2.1.1椭圆及其标准方程(第2课时)教案
《椭圆及其标准方程》人教版高中数学选修2-1PPT课件(第2课时)

PF1 PF2 16(2 3),
S
F1PF2
1 2
PF1
PF2 sin30 8 4
3.
巩固练习
例3:已知△ABC的一边BC长为8,周长为20,求顶点A的轨迹方程. 解:以BC边所在直线为x轴,BC中点为原点,建立如右图所示的直角坐标系,则B、C两点的坐标分
别为(-4,0)、(4,0).
|PA|,由于圆P与圆C相内切, ∴|PC|=r-|PA|, 即|PA|+|PC|=r=6. 因此,动点P到两定点A(0,2)、C(0,-2)的距离之和为6, ∴P的轨迹是以A、C为焦点的椭圆,且2a=6,2c=4,即a=3,c=2,∴b2=5.
∴所求动圆圆心P的轨迹方程为 x2 y2 1. 59
巩固练习
例3.如图,已知点A(-5,0),B(5,0).直线AM,BM交于点M,且它们的斜率之积是- 4/9,求 点M的轨迹方程.
y M
直译法
A
O
B
x
巩固练习
练习:已知x轴上一定点A 1, 0, Q为椭圆 x2 y2 1
4 上任一点, 求AQ的中点M的轨迹方程.
[解]设中点M的坐标为x, y,点Q的坐标为x0, y0 ,
人教版高中数学选修2-1
第2章 圆锥曲线与方程
2.2.1椭圆及其标准方程第二课时
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-1
讲解人:XXX 时间:2020.6.1
课前导入
定义
图形 方程 焦点 a,b,c之间的关系
椭圆的标准方程
|MF1|+|MF2|=2a (2a>2c>0)
中职数学拓展模块2.1.1椭圆的标准方程教案教学设计人教版

☆补充设计☆教 师行为学生行为设计意图*揭示课题2.1 椭圆. *创设情境 兴趣导入我们已经学习过直线与圆的方程.知道二元一次方程0Ax By C ++=为直线的方程,二元二次方程22220(40)x y Dx Ey F D E F ++++=+->为圆的方程.下面将陆续研究一些新的二元二次方程及其对应的曲线. 了解 观看 课件 思考引导 启发学生得出结果*动脑思考 探索新知先来做一个实验:准备一条一定线绳、两枚钉子和一支铅笔按照下面的步骤画一个椭圆:(1)如图2-1所示,将绳子的两端固定在画板上的1F 和2F 两点,并使绳长大于1F 和2F 的距离.(2)用铅笔尖将线绳拉紧,并保持线绳的拉紧状态,笔尖在画板上慢慢移动一周,观察所画出的图形.从实验中可以看到,笔尖(即点M )在移动过程中,与两个定点1F 和2F 的距离之和始终保持不变(等于这条绳子的长度). 我们将平面内与两个定点12F F 、的距离之和为常数(大于12F F )的点的轨迹(或集合)叫做椭圆.这两个定点叫做椭圆的焦点,两个焦点间的距离叫做焦距.实验画出的图形就是椭圆.下面我们根据实验的步骤来研究椭圆的方程.取过焦点12F F 、的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系,如图2-2所示.思考引导学生发现解决问题方法设M (x ,y )是椭圆上的任意一点,椭圆的焦距为2c (c >0),椭圆上的点与两个定点12F F 、的距离之和为2a (a >0),则12F F ,的坐标分别为(-c ,0),(c ,0),由条件122MF MF a +=,得2222()()2x c y x c y a +++-+=,移项得2222()2()x c y a x c y ++=--+,两边平方得2222222()44()()x c y a a x c y x c y ++=--++-+, 整理得 222()a cx a x c y -=-+, 两边平方后,整理得 22222222()()a c x a y a a c -+=-, 由椭圆的定义得2a >2c >0,即a >c >0,所以220a c ->,设222(0)a c b b -=>,则222222b x a y a b +=,【小提示】设222a c b -=,不仅使得方程变得简单规整,同时在后面讨论椭圆的集合性质时,还会看到它有明确的几何意义. 等式两边同时除以22a b ,得222210x y a b a b += (>>) (2.1) 方程(2.1)叫做焦点在x 轴上的椭圆的标准方程.它所表示的椭圆的焦点是12(0)(0)F c F c -,,,,并且222a c b -=.如图2-3所示,如果取过焦点12F F 、的直线为y 轴,线段12F F 的垂直平分线为x 轴,建立平面直角坐标系,用类似的方法可以得到椭圆的标准方程为理解记忆图2-2222210y x a b a b += (>>) (2.2)图2-3方程(2.2)叫做焦点在y 轴上的椭圆的标准方程.字母a 、b的意义同上,并且222a c b -=. 【想一想】已知一个椭圆的标准方程,如何判定焦点在x 轴还是在y 轴? *巩固知识 典型例题例1 已知椭圆的焦点在x 轴上,焦距为8,椭圆上的点到两个焦点的距离之和为10.求椭圆的标准方程.解 由于2c =8,2a =10,即c =4,a =5,所以2229b a c =-=,由于椭圆的焦点在x 轴上,因此椭圆的标准方程为2222153x y+=,即 221259x y +=.【想一想】将例1中的条件“椭圆的焦点在x 轴上”去掉,其余的条件不变,你能写出椭圆的标准方程吗?例2 求下列椭圆的焦点和焦距.(1)22154x y +=; (2)22216x y +=.分析 解题关键是判断椭圆的焦点在哪条坐标轴上.方法是观察标准方程中含x 项与含y 项的分母,哪项的分母大,焦点就在哪个数轴.解 (1)因为5>4,所以椭圆的焦点在x 轴上,并且观察 思考 主动 求解注意观察学生是否理解知识点。
苏教版高中数学选修2-1《椭圆的标准方程》教案2

椭圆的标准方程学习目标:1、通过本节的学习了解椭圆的定义、几何图形和标准方程,了解椭圆的实际背景和它在解决实际问题中的作用.2、理解椭圆标准方程中参数a 、b 、c 之间的关系,灵活地运用定义去思考问题并切实地解决问题.学习重点:椭圆的定义和标准方程学习难点:椭圆标准方程的推导一、新课引入:椭圆的定义:平面内到两定点1F ,2F 的距离和等于常数(大于12F F )的点的轨迹叫做椭圆,两个定点1F ,2F 叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
思考:如何把数学语言转化为代数式或者方程呢?方法:坐标化原则:简洁对称步骤:建系、取点;列式(几何、代数);代换;化简;证明(可省)要求条理清晰) 分析:从定义(几何性质)入手突出:1、如何建系:(让学生从美的原则出发感受轴对称、中心对称的完美性,处理问题时要保持完美性协调,忌破坏。
)以焦点F 1,F 2所在直线为x 轴,线段F 1F 2的中垂线为y 轴,则F 1(-c,0),F 2(c,0) 设椭圆上一点P(x,y)。
2、如何求椭圆的标准方程:(暂且不提标准二字,纯粹从求方程开始)1)明确几何关系:|PF 1|+|PF 2|=2a22a =分析方程的结构及所显示的几何意义(揭示出|F 1F 2|>2a 原因),强调为什么要化简——美化,让学生感受化简的必要性。
3)化简关系:(让学生讨论如何化简,突出化简的目的—去根号)常规方法:平方法2222222)()(44)(y c x y c x a a y c x +-++--=++2a cx -=22222222-()a c x a y a a c +=-()222221x y a a c+=- 注:在化简的过程中,时时注意拓展学生思维,帮助学生学会科学地思考。
化简可以从其它两个方面思考:一、分子有理化(有理化的意识);二、等差中项(数学式子的结构意识)注:①若2a=2c 时,化简所得方程与其图形的对比 ②平方法后得:c a x a -=能说明什么? )()(222x c a a c y c x -=+- →a c x ca y c x =-+-222)( 4)标准方程(分析为什么标准化,它的必要性)结合椭圆的图形分析b 的引入的科学性二、例题分析学习椭圆要分两步走,第一,用方程表示椭圆;第二,通过方程探究椭圆的性质,其中,在各种条件下求出椭圆的方程是学好椭圆的必由之路. 例1 判断下列椭圆的焦点的位置,并求出焦距与焦点坐标. (1)22110064x y +=; (2)221925x y +=; (3)224520x y +=. 解:(1)因为10064>,所以焦点在x 轴上;又因为2221006436c a b =-=-=,故焦距212c =,从而焦点坐标为(6,0)-、(6,0).(2)因为925<,所以焦点在y 轴上;又因为22225916c a b =-=-=,故焦距)0(12222>>=+b a by a x28c =,从而焦点坐标为(0,4)-、(0,4).(3)方程可化为22154x y +=,因为54>,所以焦点在x 轴上;又因为222c a b =-=5-4=1,所以焦距2c=1,从而焦点坐标为(1,0)、(-1,0).注意:第(3)题和前两题的区别,分母上的数是和通过本题的练习,使学生能加深椭圆的焦点位置与标准方程之间关系的理解,同时会求焦点坐标、焦距等基本量(在求解之前要将方程先化成标准式),学习时采用在教师引导下学生自主完成的方法.例2:已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆它的焦距为2.4m ,外轮廓线上的点到两个焦点距离的和为3m ,求这个椭圆的标准方程. 解:以两焦点1F 、2F 所在直线为x 轴,线段1F 2F 的垂直平分线为y 轴,建立直角坐标系x O y ,则这个椭圆的标准方程可设为()222210x y a b a b += >>. 根据题意知23a =,2 2.4c =,即1.5a =, 1.2c =,故222221.51.20.81b ac =-=-=,因此,这个椭圆的标准方程为2212.250.81x y +=. 说明:进一步熟悉椭圆的焦点位置与标准方程之间的关系;掌握运用待定系数法求椭圆的标准方程,解题时强调“二定”即“定型”和“定量”,培养学生运用知识解决问题的能力.三、巩固练习1. 求下列椭圆的焦点坐标:(1)22194x y +=; (2)22167112x y +=.2. 求适合下列条件的椭圆的标准方程:(1)焦点在x 轴上,a =c =(2)焦点在y 轴上,225a b +=,且过点(;(3)焦距为6,1a b -=;(4)经过两点35(,)22A -,B . 四、本节小结:理解椭圆的标准方程的求法。
椭圆及其标准方程第二课时(教学设计)高中数学新教材选择性必修第一册

3.1.2 椭圆及其标准方程第2课时教学设计(一)教学内容椭圆及其标准方程(二)教学目标1.通过知识的教学,使学生能熟练掌握椭圆的标准方程,焦点、焦距等概念以及a、b、c之间的关系,发展解析几何中代数运算素养.2.通过求点的轨迹方程,能使学生体验曲线与方程之间的一一对应关系,进一步体会坐标法和数形结合的思想.(三)教学重点及难点重点:求椭圆的标准方程.难点:轨迹方程的求法.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入问题1:上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的?追问1:椭圆的标准方程是怎样的?它的图形有什么特点?参数a、b、c的关系是怎样的?追问2:现在我们来求椭圆的标准方程,还需要用坐标法吗?师生活动:学生作答,老师适时补充,教师板书,明确求椭圆的标准方程不需要用坐标法,可用待定系数法确定a,b即可.设计意图:目的是使学生熟悉椭圆的定义及标准方程以及a,b,c各量的关系,熟悉焦距.为下一步求椭圆的标准方程做好铺垫.2.例题教学例1 求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1).(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到与它较近的一个焦点的距离为2.(3)椭圆经过点(1,32),(2)师生活动:通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想,体会椭圆标准方程的常规方法待定系数法,便于掌握本节的重点.设计意图:巩固椭圆及其标准方程.问题2:动点的轨迹和轨迹方程有何区别?例2 如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足。
当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?(当P经过圆与x轴的交点时,规定点M与点P重合.师生活动:(1)轨迹是指图形,轨迹方程是指方程.明确求轨迹方程即是求轨迹上任意的点M的坐标(x,y)所满足的条件,因此必须先搞清楚点M所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点M与已知曲线上点的联系,利用已知曲线的方程求解. (3)明确椭圆与圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3 如图4,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是4 -9,求点M 的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价;(4)此题反过来,就是椭圆的一条性质.课堂练习:教科书第109页练习第3,4题.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.师生活动:学生运用椭圆的概念与椭圆的标准方程解决第3题,运用求曲线的方程的方法解决第4题,教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.问题3:什么是椭圆的焦点三角形?焦点三角形又蕴含哪些知识呢?定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆的焦点三角形.例4 椭圆22143x y+=,点P是椭圆上一点,F1,F2是椭圆的左、右焦点,且∠PF1F2=120°,则△PF1F2的面积为________.师生活动:教师在黑板上画出示意图,引导学生可联想解三角形的知识,由学生说出解决方案.(时间允许的话)从此题可推出一般结论:(1).(2)当P 点在椭圆与y 轴的交点时,焦点三角形面积最大为bc.设计意图:例题的难度不大,由学生自主思考分析并通过运算解决,培养独立思考独立分析解决问题的能力,通过练习,提醒学生在解决问题时,要根据题目的条件,灵活选用相关知识进行求解.3.课堂小结:问题4:回顾本节课所学知识与学习过程,你能对本节课的研究内容与结论作个梳理吗?师生活动:先由学生对椭圆的标准方程和轨迹方程求法作梳理,教师进行补充.设计意图:及时梳理、提炼与升华所学知识.(五)目标检测设计1.课堂检测(1).求符合下列条件的椭圆的标准方程:①经过点P(-,(1,;②a=2b0).设计意图:考查学生对椭圆的标准方程及a ,b ,c 之间的关系的理解与掌握水平,(2).已知△ABC 的周长为6,顶点A ,B 的坐标分别为(0,1),(0,-1),则点C 的轨过方程为( ) (A)221x 2)43x y +=≠±( (B)2212)34x y +=≠±(y (C)221x 0)43x y +=≠( (D)2210)34x y +=≠(y设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.(3).已知点A(-1.0),B 是圆F :229(1)x y +=-(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 师生活动:学生先独立完成,后相互交流,教师视学生错误情况进行点评、校正.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程,考查学生求轨迹方程的掌握情况.2.课后作业教科书习题3.1第2,6,10题.(六)教学反思 点的纵坐标)是(P b S PF F 0021y .cy 2tan 2==∆θ。
椭圆及其标准方程-第二课时

0 0
点P 的坐标为(x ,0).
0
由PM = 2MP 得:(x - x , y - y ) = 2(x - x,-y) ,即
0 0 0
即
0 0
x - x = 2(x - x) , y - y = 2(-y) x = x, y = 3y.
F2 P
O
x
F1
练习.求适合下列条件的椭圆的标准方程:
(1)a=
,b=1,焦点在x轴上;
x2 6
y 1
2
(2)焦点为F1(0,-3),F2(0,3),且a=5; 25 16 (3)两个焦点分别是F1(-2,0)、F2(2,0),且过 P(2,3)点; x y 1
2 2
y2
x2
1
0 0 0 0 0 2 2
∵ P(x , y )在圆x + y = 9上, 代入得 x + 9y = 9,
2 2
x 即 + y =1,∴点M的轨迹是一个椭圆. 9
2 2
例3 设点A,B的坐标分别为(-5,0),(5,0). 直线AM,BM相交于点M,且它们的斜率之积是 4 ,求 9 点M的轨迹方程.
求S△PF1F2,只要求|PF1|即可.可由椭圆的定义|PF1|+|PF2| =2a,并结合余弦定理求解.
[精解详析]
由已知 a=2,b= 3,
所以 c= a2-b2=1,|F1F2|=2c=2, 在△ PF1F2 中,由余弦定理得 |PF2|2=|PF1|2+|F1F2|2-2|PF1|· |F1F2|· cos 120° , 即|PF2|2=|PF1|2+4+2|PF1|. 由椭圆定义,得|PF1|+|PF2|=4, 即|PF2|=4-|PF1|. 6 将②代入①解得|PF1|= , 5 1 1 6 3 3 3 ∴S△PF1F2= |PF1|· |F1F2|· sin 120° = ×× 2× = . 2 2 5 2 5 3 因此所求△PF1F2 的面积是 3. 5 ② ①
人教版高中数学优质教案3:2.1.1椭圆及其标准方程 教学设计

2.1.1椭圆及其标准方程教学目标1.知识与技能(1)了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;(2)理解椭圆的定义,掌握椭圆的标准方程及其推导过程.2.过程与方法(1)让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想;(2)学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.3.情感、态度与价值观(1)通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神.(2)通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美,提高学生的审美情趣.重点难点重点:椭圆定义和标准方程.难点:椭圆标准方程的推导过程.椭圆定义是通过它的形成过程进行定义的,揭示了椭圆的本质属性,也是椭圆方程建立的基石,因此给学生提供动手操作、合作学习的机会,通过实验使学生去探究椭圆的形成过程,进而顺理成章的可以推导出椭圆标准方程,以实现重、难点的化解与突破.一、椭圆的定义问题导思1.取一条定长的细绳,把它的两端都固定在图板的同一处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个什么图形?[答案]圆.2.如果把细绳两端拉开一段距离,分别固定在图板上的两点F1、F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?[答案]椭圆.3.在问题2中,移动的笔尖始终满足怎样的几何条件?[答案]笔尖到两定点F1、F2的距离和等于常数(绳长).把平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.二、椭圆的标准方程问题导思1.观察椭圆形状,你认为怎样建系才能使椭圆的方程简单?[答案]以经过椭圆两焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.2.在椭圆的标准方程中,a2和b2能相等吗?你能否根据椭圆的标准方程判定椭圆的焦点位置?[答案]不能相等.否则就表示圆而不是椭圆了.可以根据x2与y2的分母的大小判定椭圆的焦点位置.若x2项的分母大,则焦点在x轴上;若y2项的分母较大,则焦点在y轴上.焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)焦点(-c,0)与(c,0)(0,-c)与(0,c) a,b,c的关系c2=a2-b2三、求椭圆的标准方程例1求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);(2)焦点在y轴上,且经过两个点(0,2)和(1,0);(3)经过点A(3,-2)和点B(-23,1).解:(1)由于椭圆的焦点在x轴上,∴设它的标准方程为x2a2+y2b2=1(a>b>0).∵2a=5+42+5-42=10,∴a=5. 又c=4,∴b2=a2-c2=25-16=9.故所求椭圆的标准方程为x225+y29=1.(2)由于椭圆的焦点在y轴上,∴设它的标准方程为y2a2+x2b2=1(a>b>0).由于椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=10a 2+1b 2=1,⇒⎩⎪⎨⎪⎧a 2=4b 2=1.故所求椭圆的标准方程为y 24+x 2=1.(3)法一 ①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧ 32a 2+-22b 2=1-232a 2+1b2=1,解得⎩⎪⎨⎪⎧a 2=15b 2=5.故所求椭圆的标准方程为x 215+y 25=1.②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2a2=1(a >b >0).依题意有⎩⎪⎨⎪⎧-22a 2+32b 2=11a 2+-232b 2=1,解得⎩⎪⎨⎪⎧a 2=5b 2=15,因为a >b >0,所以无解.所以所求椭圆的标准方程为x 215+y 25=1.法二 设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎪⎨⎪⎧3m +4n =112m +n =1,解得⎩⎨⎧m =115n =15.所以所求椭圆的标准方程为x 215+y 25=1.规律方法1.利用待定系数法求椭圆的标准方程:(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而简化了运算.变式训练求适合下列条件的椭圆的标准方程. (1)焦点在x 轴上,且a =4,c =2; (2)经过点A (0,2)和B (12,3).解 (1)a 2=16,c 2=4,∴b 2=16-4=12且焦点在x 轴上,故椭圆的标准方程为x 216+y 212=1.(2)设所求椭圆的标准方程为 Mx 2+Ny 2=1(M >0,N >0,M ≠N ). ∵椭圆经过A (0,2)和B (12,3)两点,∴⎩⎪⎨⎪⎧ M ·0+N ·4=1M ·14+N ·3=1,解得⎩⎪⎨⎪⎧M =1N =14.∴所求椭圆方程为x 2+y 24=1. 四、与椭圆有关的轨迹问题图2-2-1例2如图2-2-1所示,圆x 2+y 2=1上任意一点P ,过点P 作x 轴的垂线段PP ′,P ′为垂足.M 为直线PP ′上一点,且|P ′M |=λ|PP ′|(λ为大于零的常数).当点P 在圆上运动时,点M 的轨迹是什么?为什么?解 设M (x ,y ),P (x 0,y 0),∵PP ′⊥x 轴,且|P ′M |=λ|PP ′|, ∴x =x 0,y =λy 0,即x 0=x ,y 0=1λy .∵点P (x 0,y 0)在圆x 2+y 2=1上,∴x 20+y 20=1.把x 0=x ,y 0=1λy 代入上式得x 2+y 2λ2=1.当0<λ<1时,点M 的轨迹是焦点在x 轴上的椭圆;当λ=1时,点M 的轨迹是圆;当λ>1时,点M 的轨迹是焦点在y 轴上的椭圆. 规律方法1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例所用方法为代入法.2.代入法(相关点法)若所求轨迹上的动点P (x ,y )与另一个已知曲线C :F (x ,y )=0上的动点Q (x 1,y 1)存在着某种联系,可以把点Q 的坐标用点P 的坐标表示出来,然后代入已知曲线C 的方程F (x ,y )=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).代入法的主要步骤:①设所求轨迹上任意一点P (x ,y ),相对应的已知曲线上的点设为Q (x 1,y 1);②建立关系式⎩⎪⎨⎪⎧x 1=gx ,y ,y 1=h x ,y(※)③将(※)代入已知曲线方程化简就得所求轨迹方程. 变式训练动点P 在y =2x 2+1上移动,则P 点与Q (0,-1)连线中点的轨迹方程是什么? 解 设P (x 0,y 0),PQ 的中点M (x ,y )则⎩⎨⎧x =x 02,y =y 0-12,∴⎩⎪⎨⎪⎧x 0=2x ,y 0=2y +1. ∵P (x 0,y 0)在y =2x 2+1上, ∴ 2(2x )2+1=2y +1, ∴y =4x 2.即PQ 中点的轨迹方程为:y =4x 2.五、当堂训练1.到两定点F 1(-2,0)和F 2(2,0)的距离之和为4的点的轨迹是( ) A .椭圆 B .线段 C .圆D .以上都不对[解析] |MF 1|+|MF 2|=|F 1F 2|=4, ∴点M 的轨迹为线段F 1F 2. [答案] B2.设P 是椭圆x 225+y 216=1上的一点,F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .10B .8C .5D .4[解析] 由标准方程得a 2=25,∴2a =10,由椭圆定义知|PF 1|+|PF 2|=2a =10. [答案] A3.椭圆4x 2+9y 2=1的焦点坐标是( ) A .(±5,0) B .(0,±5) C .(±56,0)D .(±536,0)[解析] 椭圆化为标准形式为x 214+y 219=1,∴a 2=14,b 2=19,∴c 2=a 2-b 2=14-19=536,且焦点在x 轴上,故为(±56,0).[答案] C4.已知一椭圆的标准方程中b =3,c =4,求此椭圆的标准方程. 解 ∵b =3,c =4,∴b 2=9,a 2=b 2+c 2=9+16=25. (1)当焦点在x 轴上时,椭圆的标准方程为 x 225+y 29=1. (2)当焦点在y 轴上时,椭圆的标准方程为 x 29+y 225=1. 六、课堂小结1.求椭圆的标准方程常用待定系数法.首先,要恰当地选择方程的形式,如果不能确定焦点的位置,可用两种方法来解决问题.2.求轨迹方程的常用方法: (1)直接法当动点直接与已知条件发生联系时,在设出曲线上动点的坐标为(x ,y )后,可根据几何条件转换成x ,y 间的关系式,从而得到轨迹方程,这种求轨迹方程的方法称为直接法.(2)定义法若动点运动的几何条件满足某种已知曲线的定义,可以设出其标准方程,然后用待定系数法求解,这种求轨迹方程的方法称为定义法.(3)相关点法有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.。
第二课时:椭圆及其标准方程教学设计

2.1.1椭圆及其标准方程(选修1-1)教学目的:1.能正确运用椭圆的定义与标准方程解题; 2.学会用待定系数法与定义法求曲线的方程教学重点:用待定系数法与定义法求曲线的方程教学难点:待定系数法授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程: 一、复习引入: 1 椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距注意:椭圆定义中容易遗漏的两处地方:(1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)两定点间距离较短,则所画出的椭圆较圆(→圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)2. 椭圆标准方程: (1)12222=+by a x它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程其中22b c a +=(2)12222=+bx a y它所表示的椭圆的焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程其中22b c a +=所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在12222=+b y a x 与12222=+b x a y 这两个标准方程中,都有0>>b a 的要求,如方程),0,0(122n m n m ny m x ≠>>=+就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式1=+b ya x 类比,如12222=+by a x 中,由于b a >,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看22,y x 分母的大小)二、讲解范例:例1 求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. 选题意图:该题训练焦点在不同坐标轴上的椭圆标准方程,考查c b a ,,关系掌握情况. 解:(1)∵椭圆的焦点在x 轴上,所以设它的标准方程为:)0(12222>>=+b a by a x∵100)35(0)35(222=+-+++=a ,2c =6.∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x .(2)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a b x a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y 例2 求适合下列条件的椭圆的标准方程. (1)焦点在x 轴上,且经过点(2,0)和点(0,1).(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.选题意图:训练待定系数法求方程的思想方法,考查椭圆上离焦点最近的点为长轴一端点等基本知识.解:(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为:)0(12222>>=+b a by a x ∵椭圆经过点(2,0)和(0,1)∴⎪⎩⎪⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧=+=+14a 1101022222222b b a b a故所求椭圆的标准方程为1422=+y x(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为:)0(12222>>=+b a bx a y ∵P(0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 说明:(1)标准方程决定的椭圆中,与坐标轴的交点横坐标(或纵坐标)实际即为a 与b 的值.(2)后面的学习中将证明椭圆长轴端点距焦点最远或最近. 例3 已知椭圆经过两点()5,3()25,23与-,求椭圆的标准方程 解:设椭圆的标准方程),0,0(122n m n m ny m x ≠>>=+ 则有 ⎪⎪⎩⎪⎪⎨⎧=+=+-1)5()3(1)25()23(2222n mnm ,解得 ,6==n m 所以,所求椭圆的标准方程为10622=+y x 例4 已知B ,C 是两个定点,|BC |=6,且ABC ∆的周长等于16,求顶点A 的轨迹方程解:以BC 所在直线为x 轴,BC 中垂线为y 轴建立直角坐标系,设顶点),(y x A ,根据已知条件得|AB|+|AC|=10再根据椭圆定义得,3,5===b c a所以顶点A 的轨迹方程为1162522=+y x (y ≠0)(特别强调检验) 因为A 为△ABC 的顶点,故点A 不在x 轴上,所以方程中要注明y ≠0的条件三、课堂练习:1.设21,F F 为定点,|21F F |=6,动点M 满足6||||21=+MF MF ,则动点M 的轨迹是 ( )A.椭圆B.直线C.圆D.线段 答案:D2.椭圆171622=+y x 的左右焦点为21,F F ,一直线过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为 ( )A.32B.16C.8D.4 答案:B3.设α∈(0,2π),方程1cos sin 22=+ααy x 表示焦点在x 轴上的椭圆,则α∈A.(0,4π] B.(4π,2π) C.(0,4π) D.[4π,2π) 答案:B4.如果方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是______.分析:将方程整理,得12222=+ky x ,据题意⎪⎩⎪⎨⎧>>022k k ,解之得0<k <1. 5.方程11222=--m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是______. 分析:据题意⎪⎩⎪⎨⎧>--><-mm m m 2)1(0201,解之得0<m <316.在△ABC 中,BC =24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程. 分析:以BC 所在直线为x 轴,BC 的中垂线为y 轴建立如图所示的平面直角坐标系,M 为重心,则|MB |+|MC |=32×39=26.根据椭圆定义可知,点M 的轨迹是以B 、C 为焦点的椭圆,故所求椭圆方程为12516922=+y x (y ≠0) 四、小结 :椭圆标准方程的两种形式及运用待定系数法求椭圆的标准方程的方法五、课后作业:平面内两个定点21,F F 之间的距离为2,一个动点M 到这两个定点的距离和为6.建立适当的坐标系,推导出点M 的轨迹方程.选题意图:本题考查椭圆标准方程的推导方法.解:建立直角坐标系xoy ,使x 轴经过点21,F F ,并且点O 与线段21F F 的中点重合.设),(y x M 是椭圆上任意一点,椭圆的焦距为2c(c=1),M 与21,F F 的距离的和等于常数6,则21,F F 的坐标分别是(-1,0),(1,0).∵222221)1(,)1(y x MF y x MF +-=++=∴6)1()1(2222=+-+++y x y x .将这个方程移项后,两边平方,得22222222)1(39,)1()1(1236)1(yx x y x y x y x +-=-+-++--=++两边再平方,得:222991891881y x x x x ++-=+- 整理得:729822=+y x两边除以72得:18922=+y x .说明:本题若不限制解题方法则可借助椭圆的定义直接写出方程.六、板书设计(略)七、课后反思。
椭圆及其标准方程第二课时

的坐标分别为(-5,0),(5,0)。 例3、如图,设点 ,B的坐标分别为 、如图,设点A, 的坐标分别为 。
4 直线AM,BM相交于点 ,且它们的斜率之积是 − , 相交于点M, 直线 , 相交于点 9 求点M的轨迹方程 的轨迹方程。 求点 的轨迹方程。 设点M的坐标为 因为点A的坐标是 的坐标为, 的坐标是, 解:设点 的坐标为,因为点 的坐标是,所以直线 AM的斜率 k = y ( x ≠ −5); 的斜率 AM x+5 y ( x ≠ 5); 同理,直线BM的斜率 k BM = 同理,直线 的斜率 x −5 y y 4 由已知有 × = − ( x ≠ ±5) x+5 x−5 9
2
起点M运动 运动。 起点 运动。 x=x0,y=y0/2. 因为点P (x0,y0)在圆 因为点 在圆
x0 + y 0
即
2
2
x +y
2
2
=Байду номын сангаас4 上,所以
=4
代入方程(1), 把x0=x,y0=2y代入方程 ,得 代入方程
x + 4y
2
2
=4
x +y 4
2
2
=1
所以点M的轨迹是一个椭圆。 所以点 的轨迹是一个椭圆。 的轨迹是一个椭圆
1
满足以下条件的动点的轨迹叫做椭圆? 满足以下条件的动点的轨迹叫做椭圆? • [1]平面上 这是大前提 平面上----这是大前提 平面上 • [2]动点 M 到两个定点 F1、F2 的距离之 动点 和是常数 2a • [3]常数 2a 要大于焦距 2c 常数
MF1 + MF2 = 2 a > 2 c
相 同 点 a b 点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1椭圆及其标准方程(2) 教案
一、教学目标: 知识与技能:
①能正确运用椭圆的定义与标准方程解题;学会用待定系数法与定义求曲线的方程;
②进一步感受曲线方程的概念,掌握建立椭圆方程的基本方法,体会数形结合的思想。
过程与方法:
①培养学生的观察归纳能力、探索发现能力以及合作学习能力。
②提高运用坐标法解决几何问题的能力及运算能力; 同时体会运用数形结合思想解决问题的能力. 情感态度与价值观:
①激发学生学习数学的兴趣、培养学生勇于探索,敢于创新的精神.
②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,
③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。
二、教学重点与难点
重点:用待定系数法与定义法求椭圆方程。
难点:掌握求椭圆方程的基本方法。
三、教学方法:四环节教学法,启发引导法 四、教学手段:多媒体辅助教学 五、教学过程: (一)问题情境:
如果点M(x,y)在运动过程中,总满足关系式:10)3()3(222
2
=-++
++y x y x ,点M 的轨迹是什么曲线?写出它的方程.
(复习旧知,学生讨论,教师引导得出答案)
回答问题:由题意得:点M (x ,y )到点F1(0,-3)与点F2(0,3)的距离之和为常数10。
由椭圆的定义得:点M的轨迹是以F1(0,-3)和F2(0,3)为焦点,2a 为10
的椭圆。
其标准方程是
116
252
2=+x y 回顾旧知:
1.椭圆的定义:
我们把 叫做椭圆,这两个定点F 1、
F 2叫做椭圆的 ,两个焦点之间的距离叫做椭圆的 ,通常用2c (c>0)
表示,而这个常数通常用2a 表示,椭圆用集合表示为 。
2.椭圆的标准方程
焦点在X 轴的椭圆的标准方程为:
焦点在Y 轴上椭圆的标准方程为: . 提问:方程有什么特点? 学生回答,教师适当补充:
(1)方程的左边是两项平方和的形式,等号的右边是1; (2)在椭圆两种标准方程中,总有a>b>0; (3)焦点在大分母变量所对应的那个轴上; (4)a 、b 、c 都有特定的意义,
a —椭圆上任意一点P 到F1、F2距离和的一半;c —半焦距.
有关系式 2
2
2
c b a += 成立。
(二)新知探究:
1.口答练习:(提问学生完成以下问题)
①方程
19
452
2=+y x 表示到焦点F1 和F2 ________的距离和为常数_____的椭圆;
②求满足下列条件的椭圆的标准方程
③如果方程1m
y 4x 2
2=+表示焦点在X 轴的椭圆,则实数m 的取值范围是 .
④ 已知∆ABC 中,B (-3,0),C (3,0),且AB ,BC ,AC 成等差数列。
(1)求证:点A 在一个椭圆上运动; (2)写出这个椭圆的焦点坐标。
证:(1)根据条件有AB+AC=2BC , 即AB+AC =12,
即动点A 到定点B,C 的距离之和为定值12, 且12>6=BC ,
所以点A 在以B,C 为焦点的一个椭圆上运动.
(2)这个椭圆的焦点坐标分别为(-3,0),(3,0) 2.探究1:
12(1)5,(3,0),(3,0)=-a F F (2)5,3
==a c
已知椭圆两个焦点的坐标分别是1F (-2,0),F 2(2,0),并且经过点P )2
3,25(-,求它的标准方程.
先让学生自己思考,然后引导学生得出:可类比圆的标准方程,先确定标准方程的形式,用椭圆的定义或待定系数法求解。
教师指出:注意椭圆有两种标准方程,要正确选择。
法1.定义法:
因为椭圆的焦点在x 轴上,所以设它的标准方程为).0(122
22>>=+b a b
y a x
由椭圆的定义知,,102232252322522
222=⎪⎭
⎫
⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=a
所以10=a .
又因为c=2,所以.64102
2
2
=-=-=c a b
因此,所求椭圆的标准方程为.16
102
2=+y x 法2.待定系数法:
由题意,椭圆的两个焦点在x 轴上,所以设它的标准方程为).0(122
22>>=+b a b
y a x
由已知,c=2,所以.42
2
=-b a ①
又由已知,得
123252
2
22=⎪
⎭⎫
⎝⎛-+⎪⎭⎫ ⎝⎛b a ②
联立①②解方程组,得6,102
2
==b a .
因此,所求椭圆的标准方程为.16
102
2=+y x 本题小结:求椭圆标准方程的解题步骤是什么?
(1)确定焦点的位置; (2)设出椭圆的标准方程;
(3)用椭圆的定义或待定系数法确定a 、b 的值,写出椭圆的标准方程.
注:椭圆定义的应用可使运算更简捷。
探究二:
等腰直角三角形ABC 中,斜边BC 长为 ,一个椭圆以C 为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过点A ,B 。
求:该椭圆方程。
(学生自己画图探究,教师适时引导建立合适的直角坐标系,认真分析等腰三角形特征,结合椭圆的定义及椭圆方程中的a,b,c 的关系最终确定椭圆的方程) 解:24=
BC .如图设椭圆的另一个焦点为以直线DC 为x 轴,线段DC 设椭圆方程为
)0(12
2>>=+b a b
y a x 则|AD| + |AC| = 2a ,|BD| + |BC| = 2a
所以,|AD| + |BD| + |AC| + |BC| = 4a. 即 得 2242422
22
2=⇒⎪⎪⎪
⎭
⎪
⎪⎪⎬⎫=⨯==++=AD AC a AC AD a
在∆ADC 中, ()
2416222
2
2
2
=+=+=AC AD DC
()
246222,62
2222=-+=-==∴c a b c
故所求椭圆方程为
12
42
4622=+
+y x
本题小结:这道题的收获是什么?
1.合理建立直角坐标系,待定系数法求解椭圆方程
2.重视椭圆定义的应用
3.等腰直角三角形的特殊性,勾股定理的应用
4.数形结合思想
(三)反思总结:
1.本节课你的收获有哪些?
2.本节课你的困惑有哪些? (四)课后作业:
课本36页练习3; 42页习题2.1A 组第7题
24a
4248=+。