二次函数专题复习学案

合集下载

二次函数复习学案

二次函数复习学案

二次函数复习(一)知识点归纳:1.二次函数的定义:一般地,形如c b a c bx ax y ,,(2++=为常数,)0≠a 的函数,叫做二次函数.(其中x 是自变量,c b a ,,分别是函数表达式的二次项系数,一次项系数和常数项)2.二次函数解析式的三种形式:一般式:)0(2≠++=a c bx ax y顶点式:)0()(2≠+-=a k h x a y交点式:)0)()((21≠--=a x x x x a y3.)0(2≠++=a c bx ax y 图象的特征:(1)a 决定了抛物线的形状与大小:其中a 的正负决定其开口方向;||a 越大图象相对开口越小.(2 c b a ,,共同决定了抛物线在坐标系中的位置,其中顶点坐标为:)44,2(2ab ac a b --,对称轴为:直线ab x 2-=,图象在y 轴的截距为c .4.待定系数法求二次函数解析式:(已知函数类型时,求函数解析式的方法)(二) 例题分析例1.考查二次函数的定义:(1)若函数m m x m y --=2)1(2为二次函数,则m 的值为 .(2)函数)1(x x y -=的二项式系数为 ;一次项系数为 ;常数项为 .(3)已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2的图像经过原点,则m 的值是 .例2.综合考查正比例、反比例、一次函数、二次函数的图像特征:(1) 在同一坐标系中一次函数y ax b =+和二次函数2例3 考查函数、方程、不等式之间的关系:(1)抛物线y=x 2+6x+8与y 轴交点坐标( )(A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)((2)二次函数2(0)y ax bx c a =++≠(a )写出方程20ax bx c ++=的两个根.(b )写出不等式20ax bx c ++>的解集. (c )写出y 随x 的增大而减小的自变量x的取值范围.(d )若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.(3).如图,是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________.例4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的最值: (1)二次函数y=x2+x-5取最小值是,自变量x的值是(2)抛物线()y x =-+23212的顶点坐标是( )A. (2,1)B. (-21,)C. 231,⎛⎝ ⎫⎭⎪D. -⎛⎝ ⎫⎭⎪231, (3) 心理学家发现,学生对概念的接受能力y 与接受概念所用时间x (单位:min )之间满足()y x x x =-++≤≤0126430302...y 值越大,表示接受能力越强.①x 在什么范围内时,学生的接受能力逐渐增强?x 在什么范围内时,学生的接受能力逐渐降低?②第10 min 时,学生的接受能力是多少?③第几分钟时,学生的接受能力最强?例5.考查用待定系数法求二次函数的解析式:(1)已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。

在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。

因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。

二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。

在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。

三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。

3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。

4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。

四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。

在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。

教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。

整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。

五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。

二次函数专题复习教案与学案(4)

二次函数专题复习教案与学案(4)

九年级数学集体备课教案中心备课者:黄新总第4课时二次函数专题复习学案(4)一、典型例题讲评例1、点O 是坐标原点,点A (n ,0)是x 轴上一动点(n <0)。

以AO 为一边作矩形AOBC ,使OB =2OA ,点C 在第二象限。

将矩形AOBC 绕点A 逆时针旋转90°得矩形AGDE 。

过点A 得直线y =kx +m (k ≠0)交y 轴于点F ,FB =F A 。

抛物线y =ax 2+bx +c 过点E 、F 、G 的垂线,垂足为点M 。

(1)求k 的值;(2)点A 位置改变使,△AMH 的面积和矩形AOBC二、课堂练习2、如图1,点A 是直线y =kx (k >0,且k 为常数)上一动点,以A 为顶点的抛物线y =(x -h)2+m 交直线y =x 于另一点E ,交 y 轴于点F ,抛物线的对称轴交x 轴于点B ,交直线EF 于点C .(点A,E,F 两两不重合)(1)请写出h 与m 之间的关系;(用含的k 式子表示)(2)当点A 运动到使EF 与x 轴平行时(如图2),求线段AC 与OF 的比值; (3)当点A 运动到使点F 的位置最低时(如图3),求线段AC 与三、课后作业3、已知:抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C . 其中点A 在x 轴的负半轴上,点C 在y 轴的负半轴上,线段OA 、OC 的长(OA<OC )是方程x 2-5x+4=0的两个根,且抛物线的对称轴是直线x=1. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的解析式;(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请说明理由.4、如图1,已知:抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于点C ,经过B C 、两点的直线是122y x =-,连结AC .(1)B C 、两点坐标分别为B (_____,_____)、C (_____,_____),抛物线的函数关系式为______________;(2)判断ABC △的形状,并说明理由;(3)若ABC △内部能否截出面积最大的矩形DEFC (顶点D E F 、、、G 在ABC △各边上)?若能,求出在AB 边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2y ax bx c =++的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪]图1图2(备用)。

二次函数小结与复习教案

二次函数小结与复习教案

二次函数小结与复习教案一、教学目标1. 知识与技能:(1)理解二次函数的定义、性质和图像;(2)掌握二次函数的求解方法,包括配方法、公式法、图像法;(3)能够运用二次函数解决实际问题。

2. 过程与方法:(2)培养学生运用二次函数解决实际问题的能力;(3)培养学生合作学习、讨论交流的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生团队协作、分享的品质。

二、教学内容1. 复习二次函数的定义:函数式y = ax^2 + bx + c(a ≠0);2. 复习二次函数的性质:开口方向、对称轴、顶点、单调性等;3. 复习二次函数的图像:开口向上/向下的抛物线,顶点式、对称轴式等;4. 复习二次函数的求解方法:配方法、公式法、图像法;5. 运用二次函数解决实际问题:长度、面积、最大值、最小值等问题。

三、教学重点与难点1. 教学重点:(1)二次函数的定义、性质和图像;(2)二次函数的求解方法;(3)运用二次函数解决实际问题。

2. 教学难点:(1)二次函数的图像分析;(2)运用二次函数解决实际问题。

四、教学过程1. 导入:通过提问方式引导学生回顾二次函数的相关知识,激发学生的学习兴趣;2. 讲解:根据教材,系统讲解二次函数的定义、性质、图像和求解方法,让学生清晰地理解二次函数的基本概念;3. 案例分析:分析实际问题,引导学生运用二次函数解决问题,培养学生运用知识的能力;4. 练习:布置课堂练习题,让学生巩固所学知识,并及时给予解答和指导;五、课后作业1. 复习二次函数的定义、性质、图像和求解方法;2. 完成课后练习题,巩固所学知识;3. 选择一个实际问题,运用二次函数解决,并将解题过程和答案写在作业本上。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成的课后作业,评估其对二次函数知识的掌握程度;3. 练习题:分析学生完成的练习题,了解其在二次函数求解方法和实际问题解决方面的能力;4. 小组讨论:评估学生在小组讨论中的表现,了解其合作学习、交流分享的能力。

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。

2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。

3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。

4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。

5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。

三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。

五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。

九年级数学《二次函数》总复习教案

九年级数学《二次函数》总复习教案

教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。

2.掌握二次函数的基本性质和图像的特点。

3.熟练运用二次函数解决实际问题。

4.理解抛物线的性质及其与二次函数的关系。

一、概念复习1.二次函数:通过变量的平方项表达的函数。

2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。

3.对称轴:二次函数图像的对称轴,表示为x=a。

4.开口方向:二次函数图像的开口方向,由二次项的系数决定。

二、性质复习1.零点:二次函数与x轴交点的横坐标。

2.判别式:用来判断二次函数的零点个数的式子。

当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。

当Δ=b^2-4ac=0时,二次函数有两个相等的零点。

当Δ=b^2-4ac<0时,二次函数没有实数零点。

3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。

当二次函数开口向下时,最大值是顶点的纵坐标。

三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。

当a<0时,二次函数开口向下。

2.对称轴:对称轴与顶点的横坐标相等。

3.零点:零点是二次函数与x轴交点的横坐标。

零点的个数由判别式Δ决定。

四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。

(2)设出二次函数的表达式。

(3)求出二次函数的最值或零点。

(4)用解出的最值或零点回答问题。

2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。

求该商场的最大营业额,并在什么时间实现。

解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。

(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。

五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。

若a>0,抛物线开口向上;若a<0,抛物线开口向下。

《二次函数》复习导学案教学设计

《二次函数》复习导学案教学设计

《二次函数》复习导学案教学设计学习目标:知识与技能目标:理解二次函数和抛物线的有关概念,从整体上掌握二次函数的图象和性质,并应用图象和性质解决一些简单的问题,提高学生对知识的整合能力和分析能力。

识的整合能力和分析能力。

过程与方法目标:过程与方法目标:经历本节课的复习的过程,经历本节课的复习的过程,经历本节课的复习的过程,形成比较完整的知识体系,形成比较完整的知识体系,形成比较完整的知识体系,进一步进一步感受数形结合这一重要数学思想方法的应用。

感受数形结合这一重要数学思想方法的应用。

情感态度价值观目标:情感态度价值观目标:通过对一些基础题型的练习,通过对一些基础题型的练习,通过对一些基础题型的练习,增加学生的成就感,增加学生的成就感,增加学生的成就感,培养学培养学生自信心,逐步消除学生对数学科的畏难情绪。

并在教学中培养学生同他人合作完成任务,以及及时反思、总结的良好学习习惯。

同他人合作完成任务,以及及时反思、总结的良好学习习惯。

学习重点:二次函数图象及其性质的灵活运用:二次函数图象及其性质的灵活运用学习难点:利用数形结合的思想解决二次函数的有关问题。

:利用数形结合的思想解决二次函数的有关问题。

情景引入【设计意图】PPT 辅助展示,动画展示篮球运动等生活实例,提高同学们学习的兴奋点和积极性,使学生感受数学来源于生活,服务于生活。

【课前复习学案】下列函数中,哪些是二次函数?下列函数中,哪些是二次函数? (1)32y=2x-8x +3 (2)21y= -x(3)2y=mx-x-1(4)y=x(1-x)【课内探究学案】【自主复习】一、一、 如果你是二次函数223y x x =--,请你做下自我介绍,比一比谁介绍的最全面!(提示:可以从图像、性质和特点等入手)(提示:可以从图像、性质和特点等入手)【设计意图】抛弃枯燥的习题复习课模式,采用“角色扮演”的方式,假如你是二次函数如何来进行自我介绍?极大带动了学生的学习兴趣。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数专题复习-----符号问题
一.学习目标
1、由抛物线的位置确定系数a,b,c,∆及有关a,b,c的代数式的问题;
2、由a,b,c,∆的符号确定抛物线在坐标系中的大致位置;
3、体会函数与方程之间的联系及数形结合思想.
一、知识点
1.二次函数的一般表达式:(a、b、c为常数,a____ )
2.二次函数y=ax²+bx+c (a≠0)的图像是,对称轴为:.
3.已知y=ax²+bx+c的图象如图所示,请根据图像判断下列代数式的符号.(1)a ___0,b____0,c_____0,b2-4ac_____0
(2)a+b+c____0, a-b+c____0,4a-2b+c____0
(3)2a-b____0, 2a+b____0
-11
-2
二、合作学习
方法小结:1、a的符号由抛物线确定,
(1)开口向上(2)开口向下
2、b的符号由的位置确定,
(1)对称轴在y轴左侧
(2)对称轴在y轴右侧
(3)对称轴是y轴
3、C的符号由抛物线与位置确定.
(1)交点在y轴正半轴
(2)交点在y轴负半轴
(3)交点在坐标原点
4、b2-4ac 的符号由抛物线与确定.
(1)与x轴没有交点
(2)与x轴有一个交点
(3)与x轴有两个交点
5、a+b+c的符号由时抛物线上的点的位置确定; a-b+c的符号由时抛物线上的点的位置确定;
6、2a+b的符号由抛物线的对称轴和直线的位置确定;
2a-b的符号由抛物线的对称轴和直线的位置确定
三、中考链接
如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;
③2a﹣b=0;④<0,
其中,正确结论的个数是()
四、拓展
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图中所提供的信息,请你写出有关a、b、c的结论,看谁写的又快又多。

相关文档
最新文档