/ C 的度数。

3.如图,OP平分/ AOB且OA=OB(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线)6. 如图,B D 、C 、E 在同一直线上, AB=AC AD=AE 求证:BD=CE9.如图,等边△ ABC 中,点P 在厶ABC 内,点0在厶ABC 外,B, P, Q 三点在一条直线上,且/ABF =Z ACQ BP=CQ 问厶APC 是什么形状的三角形?试证明你的结论.10. 如图,△ ABC 中,/ C=90°, AB 的中垂线 DE 交AB 于E ,交BC 于 D,若AB=13, AC=5则厶ACD 的周长为多少?7.写出下列命题的逆命题,并判断逆命题的真假•如果是真命题,请给予证明; 命题:有两边上的高相等的三角形是等腰三角形.?如果是假命题,请举反例说明.8.如图,在△ABC 中,/ ACB=90o D 是AC 上的一点,且 AD=BC, DE AC 于D , / EAB=90o.求证:AB=AE15. 如图,四边形 ABCD 中,/ DAB=Z BCD=90 °, M 为 BD 中点,N为AC 中点,求证:MN 丄AC.11.如图所示,AC 丄BC, AD 丄BD,AD= BC, CEL AB, DF 丄AB,垂足分别是 E , F ,求证:CB DF.12. 如图,已知△ ABC 中,/ ACB= 90°, AC = BC BE L CE 垂足为 E , AD L CE 垂足为 D. (1) ________________________________ 判断直线BE 与AD 的位置关系是 _________________________________ ; BE与AD 之间的距离是线段⑵cm cm的长;B13. 如图,已知 △ ABC △ ADE 均为等边三角形,点求证:BD=CE14.如图,△ ABC 中, ABAC / BAC 120°, AD L AC 交 BC ?于点 D,求证:7BO 3ADD 是BC 延长线上一点,连结 CE[来源:16、已知:如图所示,在厶ABC中,/ ABC=45 ° , CD丄AB于点D, BE平分/ ABC,且BE丄AC于点E, 与CD相交于点F, H是BC边的中点,连接DH与BE相交于点G.(1 )求证:BF=AC;(2)求证:DG=DF.A17. 如图,点B, D在射线AM上,点C, E在射线AN上,且AB=BC=CD=DE已知/ EDM=84,求/ A的度数.18. 如图所示,在△ABC中,AB=AC BD丄AC于点D, CE! AB于点E, B D, CE相交于F.求证:AF平分/ BAC.19. 如图所示,△ ABC^A ADE 且/ CAD=10,/ B=Z D=25°,Z EAB=120,求/ DFB和/ DGB的度数.20. 已知:如图,在△ ABC中,AB=AC点D在边BC上,DEL AB, DF丄AC,且DE=DF 求证:△ ABD^A ACD21. 如图,一张直角三角形的纸片ABC两直角边AC=6cm BC=8cm现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.22. 已知:如图,在△ ABC中,AB=AC BD平分/ ABC E是底边BC的延长线上的一点且CD=CE.(1) 求证:△ BDE是等腰三角形(2) 若 / A=36°,求/ ADE的度数.23. 如图,在△ ABC中,AB=CB / ABC=90 , D为AB延长线上一点,点E在BC边上且BE=BD连结AE DE DC(1) 求证:AE=CD(2) 若/ CAE=30,求/ BDC的度数.24. 如图,在 ABC 中,点D 在AC 边上,DB=BC 点E 是CD 的中点,点F 是AB 的中点,则可以得到结论:EF 1AB , 2请说明理由ABC ,点D 为边AC 上的一个动点,延长 AB 至E ,使BE=CD 连结DE 交时,BEP 是等腰三角形•(不必说明理由)26. 如图,C 为线段BD 上一点(不与点 B ,D 重合),在BD 同侧分别作正三角形 ABC 和正三角形 CDE AD 与BE 交 于一点F ,AD 与CE 交于点H, BE 与AC 交于点 G(1) 求证:BE=AD (2) 求/ AFG 的度数; (3) 求证:CG=CH27. 已知:如图,在△ ABC 中,CDL AB, CD=BD BF 平分/ DBC 与 CD AC 分别交与点 E 、点F ,且 DA=DE H 是BC 边的中点,连结 DH 与BE 相交于点 G(1) 求证:△ EBD^A ACD(2) 求证:点 G 在/ DCB 的平分线上 (3) 试探索CF 、GF 和BG 之间的等量关系,并证明你的结论.25.已知:如图,在 ABC 中, C BC 于点P.(1)DP 与PE 相等吗?请说明理由.28. 如图,在在△ ABC 中,AB=CB, / ABC=90 ° , F为AB延长线上一单,点E在BC上,且AE=CF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册几何题专题训练50题1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D3.如图,OP 平分∠AOB ,且OA=OB .(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。

5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。

7. 写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;•如果是假命题,请举反例说明.命题:有两边上的高相等的三角形是等腰三角形.8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE .9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论.10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD的周长为多少?11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF.12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D.(1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长;(2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长.13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE ,求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC •于点D ,求证:•BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC .16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G .(1)求证:BF=A C ;????? 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。

B A E DC(2)求证:DG=DF .17. 如图,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB=BC=CD=DE ,已知∠EDM=84°,求∠A 的度数.18. 如图所示,在△ABC 中,AB=AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD ,CE 相交于F.求证:AF 平分∠BAC.19. 如图所示,△ABC ≌△ADE ,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求 ∠DFB 和∠DGB 的度数.20. 已知:如图,在△ABC 中,AB=AC ,点D 在边BC 上,DE ⊥AB ,DF ⊥AC ,且DE=DF ,求证:△ABD ≌△ACD21. 如图,一张直角三角形的纸片ABC ,两直角边AC=6cm ,BC=8cm .现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且AC 与AE 重合,求CD 的长.22. 已知:如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,E 是底边BC 的延长线上的一点且CD=CE. (1)求证:△BDE 是等腰三角形(2)若 ∠A=36°,求∠ADE 的度数.23. 如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上且BE=BD ,连结AE 、DE 、DC .(1)求证:AE=CD ; (2)若∠CAE=30°,求∠BDC 的度数.24. 如图,在ABC ∆中,点D 在AC 边上,DB=BC ,点E 是CD 的中点,点F 是AB 的中点,则可以得到结论:12EF AB =,请说明理由. 25. 已知:如图,在ABC ∆中,C ABC ∠=∠,点D 为边AC 上的一个动点,延长AB 至E ,使BE=CD ,连结DE ,交BC 于点P.(1)DP 与PE 相等吗?请说明理由.(2)若60C ∠=︒,AB=12,当DC=_________时,BEP ∆是等腰三角形.(不必说明理由)26. 如图,C 为线段BD 上一点(不与点B ,D 重合),在BD 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于一点F ,AD 与CE 交于点H ,BE 与AC 交于点G 。

(1)求证:BE=AD ;(2)求∠AFG 的度数;(3)求证:CG=CH27. 已知:如图,在△ABC 中,CD ⊥AB ,CD=BD ,BF 平分∠DBC ,与CD ,AC 分别交与点E 、点F ,且DA=DE ,H 是BC 边的中点,连结DH 与BE 相交于点G 。

(1)求证:△EBD ≌△ACD ;(2)求证:点G 在∠DCB 的平分线上(3)试探索CF 、GF 和BG 之间的等量关系,并证明你的结论.28. 如图,在在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一单,点E 在BC 上,且AE=CF 。

(1)求证:CBF Rt ABE Rt ∆≅∆(2)若∠CAE=30°,求∠ACF 的度数29. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°,AE 交DC 于F ,BD 分别交CE ,AE 于点G 、H . 试猜测线段AE 和BD 数量关系,并说明理由.A B C DE30. 如图,在△ABC 中,AB =AC ,AD 和BE 是高,它们相交于点H ,且AE =BE .求证:AH =2BD . 31. 如图,在ABC ∆中,32B ︒∠=,48C ︒∠=,AD BC ⊥于点D ,AE 平分∠ 交BC 于点E ,DF AE ⊥于点F ,求ADF ∠的度数. 32. 如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S ∆ =4,则BEFS ∆ 的值为多少。

33. 如图,ABC ∆中,90ACB ∠=o ,CD BA ⊥于D ,AE 平分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.34. 如图,在四边形ABCD 中,DC ∥AB , BD 平分∠ADC , ∠ADC=60°,过点B 作BE ⊥DC ,过点A 作AF ⊥BD ,垂足分别为E 、F ,连接EF.判断△BEF 的形状,并说明理由.35. 如图,已知Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,BC 与DE 相交于点F ,连接CD EB .(1)图中还有几对全等三角形,请你一一列举;(不必证明)(2)求证:CF =EF .36. 在ABC ∆中,BO 平分ABC ∠,点P 为直线AC 上一动点,PO BO ⊥于点O .(1)如图1,当40ABC ︒∠=,60BAC ︒∠=,点P 与点C 重合时,求APO ∠的度数;(2)如图2,当点P 在AC 延长线时,求证:()12APO ACB BAC ∠=∠-∠; (3)如图3,当点P 在边AC 所示位置时,请直接写出APO ∠与ACB ∠,BAC ∠之间的数量关系式.37. 如图,在ABC ∆中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,AF =10cm , AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .EDACF G HAE HB DC D CM E G F D C B A (1) 求证:在运动过程中,不管取何值,都有2AED DGC S S ∆∆=;(2) 当取何值时,DFE ∆与DMG ∆全等.38. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在边AC 上,与点'B 重合,AE 为折痕,求'EB 的长度 39. 如图,已知ΔABC 是等腰直角三角形,∠C =90°. (1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.40. 已知BD ,CE 是△ABC 的两条高,M 、N 分别为BC 、DE 的中点。

(1)请写出线段MN 与DE 的位置有什么关系?请说明理由。

(2)当∠A=45°时,请判断1△EMD 为何种三角形,并说明理由41. 如图(1),已知△ABC 中,∠BAC =90°,AB =AC ,AE 是过点A 的一条直线,且点B ,C 在AE 的两侧,BD ⊥AE 于点D ,CE ⊥AE 于点E.(1)求证:BD =DE +CE ;(2)若直线AE 绕点A 旋转到如图(2)的位置(BD <CE)时,其余条件不变,问BD 与DE ,CE 的关系如何?请给予证明;(3)若直线AE 绕点A 旋转到如图(3)的位置(BD >CE)时,其余条件不变,问BD 与DE ,CE 的关系如何?请直接写出结果,不需证明.42. 如图1,两个不全等的等腰直角三角形OAB 和等腰直角三角形OCD 叠放在一起,并且有公共的直角顶点O .(1)在图1中,你发现线段AC ,BD 的数量关系是________________ , 直线AC ,BD 相交成_________度角.(2)将图1中的△OAB 绕点O 顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由(3)将图1中的△OAB 绕点O 顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.43. 如图,AB ∥DC ,∠A=90°,AE=DC 。

相关文档
最新文档