正项级数及其审敛法 绝对收敛与条件收敛

合集下载

第二节正项级数及其收敛法

第二节正项级数及其收敛法

(2) S(x) 在(--R,R)内可导,且
S(x) ( an xn ) (an xn ) nan xn1
n0
n0
n0
即幂级数在(-R,R)内可以逐项求导,所得到的幂级数
收敛半径不变.
可推广到任意阶导数
(3) S(x)在(--R,R)内可积,且
x
S(x)dx
0
x
[
0
an xn ]dx
幂级数 各项都是幂函数的函数项级数
一般形式:
a0 a1(x x0 ) a2 (x x0 )2 an (x x0 )n (1)
特例
a0 a1x a2 x2 an xn 系数 (2)
主要讨论(2),因为(1)可以通过变量代换化成(2)
1.幂级数的收敛域
x = 0 时(2)收敛,一般的,幂级数收敛域是一区间.
收敛,x0 收敛点
发散, x0发散点
函数项级数的全体收敛点的集合称为收敛域
3.和函数: 在收敛域内,函数项级数的和依赖于点x,
因此其和是x的函数,称为和函数
S(x) un(x)
4.余项:
n1
rn (x) S(x) Sn (x)
前n项的部分和
在收敛域内才有意义,且
lim
n
rn
(
x)
0
二. 幂级数及其收敛性
注:用比值或根值审敛法判定的非绝对收敛级 数一定发散。
三、小结
正项级数
任意项级数
1. 若 Sn S ,则级数收敛;
审 2. 当 n , un 0, 则级数发散;
敛 3. 按基本性质;
4. 充要条件
法 5. 比较法
6. 比值法 7. 根值法
4. 绝对收敛 5. 交错级数 (莱布尼茨定理)

绝对收敛与条件收敛

绝对收敛与条件收敛

散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p nn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n nn n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ 一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xx x x x x x n n m m m x m m mx x n n nm 欧拉公式:⎪⎪⎩⎪⎪⎨⎧-=+=+=--2sin 2cos sin cos ixix ixix ixe e x e e x x i x e 或 三角级数:。

复变函数-无穷级数-3

复变函数-无穷级数-3

n1
n1
lim un2 u n
n
lim
n
un
0
由比较审敛法知 un2 收敛.
反之不成立.
1 n1
1
例如:
n1
n
2
收敛,
n1 n 发散.
练习题
一、填空题: 1、 p 级数当_______时收敛,当_______时发散;
2、若正项级数 un 的后项与前项之比值的根等于 , n1 则当________时级数收敛;________时级数发散; ____________时级数可能收敛也可能发散 .
2 vn
2

l 2 vn
un
3l 2
vn
(n N )
由比较审敛法的推论, 得证.
5.极限审敛法:
设 un 为正项级数, n1
如果
lim
n
nun
l0
(或lim n
nun
),
则级数 un 发散; n1
如果有 p 1,
使得lim n
n
p
un
存在,
则级数 un 收敛. n1
例 3 判定下列级数的敛散性:
n1
n1
莱布尼茨定理 如果交错级数满足条件:
(ⅰ)un
un1
(n
1,2,3,)
;(ⅱ)lim n
un
0,
则级数收敛,且其和s u1,其余项rn 的绝对值
rn un1.
证明 un1 un 0,
s2n (u1 u2 ) (u3 u4 ) (u2n1 u2n )
数列 s2n是单调增加的 ,
审 2. 当 n , un 0, 则级数发散;
3.按基本性质;

正项项级数的审敛法

正项项级数的审敛法


级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
2.条件是充分的,而非必要.

un
2
(1)n 2n
3 2n
vn ,
级数 un
n1
2 (1)n
n1
2n
收敛,

un1 un
2 (1)n1 2(2 (1)n )
an ,
lim
n
a2n
1, 6
lim
n
a2n1
3, 2
lim un1 u n
1
1
(1)

sin ; (2) n1 n
(1) lim nsin 1
n
n
n1
3
n
;
n sin 1
lim n
n 1
1,
原级数发散.
1
n
(2)
lim
n
3n
1
n
3n
lim 1
n
1
n 3n
1,
n1
31n收敛,
故原级数收敛.
6.比值审敛法(达朗贝尔 D’Alembert 判别法):
设 un
lim un n vn
l,
则(1) 当 0 l 时,二级数有相同的敛散性;
(2) 当 l 0时,若 vn 收敛,则 un 收敛;
n1
n1
(3) 当 l 时, 若 vn 发散,则 un 发散;
n1
n1
证明 (1)由lim un l v n
n
对于 l 0,
2
N , 当n N时, l l un l l
(1)若对一切n > N0,成立不等式

13.2 正项级数及其审敛法

13.2 正项级数及其审敛法

时,lim n
un
0.
3.
若出现
ρ=1 或
lim
n
n
un
不存在,
则改用其它方法.
4. 条件是充分的, 并非必要.

un(, un 0)
收敛
lim n
n
un
1;
n1
由 un(, un 0)
发散
lim n
n
un
1.
n1
均可能出现 1,或不存在.
例14 判定正项级数的敛散性.

(1)
lim n
1
但 p 1, 级数收敛 ; p 1, 级数发散 .
定理5. 根值审敛法 ( Cauchy判别法)

为正项级数,且
lim n
n
un
,

(1) 当 1 时,级数收敛; (2) 当 1 时, 级数发散 .
定理4 . 比值审敛法 ( D’alembert 判别法)

为正项级数, 且 lim un1 , 则
当 x=1时,
级数是调和级数
1 ,
发散.
例12 判定正项级数

因为
0
n 2n
cos2
nn1
3
n 2n
cos
n 2n
2
n3n1的n敛散性.
(n 1,2,)

lim
n
n1 2n1
2n n
n1 lim
n 2n
1 2
1
,所以
n1
n 2n
收敛,
再由比较判别法知, 原级数也收敛.
例13 利用级数敛散性, 证明
部分和数列 有上界 .

收敛函数

收敛函数

收敛于S , 并估计以部分和 Sn 近
似代替和 S 时所产生的误差 .
解:
n un
n
1 nn
由定理5可知该级数收敛 令. rn S Sn , 则所求误差为
0
rn
(n
1 1)n1
(n
1 2)n2
1 (n 1)n1
1
1
1 n1
1 n (n 1)n
作业p206 1(2)(5) ;2(1)(3) ;3(2)(4);4(4)(5)(6)
2
所给级数收敛
定理5 . 比值审敛法 ( D’alembert 判别法)

为正项级数, 且 lim un1 , 则
n un
(1) 当 1 时, 级数收敛 ;
(2) 当 1 或 时, 级数发散 .
(2) 当 1 时, 级数可能收敛 可能发散; 证明 当为有限数时, 对 0,
N , 当n N时, 有 un1 ,
的敛散性 .
解:
lim un1 n un
lim n
(n 1) xn n xn1
x
根据定理4可知:
当0 x 1时, 级数收敛 ;
当x 1时, 级数发散 ;
当x 1时,
定理6. 根值审敛法 ( Cauchy判别法)设
级数,

lim n
n
un
,则
为正项
(2) 当 1时, 级数可能收敛 可能发散;
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
n un
1
例如, p – 级数
lim un1 lim (n1) p 1
n un
n 1 np
但 p 1, 级数收敛 ; p 1, 级数发散 .

6-2 常数项级数的审敛法

6-2 常数项级数的审敛法

即 s ≤ s1 = a1 .其余项
上一页 下一页 返回
rn = (−1) an+1 + (−1) an+2 +L= (−1) (an+1 − an+2 + L)
n n
n= ( −1) a n +1 − a n + 2 + L ≤ a n +1 ;
n
因为an+1 ≥ 0, 所以 rn ≤ an+1 上述交错级数的审敛法也称为莱布尼兹审敛法 上述交错级数的审敛法也称为莱布尼兹审敛法
因此, 级数 ∑ ( −1)
n =1

n −1
1 收敛. n
返回
上一页
下一页
三、绝对收敛与条件收敛
以上讨论了正项级数与交错级数的敛散性, 以上讨论了正项级数与交错级数的敛散性 下面简单地讨论一下任意项级数的敛散性. 下面简单地讨论一下任意项级数的敛散性 形如
上一页 下一页 返回
类似地还可得到: 类似地还可得到: 一个正项级数(6-1), 如果对每一个 都有 如果对每一个n都有 一个正项级数
an+1 ≥ g > 1, an
那么这个正项级数是发散的. 那么这个正项级数是发散的
an+1 如果在正项级数(6-1)中,比值 a 的极限存 如果在正项级数 中 比值 n
上一页
下一页
返回
1 1 1 n−1 1 +L 例6-13 判别级数 1 − + − +L+ (−1) 2 3 4 n
的敛散性. 的敛散性.
1 1 1 解 因为 a n = , 所以a n + 1 = n + 1 < n = a n , 且有 n

收敛函数

收敛函数

(1)
n
的敛散性
2n
解: lim n n
un
lim n n
2 (1)n 2n
lim 1 n 2 (1)n n 2
1 2
所给级数收敛
例6. 证明级数
收敛于S , 并估计以部分和 Sn 近
似代替和 S 时所产生的误差 .
解:
n un
n
1 nn
由定理5可知该级数收敛 令. rn S Sn , 则所求误差为
(2) 当 1 或 时, 级数发散 .
(2) 当 1 时, 级数可能收敛 可能发散; 证明 当为有限数时, 对 0,
N , 当n N时, 有 un1 ,
un
即 un1 (n N )
un
(1) 当 1时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
n un
n 1 np
但 p 1, 级数收敛 ; p 1, 级数发散 .
比值审敛法的优点: 不必找参考级数.
两点注意:
1.当 1,或不存在,且不是无穷大 时不能用
比值审敛法;

级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
2.条件是充分的,而非必要.

un
2
(1)n 2n
3 2n
即 un (n )
n1
定理2 (比较审敛法) 设
是两个正项级数,
且存在
对一切

(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
证:因在级数前加、减有限项不改变其敛散性, 故不妨
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 vn 2

l 2 vn
un
3l 2
vn
(n N )
由比较审敛法的推论, 得证.
推论:设正项级数 un 和 vn 的一般项 un 和 vn
n1
n1
均为 n 时的无穷小, 且 un ~ vn ,
则二级数有相同的敛散性.
例 3 判定下列级数的敛散性:
(1) sin 1 ; n1 n
1
n1
n 3n
sin
2
n
6
收敛
例6
a n n!
n1 nn
(a 0)

lim un1 n un
an1(n 1)!
lim
n
(n 1)n1
nn a n n!
lim a a , n (1 1 )n e n
故 (1) 当 a e 时, 即 1 时, 级数收敛
(2) 当 a e 时, 即 1 时, 级数发散
1 n1 ( ln )
(2) n1 3n n ; (3) n1 n
n
解 (1) n 时, sin 1 ~ 1 ,
nn

1
发 散,
故原级数发散.
n1 n
(2)
n 时,
1 3n n ~
1 3n

1
n1
3n
收 敛,
故原级数收敛.
1 n1
( ln )
(3) n1 n
n
lim
n
1 n
级数
1 发散.
n1 n(n 1)
比较审敛法是一基本方法,但应用 起来却有许多不便,因为它需要建立定 理所要求的不等式,而这种不等式常常 不易建立,为此介绍在应用上更为方便 的极限形式的比较审敛法。
4.比较审敛法的极限形式:
设 un 与 vn 都是正项级数,如果
n1
n1
lim un n vn
l,
比值审敛法失效, 改用比较审敛法
(2n
1 1)
2n
1 n2
,
级数
n1
1 n2
收敛,
故级数
n1
2n
1 (2n
1)
收敛.
例5
n1
n 3n
sin 2
n
6

由于
lim un1 n un
不存在,比值审敛法失效,

n 3n
sin
2
n
6
n 3n

n n1 3n
由比值审敛法得
n
n1 3n
收敛
故由比较审敛法知
第二节 正项级数及其审敛法
1.定义: 如果级数 un中各项均有un 0,
n1
这种级数称为正项级数.
正项级数非常重要,许多级数的收敛性问题 都可归结为正项级数的收敛性问题.
显然,正项级数的部分和数列为单调增加数列
s1 s2 sn
2.正项级数收敛的充要条件:
定理 正项级数收敛 部分和所成的数列sn有界.
un1 un
1,即un1 un ,
lim
n
un
0.
原级数发散
比值审敛法的优点: 不必找参考级数.
两点注意:
1.当 1时比值审敛法失效;

级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
2.条件是充分的,而非必要.

un
2
(1)n 2n
3 2n
vn ,
级数 un
n1
2 (1)n
3.比较审敛法 设 un和vn均为正项级数,
n1
n1
且un vn (n 1, 2, ),若 vn 收敛,则 un 收敛;
n1
n1
反之,若 un 发散,则 vn 发散.
n1
n1
证明 (1) 设 vn , un vn ,
n1
sn u1 u2 un v1 v2 vn n ,
则(1) 当 0 l 时,二级数有相同的敛散性;
(2) 当 l 0时,若 vn 收敛,则 un 收敛;
n1
n1
(3) 当 l 时, 若 vn 发散,则 un 发散;
n1
n1
证明 (1) 由lim un l , l l 3l ,
v n n
2
2
N , 当n N时, l un 3l
ln n 1 n
1
lim
x0
x
ln(1 x2
x)
n2
1 1 lim 1 x lim
x
1,
x0 2x
x0 2 x(1 x) 2

1
n1
n
2
收 敛,
故原级数收敛.
5.比值审敛法(达朗贝尔 D’Alembert 判别法):
设 un
n1
是正项级数,如果lim un1 n un
(数或
)
则 1时级数收敛; 1 时级数发散; 1时失效.
n1
2n
收敛,

un1 un
2 (1)n1 2(2 (1)n )
an ,
lim
n
a2n
1, 6
lim
n
a2n1
3, 2
lim un1 u n
n
lim
n
an
不存在.
例 4 判别下列级数的收敛性:
1
(1)
;
n1 n!
n!
(2) n1 10n ; 1
1
(3)
.
n1 (2n 1) 2n

(1)
比较审敛法的不便: 须有参考级数.
例 1 讨论 P-级数
1
1 2p
1 3p
1 4p
1 np
的收敛性.

设 p 1,
1 np
1, n
则P 级数发散.
设 p 1, 则
1 np
nn1
1 n p dx
nn1
dx xp
sn
1
1 2p
1 3p
1 np
1
2 1
dx xpn dx x 来自1 p1 证明 (1)当 1时, 取一数r ( ,1)
则 N ,
当n N时,
有 un1 r , un
uN 1 ruN , uN 2 ruN 1 r 2uN ,
, uN m r muN ,



r
m
uN

敛,
m1
uNm un收敛,
原级数收敛
m1
n N 1
(2)当 1时, 则 N , 当n N时,
即部分和数列有界
un收敛.
n1
(2) 设正项级数 un发散, 则 sn (n ) n1
un vn , n sn (n )
vn发散. 定理证毕.
n1
推论: 若 un 收敛(发散)
n1
且vn kun (n N )(kun vn ), 则 vn 收敛(发散).
n1
(3) 当 a e 时, 即 1 时, 比值审敛法失效
un1 un
(n 1)! 1
1
n1
0
(n ),
n!
故级数 1 收敛.
n1 n!
(2)
un1 un
(n 1)! 10n1
10n n!
n1 10
(n ),
故级数
n! n1 10n
发散.
(3) lim un1 lim (2n 1) 2n 1, n un n (2n 1) (2n 2)
n dx 1 xp
1
p
1
1
(1
1 n p1
)
1
1 p1
即sn有界, 则P 级数收敛.
P
级数当 当pp
1时, 1时,
收敛 发散
重要参考级数: 几何级数, P-级数, 调和级数.
例 2 证明级数
1 是发散的.
n1 n(n 1)
证明
1 1, n(n 1) n 1
而级数
1 发散,
n1 n 1
相关文档
最新文档