生物制剂冻干工艺
冻干制剂工艺流程

冻干制剂工艺流程冻干制剂是一种将药物通过冻结和真空干燥的方法制成的固体剂型。
它具有较长的保存期限和良好的稳定性,且能够在加入适量的水后迅速溶解,便于患者使用。
冻干制剂工艺流程包括以下几个步骤:选择性和预冷冻、真空干燥和密封包装。
首先,选择性和预冷冻是冻干制剂工艺流程的第一步。
在这一步骤中,需要选择适合冻干制剂制备的药物。
一般来说,药物应具备较低的冻结点和较高的挥发性,以便在真空干燥过程中更好地去除水分。
然后,药物溶液通过注射器或灌装机注入符合要求的瓶子中。
接下来,瓶子放置在冷冻器中进行预冷冻。
预冷冻的目的是在真空干燥过程中将药物迅速冷冻,以防止结晶和保存药物的活性。
第二步是真空干燥。
在预冷冻的瓶子中,加入一定量的水,然后将瓶子放入真空干燥器中。
真空干燥器通过提供适当的温度和真空条件,将冰冻的水分转变为气态,从而实现药物的干燥。
真空干燥的过程包括三个阶段:冰冻阶段、领域转移阶段和干燥阶段。
冰冻阶段是指将瓶子中的水迅速冷冻成冰,这个过程通常在-40°C以下进行。
领域转移阶段是指将真空干燥器中的温度升高,使冰从固态转变为气态,这个过程通常在0°C至20°C之间进行。
干燥阶段是指继续加热瓶子中的药物,以去除剩余的水分,使药物完全干燥。
真空干燥的时间和温度根据具体药物和制剂的要求进行选择。
最后,密封包装是冻干制剂工艺流程的最后一步。
在真空干燥完成后,将瓶子从真空干燥器中取出,并立即进行密封包装。
密封包装的目的是防止湿气和氧气进入瓶子,以保持制剂的稳定性和活性。
常用的密封包装方式有铝箔包封、胶囊包封和玻璃瓶封口。
总结起来,冻干制剂工艺流程包括选择性和预冷冻、真空干燥和密封包装。
这个工艺流程可以将药物迅速冷冻并去除水分,制备出稳定性好且易于溶解的冻干制剂。
这种制剂相比于其他剂型具有更长的保存期限和良好的稳定性,广泛应用于药物制剂的生产和研究领域。
冻干工艺DOC

序
号
时间
(h)
开始温度(℃)
结束温度(℃)
序
号
时间
(h)
开始温度(℃)
结束温度(℃)
1
0.5
-34
3
4
0.5
12
37
2
4
3
3
5
7
37
37
3
16
3
12
合计
28
3、冻干完毕后,全真空压塞。然后从下而上逐盘出箱,送至轧盖岗位。
注射用克林霉素磷酸酯0.3g(浙江佐力)
45
4
35
45
合计
24.5小时
27小时
冻干完毕后,通入除菌空气至真空度在0.01~0.05MPa时,停止充气,再启动冻干机的自动压塞装置,使胶塞完全压紧为止。然后从下而上逐盘出箱,送至轧盖岗位。
5、冻干结束的条件为:
①真空度≤4pa;②真空度在稳定状态下保持2小时。
注射用棓丙酯(60mg)(北京四环制药)
90
10
37
90
10
37
90
10
37
60
10
40
6
420
37
37
420
37
37
420
37
37
420
40
40
合计
27小时
33小时
33小时
34小时
其中第4段为缓慢均匀升温。
冻干完毕后,通入除菌空气至真空度在0.01~0.05MPa时,停止充气,再启动冻干机的自动压塞装置,使胶塞完全压紧为止。然后从下而上逐盘出箱,送至轧盖岗位。
冻干技术的原理、工艺过程及常见问题_概述及解释说明

冻干技术的原理、工艺过程及常见问题概述及解释说明1. 引言1.1 概述冻干技术,也被称为低温真空干燥技术,是一种将物质在低温和真空条件下获得固态而去除水分的方法。
该技术通过冷冻样品并施加真空,使水分直接从固态转变为气态,从而避免了液态中间阶段的形成。
这种技术特别适用于保留样品中的活性成分、延长产品的保质期以及提高药物和食品的稳定性。
1.2 文章结构本文将首先介绍冻干技术的原理,包括其定义、背景和原理解释。
然后,我们将讨论该技术在不同领域中的应用。
接下来,我们将详细描述冻干技术的工艺过程,包括前处理步骤、冷冻步骤和干燥步骤。
此外,在第四部分中,我们还将探讨常见问题,并提供解决方法,涵盖质量问题与控制措施、设备故障与维护工作以及工艺优化与提高产能措施。
最后,在结论部分,我们将总结冻干技术的重要性和应用价值,展望未来的发展趋势,并给出本文的结束语。
1.3 目的本文旨在全面介绍冻干技术的原理、工艺过程以及常见问题与解决方法。
通过对这些方面的详细说明,读者将能够更好地了解冻干技术的基本概念和操作流程,并掌握解决常见问题所需的知识和技能。
同时,通过对该技术在不同领域中的应用案例进行分析,读者将明确冻干技术在现实生产中的重要性,并为未来发展提供参考建议。
2. 冻干技术的原理2.1 定义和背景冻干技术,也叫冷冻干燥技术,是一种将湿润的物质(例如食品、药物或生物制品)通过低温冷冻和真空脱水处理使其直接从固态转变为气态的过程。
这种技术可以有效地保留物质中的大部分营养成分和化学性质,并延长其保存期限。
因此,在食品工业、医药工业以及生物科学领域得到了广泛应用。
2.2 原理解释冻干技术基于三个关键原理:低温固化原理、减压脱水原理和由气体直接向固体状态转移的升华原理。
- 低温固化原理:在冷冻步骤中,物质被迅速降温至低于其平衡点以下,使水分凝固并形成冰晶。
这些冰晶在后续的干燥过程中起到支撑作用,防止物质结构塌陷并加速水分蒸发。
冻干技术指导原则

冻干技术指导原则一、引言冻干技术是一种将生物制剂在低温下冻结并通过减压脱水的方法,将水分从冻结状态直接转变为气态,从而实现制剂的干燥和保鲜的方法。
本文将介绍冻干技术的原则和指导,以帮助读者更好地理解和应用该技术。
二、冻干技术的原则1. 冻结阶段冻结是冻干技术的第一步,其目的是将制剂中的水分冻结成固态。
在冻结阶段,需要控制冷冻速率和冷冻温度。
较慢的冷冻速率有助于形成较大的冰晶,减少冰晶对生物制剂的损伤。
常用的冷冻温度为-40℃至-80℃。
2. 脱水阶段脱水是冻干技术的关键步骤,其目的是将冻结的水分从固态转变为气态,通过减压脱水的方法进行。
在脱水阶段,需要控制脱水速率和脱水温度。
较慢的脱水速率有助于保持制剂的结构完整性和活性,常用的脱水温度为-20℃至-50℃。
3. 干燥阶段干燥是冻干技术的最后一步,其目的是将脱水后的制剂彻底干燥,以防止水分重新吸收。
在干燥阶段,需要控制干燥温度和干燥时间。
较低的干燥温度有助于保持制剂的活性和稳定性,常用的干燥温度为-20℃至-50℃。
4. 辅助措施除了上述三个阶段,还可以采取一些辅助措施来提高冻干技术的效果。
例如,可以在冻结和脱水阶段添加保护剂,以减少制剂的损伤;可以在干燥阶段使用辅助干燥剂,以加快干燥速度;还可以在整个过程中进行监测和控制,以确保冻干过程的稳定性和一致性。
三、冻干技术的应用冻干技术在生物制药、食品工业、化妆品等领域有着广泛的应用。
以下是一些冻干技术的应用案例:1. 生物制药冻干技术被广泛应用于生物制药领域,用于制备蛋白质药物、疫苗、抗体等生物制剂。
通过冻干技术,可以将生物制剂制备成干粉状,便于储存、运输和使用,同时保持制剂的活性和稳定性。
2. 食品工业冻干技术在食品工业中用于制备冻干食品,例如冻干蔬菜、水果和咖啡等。
通过冻干技术,可以将食品中的水分脱除,延长食品的保质期,同时保持食品的营养成分和口感。
3. 化妆品冻干技术在化妆品领域中用于制备冻干粉状化妆品,例如冻干面膜和冻干粉底等。
冻干制剂工艺流程

冻干制剂工艺流程
《冻干制剂工艺流程》
冻干制剂是指将液体药剂在低温下冷冻并在真空条件下脱除水分得到的固态剂型。
这种制剂不仅可以延长药物的保存期限,还可以提高药物的稳定性和溶解度,使药物更容易在体内吸收。
冻干制剂的工艺流程主要包括以下几个步骤:
1. 冷冻:将药剂在冷冻板上冷冻,使得药剂中的水分凝结成冰晶。
2. 真空干燥:在真空条件下,将冷冻的药剂暴露在低温下,水分会从固体直接升华为气态,从而从产品中被移除。
3. 冷热交替:在真空干燥的过程中,施加一定的温度,使得冰晶逐渐融化并蒸发,加快水分的脱除速度。
4. 充填密封:将经过冻干的产品充填到密封的容器中,防止水分重新吸收,并保证产品的稳定性。
在冻干制剂的工艺流程中,控制冷冻速度、真空干燥的温度和时间、充填密封的条件等都非常重要,这些因素直接影响着产品的质量和稳定性。
因此,在工艺流程中需要精确控制各项参数,以确保冻干制剂的质量符合要求。
总的来说,冻干制剂工艺流程是一个复杂的过程,需要精密的
设备和严格的操作规范。
只有在严格控制各个环节的条件下,才能生产出高质量的冻干制剂产品,从而确保药物的稳定性和有效性。
冻干工艺对药品稳定性和保存期限的影响与评估

冻干工艺对药品稳定性和保存期限的影响与评估摘要:冻干工艺是一种常用的制备药品的方法,它通过将溶液在低温下急速冷冻并施加适当的真空,使溶剂以固态气化的方式从样品中蒸发,从而得到固体的冻干产物。
冻干工艺在药品制备领域得到广泛应用,并且对药品的稳定性和保存期限有着重要的影响。
本文将详细介绍冻干工艺的原理、影响药品稳定性和保存期限的因素,并提出相应的评估方法。
一. 引言1.1.背景介绍药品的稳定性和保存期限是制药行业非常重要的考虑因素。
药品在生产、贮存和使用过程中容易受到环境条件的影响而发生降解,从而导致药效的减退或者产生不良反应。
因此,保持药品的稳定性和延长其保存期限对于保证药物质量和疗效具有至关重要的意义。
1.2.冻干工艺的重要性冻干工艺(lyophilization)被广泛应用于制药工业中,它是一种通过冷冻和真空蒸发的方法将液态药品转变为固态,去除水分的过程。
这种工艺能够有效地延长药品的保存期限并提高其稳定性,因此在制备高价值药品、生物制剂和灵敏药物等方面具有重要的应用价值。
二. 冻干工艺的原理冻干工艺(lyophilization)是一种将液态药品转变为固态的技术,通过控制冷冻和真空蒸发过程,去除药品中的水分并保持活性成分的方法。
下面将介绍冻干工艺的原理,包括冷冻步骤、真空蒸发步骤和干燥步骤。
2.1.冷冻步骤冷冻是冻干工艺的第一个关键步骤。
在这一步骤中,液态药品被迅速冷却至低温,形成冰晶结构,并将药物分子固定在冰晶网中。
冷冻的目的是降低药品中的温度,使其达到玻璃态转变温度以下,从而防止药品的降解和不稳定[1]。
在冷冻过程中,需要注意以下几个关键因素:冷冻速率:快速冷冻有助于形成较小的冰晶和均匀的冰晶分布,以减少药物分子的损伤和结晶速度的提高。
冷冻温度:冷冻温度应低于药物的玻璃态转变温度,以确保药品能够形成玻璃态结构。
冷冻介质:常用的冷冻介质有液氮和乙二醇等,它们可以提供足够的冷却速率和稳定性。
2.2.真空蒸发步骤真空蒸发是冻干工艺的第二个关键步骤。
冻干粉工艺流程

冻干粉工艺流程
《冻干粉工艺流程》
冻干粉是一种常见的生物制剂,其工艺流程包括多个步骤,需要经过严格的控制和操作。
下面是冻干粉的工艺流程简要介绍:
1. 原料准备:首先需要准备好所需的原料,包括生物制剂、添加剂以及其他辅助材料。
2. 混合和溶解:将原料混合并溶解于适当的溶剂中,使其形成均匀的溶液。
3. 过滤和消毒:将溶液进行过滤和消毒处理,以去除杂质和微生物,确保产品的纯度和安全性。
4. 冻结:将溶液注入冷冻容器中,通过控制温度和速度冷冻成冰。
5. 冻干:将冷冻的溶液置于真空干燥器中,通过升温和减压的方式使冰直接升华,达到冻干的效果。
6. 装罐和包装:将冻干后的粉末装罐并进行密封包装,确保产品的保存和运输质量。
7. 检验和贮存:对冻干粉进行质量检验,确保产品符合规定标准,并将其储存于适当的环境中,以保持其品质和稳定性。
冻干粉工艺流程复杂而精细,需要严格控制每一个环节,确保产品的质量和安全。
同时,随着科技的发展与进步,冻干粉工艺流程也将不断地进行优化和改进,以满足不断增长的市场需求和质量要求。
冻干制剂的工艺流程

冻干制剂的工艺流程冻干制剂是一种将液体药物转化为固体形式的制剂,常用于制备生物制品和药物。
其工艺流程主要包括以下几个步骤:预处理、冷冻、干燥和封装。
下面将逐一介绍这些步骤。
一、预处理预处理是冻干制剂工艺流程的第一步,目的是对药物进行处理以便于后续的冷冻和干燥过程。
预处理的具体步骤包括:选择合适的药物原料、调整药物浓度、添加辅料以改善药物的稳定性和流动性等。
二、冷冻冷冻是将药物溶液迅速冷却至低温的过程,通常使用液氮或低温冷冻器进行冷冻。
在冷冻过程中,药物溶液会形成固体结晶,其中溶剂会转变为冰晶。
冷冻的目的是使药物分子稳定并减小其活性,以便于后续的干燥过程。
三、干燥干燥是冻干制剂工艺流程中最关键的步骤,其目的是将冷冻的药物溶液中的冰晶转化为水蒸气,从而实现药物的干燥。
常用的干燥方法包括真空干燥和冷冻干燥。
在干燥过程中,药物溶液中的水分子会经过升华的方式转化为水蒸气,从而达到干燥的效果。
四、封装封装是冻干制剂工艺流程的最后一步,其目的是将干燥后的药物制剂包装起来,以保护药物的稳定性和质量。
封装通常采用密封容器,如玻璃瓶或铝箔袋等。
在封装过程中,需要注意保持环境的无菌和干燥,以避免对药物制剂的污染。
总结:冻干制剂的工艺流程包括预处理、冷冻、干燥和封装。
预处理是为了提高药物制剂的稳定性和流动性;冷冻是将药物溶液迅速冷却至低温,使药物形成固体结晶;干燥是将冷冻的药物溶液中的冰晶转化为水蒸气,实现药物的干燥;封装是将干燥后的药物制剂包装起来,保护药物的稳定性和质量。
冻干制剂的工艺流程严格控制各个步骤的条件和参数,以确保药物制剂的质量和效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节冷冻干燥的原理一、冻干的概念、目的及应用冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。
然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态,且制品复水性极好。
利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。
产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。
与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。
实际需要的低水汽压是靠真空的状况下达到的。
真空冷冻干燥技术主要应用于:(1) 热稳定性差的生物制品,生化类制品,血液制品,基因工程类制品等药物冻干;(2) 为保持生物组织结构和活性,外科手术用的皮层、骨骼、角膜、心瓣膜等生物组织的处理;(3) 以保持食物色、香、味和营养成分以及能迅速复水的咖啡、调料、肉类、海产品、果蔬的冻干;(4) 在微胶囊制备、药品控释材料等方面的应用。
以保持生鲜物质不变性的人参、蜂皇浆、龟鳖等保健品及中草药制剂的加工;(5) 超微细粉末功能材料如:光导纤维、超导材料、微波介质材料、磁粉以及能加速反应工程的催化剂的处理等。
二、冷冻干燥的原理及优点1、水的状态平衡图物质有固、液、汽三态,物质的状态与其温度和压力有关。
图1-1示出水(H2O)的状态平衡图。
图中OA、OB、OC三条曲线分别表示冰和水、水和水蒸汽、冰和水蒸汽两相共存时其压力和温度之间的关系。
分别称为溶化线、沸腾线和升华线。
此三条曲线将图面分为Ⅰ、Ⅱ、Ⅲ三个区域,分别称为固相区、液相区和气相区。
箭头1、2、3分别表示冰溶化成水,水汽化成水蒸汽和冰升华成水蒸汽的过程。
曲线OB的顶端有一点K,其温度为374℃,称为临界点。
若水蒸汽的温度高于其临界温度374℃时,无论怎样加大压力,水蒸汽也不能变成水。
三曲线的交点O,为固、液、汽三相其存的状态,称为三相点,其温度为0.01℃,压力为610Pa。
在三相点以下,不存在液相。
若将冰面的压力保持低于610Pa,且给冰加热,冰就会不经液相直接变成汽相,这一过程称为升华。
真空冷冻干燥是先将湿料冻结到共晶点温度以下,使水分变成固态的冰,然后在较高的真空度下,使冰直接升华为水蒸气,再用真空系统中的水汽凝结器将水蒸气冷凝,从而获得干燥制品的技术。
干燥过程是水的物态变化和移动的过程。
这种变化和移动发生在低温低压下。
因此,真空冷冻干燥的基本原理就是低温低压下传质传热的机理。
2、冷冻干燥的优点冷冻干燥与常规的晒干、烘干、煮干、喷雾干燥及真空干燥相比,有许多突出的优点:(1)冷冻干燥在低温下进行,因此在对于许多热敏性的物质特别适用。
如蛋白质、微生物之类,不会发生变性或失去生物活力。
(2)在冻干过程中,微生物的生长和酶的作用无法进行。
因此能保持原来的性状。
(3)在低温下干燥时,物质中的一些挥发性成份和受热变性的营养成分损失很小,适合一些化学制品、药品和食品的干燥。
(4)由于在冻结的状态下进行干燥,因此制品的体积、形状几乎不变,保持了原来的结构,不会发生浓缩现象。
干燥后的物质疏松多孔,呈海绵状,加水后溶解迅速而完全,几乎立即恢复原来的性状。
(5)在真空下进行干燥,物料处于高度缺氧状态下,容易氧化的物质得到了保护。
(6)干燥能排除95-99%以上的水份,使干燥后产品能长期保存而不变质。
第二节冷冻干燥的一般过程需要冻干的物品需配制成一定浓度的液体,为了能保证干燥后有一定的形状,一般冻干产品应配制成含固体物质浓度在4%~25%之间的稀溶液,以浓度为10%~15%最佳。
这种溶液中的水,大部分是以分子的形式存在于溶液中的自由水;少部分是以分子吸附在固体物质晶格间隙中或以氢键方式结合在一些极性基团上的结合水。
固定于生物体和细胞中的水,大部分是可以冻结和升华的自由水,还有一部分不能冻结、很难除去的结合水。
冻干就是在低温、真空环境中除却物质中的自由水和一部分的吸附于固体晶格间隙中的结合水。
因此,冷冻干燥过程一般分三步进行,即预冻结、升华干燥(或称第一阶段干燥)、解析干燥(或称第二阶段干燥)。
一、预冻结预冻就是将溶液中的自由水固化,赋予干后产品与干燥前相同的形态,防止抽空干燥时起泡、浓缩和溶质移动等不可逆变化发生,尽量减少由温度引起的物质可溶性减少和生命特性的变化。
1、预冻的方法溶液的预冻方法有两种:冻干箱内预冻法和箱外预冻法。
箱内预冻法是直接把产品放置在冻干机内的多层搁板上,由冻干机的冷冻机来进行冷冻,大量的小瓶和安瓶进行冻干时为了进箱和出箱方便,一般把小瓶或安瓶分放在若干金属盘内,再装进箱子,为了改善热传递。
有些金属盘制成可抽活底式,进箱时把底抽走,让小瓶直接与冻干箱的金属板接触;对于不可抽底的盘子,要求盘底平整,以获得产品的均一性。
采用旋冻法的大血浆瓶要事先冻好后加上导热用的金属架后再进箱进行冷冻。
箱外预冻法有二种方法。
有些小型冻干机没有进行预冻产品的装置,只能利用低温冰箱或酒精加干冰来进行预冻。
另一种是专用的旋冻器,它可把大瓶的产品边旋转边冷冻成壳状结构,然后再进入冻干箱内。
还有一种特殊的离心式预冻法,离心式冻干机就采用此法。
利用在真空下液体迅速蒸发,吸收本身的热量而冻结。
旋转的离心力防止产品的气体逸出,使产品能“平静地”冻结成一定的形状。
转速一般为800转/分左右。
冻干工艺原理(2)2、预冻的过程:水溶液温度降到一定时,根据溶液共晶浓度,浓度淡溶液里开始结冰,这个温度就叫结冰点。
一般来说结冰点受浓度的支配与浓度一起下降。
溶液温度低于结冰点时,溶液中的一部分会结晶析出,剩下的溶液浓度将会上升,就这样结冰点下降,接着继续冷却,冰结晶随着冷却而增加,剩下的溶液浓度随之而增大。
可是温度降到某一点时剩下的溶液就全部冻结,这时的冻结物里混杂着冰晶体,这时的温度就是共晶点。
溶液需过冷到冰点以后,其内产生晶核以后,自由水才会开始以冰的形式结晶,同时放出结晶热使其温度上升到冰点,随着晶体的生长,溶液浓度的增加,当浓度达到共晶浓度,温度下降到共晶点以下时,溶液就会全部冻结。
溶液结晶的晶粒数量和大小除了与溶液本身的性质有关以外,还与晶核生成速率和晶体生长速率有关。
而晶核生成速率和晶体生长速率这两个因素又是随温度和压强的变化而变化的,因此,我们可以通过控制温度和压强来控制溶液结晶的晶粒数量和大小。
一般来说,冷却速度越快,过冷温度越低,所形成的晶核数量越多,晶体来不及生长就被冻结,此时所形成的晶粒数量越多,晶粒越细;反之晶粒数量越少,晶粒越大。
晶体的形状也与冻结温度有关。
在0oC附近开始冻结时,冰晶呈六角对称形,在六个主轴方向向前生长,同时,还会出现若干副轴,所有冰晶连接起来,在溶液中形成一个网络结构。
随着过冷度的增加,冰晶将逐渐丧失容量辨认的六角对称形式,加之成核数多,冻结速度快,可能形成一种不规则的树枝型,它们有任意数目的轴向柱状体,而不象六方晶型那样只有六条。
生物体液(如血液血浆、肌肉浆液、玻璃体液等)结冰形成的结晶单元,往往与单一成分的水溶液形成的冰晶类型相似。
结晶类型主要取决于冷却速度和体液浓度,例如血浆、肌肉浆液等在正常浓度下结冰时,在较高零下温度、慢冷却速度下形成六方结晶单元,快速冷却至低温时形成不规则树枝状晶体。
细胞悬浮液(如红血球、白血球、精子、细菌等悬浮于蒸馏水、血浆或其他悬浮介质中),在高零下温度缓慢结冰时,悬浮液中大量的冰生长,将细胞挤在两冰柱之间的狭窄管道中,管道内的悬浮介质因水析出结冰而溶质浓缩,细胞内的水通过细胞膜渗透出细胞,又造成细胞内溶质的浓缩。
与此同时,胞外冰的生长,还将迫使细胞物质体积缩小、变形。
但此时细胞内不结冰。
当在低温下快速结冰时,则细胞内将形成胞内冰。
冰的大小、形状和分布与冷却速度、保护剂的存在与否、保护剂的性质以及细胞内水的含量有关,一般说来,冷却速度越快、温度越低,细胞内形成的冰越多。
悬浮液中添加非渗透性保护剂,可以使快速结冰时细胞内形成的冰数目减少。
溶液结晶的形式对冻干速率有直接的影响。
冰晶升华后留下的空隙是后续冰晶升华时水蒸气的逸出通道,大而连续的六方晶体升华后形成的空隙通道大,水蒸汽逸出的阻力小,因而制品干燥速度快,反之树枝形和不连续的球状冰晶通道小或不连续,水蒸汽靠扩散或渗透才能逸出,因而干燥速度慢。
因此仅从干燥速率来考虑,慢冻为好。
此外,冻结的速率还与冻结设备的种类、能力和传热介质等有关。
预冻会对细胞和生命产生一定的破坏作用,其机理是非常复杂的,一般认为,预冻过程中水结冰所产生的机械效应和溶质效应是引起生化药品在冻干过程中失活或变性的重要因素。
机械效应是指水结冰时体积增大,致使活性物质活性部位中一些弱分子力键受到破坏,从而使活性损失;溶质效应是指水结冰以后引起溶质浓度上升以及由于各种溶质在各种温度条件下溶解度变化不一致引起pH值的变化,导致活性物质所处的环境发生变化而造成失活或变性。
对这种现象可采用下列措施解决:①预冻采用速冻法,先将搁板温度降至-45OC,再放入产品急速冷冻,形成细微冰晶,使其来不及产生机械效应。
②选用缓冲剂时要选用溶解度相当的缓冲配对盐。
③加入产品保护剂。
升华阶段时间的长短与下列因素有关:① 产品的品种:共熔点温度较高的产品容易干燥,升华的时间短些;② 每瓶内的装量(正常的干燥速率大约为1mm/h)、总装量、玻璃容器的形状、规格;③ 升华时提供的热量;④ 冻干机本身的性能。
冻干工艺原理(3)二、升华干燥(第一阶段干燥)升华干燥也称为第一阶段干燥。
将冻结后的产品置于密封的真空容器中加热,其冰晶就会升华成水蒸汽逸出而使产品脱水干燥。
干燥是从外表面开始逐步向内推移的,冰晶升华后残留下的空隙变成尔后升华水蒸汽的逸出通道。
已干燥层和冻结部分的分界面称为升华界面。
在生物制品干燥中,升华界面约为每小时1mm的速度向下推进。
当全部冰晶除去时,第一阶段干燥就完成了,此时约除去全部水分的90%左右。
产品在升华干燥时要吸收热量,一克冰全部变成水蒸汽大约需要吸收670卡左右的热量。
因此升华阶段必须对产品进行加热。
当冻干箱内的真空度降至10Pa(可根据制品要求而定)以下,就可以开始给制品加热,为产品升华提供能量,且冻干箱内的真空度应控制在10-30Pa之间最有利于热量的传递,利于升华的进行。
第一阶段升华干燥是冷冻干燥的关键阶段,大部分的水在这一阶段被升华。
若控制不好,会直接影响产品的外观质量和冻干时间。
若搁板的温度过高,搁板向产品提供的热量大于水分升华所吸收的热量,则产品温度持续上升,当产品温度超过其共熔点时,则产生喷瓶或瓶底变空的现象,影响产品的外观质量。
赋形剂的选择和用量对冻干生化药品的外观影响很大。
由于各个产品的性质不相同、配方各不同、离子浓度各不相同,对赋形剂选择和用量要求各不一样,若控制不好,冻干后的产品外观成为不易溶解的蜂窝状或粉状,而不能成为结构疏松、易于溶解的网状结构,影响药品的外观质量。