中考数学第22题解析+(1)

合集下载

2023 上海中考数学 22题

2023 上海中考数学 22题

2023年上海中考数学第22题解析22.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.
(1)他实际花了多少钱购买加油卡?
(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).
(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?
【分析】
(1)根据打九折列出算式,计算即可;
(2)根据每一升油,油的单价降低0.30元知:y=0.9(x-0.30);
(3)当x=7.30,可得y=6.30,根据优惠后油的单价比原价便宜(x-y)元,计算求解即可.
【解答】
解:(1)由题意知,1000×0.9=900(元),
答:实际花了900元购买会员卡;
(2)由题意知,y=0.9(x-0.30),
整理得y=0.9x-0.27,
∴y关于x的函数解析式为y=0.9x-0.27;
(3)当x=7.30时,y=0.9×7.30-0.27=6.30,
∵7.30-6.30=1.00,
∴优惠后油的单价比原价便宜1.00元.。

【中考必备】最新中考数学试题分类解析 专题22 二次函数的应用(几何问题)

【中考必备】最新中考数学试题分类解析 专题22 二次函数的应用(几何问题)

2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若|ax 2+bx +c |=k (k ≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3【答案】 D 。

【考点】二次函数的图象和性质。

【分析】根据题意得:y =|ax 2+bx +c |的图象如右图,∵|ax 2+bx +c |=k (k ≠0)有两个不相等的实数根, ∴k >3。

故选D 。

二、填空题 三、解答题1. (2012天津市10分)已知抛物线y =ax 2+bx +c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.(Ⅰ)当a =1,b =4,c =10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.【答案】解:(Ⅰ)若a =1,b =4,c =10,此时抛物线的解析式为y =x 2+4x +10。

①∵y =x 2+4x +10=(x +2)2+6,∴抛物线的顶点坐标为P (-2,6)。

②∵点A (1,y A )、B (0,y B )、C (-1,y C )在抛物线y =x 2+4x +10上, ∴y A =15,y B =10,y C =7。

∴A B C y 15==5y y 107--。

(Ⅱ)由0<2a <b ,得0bx 12a<=--。

由题意,如图过点A 作AA 1⊥x 轴于点A 1, 则AA 1=y A ,OA 1=1。

连接BC ,过点C 作CD ⊥y 轴于点D , 则BD =y B -y C ,CD =1。

过点A 作AF ∥BC ,交抛物线于点E (x 1,y E ),交x 轴于点F (x 2,0)。

人教版九年级数学中考总复习 第22课时 能源与可持续发展 含解析及答案

人教版九年级数学中考总复习   第22课时 能源与可持续发展  含解析及答案

第22课时能源与可持续发展中考回顾1.(2022·四川自贡中考)下列关于能源及其利用的说法,正确的是()A.目前人类的主要能源是柴草、煤等化石能源B.石油、天然气、天然铀矿等都属于可再生能源C.核电站使用过的核废料无放射性,不会污染环境D.风能、水能、太阳能等清洁能源可以转化为电能答案:D2.(2021·四川成都中考)人类的发展离不开能源,“碳达峰、碳中和”是我国对世界做出的庄严承诺。

对于能量和能源,下列说法正确的是()A.现代生活离不开电,电能是一次能源B.提高能量转化效率是“节能减排”的重要措施之一C.新能源的开发和利用技术难、成本高,无实用价值D.能量既不能创造,也不会消灭,所以不用节约能源答案:B3.(2021·云南中考)近年,我国在信息、材料和能源等领域取得了辉煌的成绩,以下说法正确的是()A.量子计算机中的电子器件都是用超导体制成的B.祝融号火星车利用电磁波将信息传回地球C.水力、风力、太阳能发电都是利用不可再生能源D.核电站产生的核废料可以像生活垃圾那样被处理答案:B4.(2021·云南昆明中考)目前,人类利用核能发电的主要方式是(选填“核裂变”或“核聚变”); 石油、天然气是(选填“可再生”或“不可再生”)能源。

答案:核裂变不可再生5.(2021·青海中考)某路灯的灯杆顶端有太阳能电池板和风车,风车转动带动发电机发电,它发电的原理是现象。

若太阳光辐射到该电池板的能量为2.7×107 J,这与完全燃烧kg焦炭放出的热量相当。

(焦炭的热值为3×107 J/kg)答案:电磁感应0.9模拟预测1.下列四种能源中属于二次能源的是()A.电能B.风能C.水能D.太阳能答案:A解析:电能是由一次能源经过加工而获得的能源,是二次能源,故A正确。

2.关于原子、原子核和核能,表述正确的是()A.原子由质子和电子组成B.原子核由质子和中子组成C.核能清洁无污染,利用核能有利无害D.核能是我国当前利用的最主要能源答案:B解析:原子由原子核和核外电子组成,原子核由质子和中子组成,A选项错误,B选项正确;核能的利用既有有利的一面,也有有害的一面,C选项错误;我国当前利用的最主要能源仍然是化石能源,D选项错误。

中考数学 专题22 图形的旋转(知识点串讲)(解析版)

中考数学 专题22 图形的旋转(知识点串讲)(解析版)

专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。

【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。

平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。

旋转:将一个图形绕一个顶点沿某个方向转一定角度。

轴对称:将一个图形沿一条直线对折。

2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。

旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。

轴对称:对应线段或延长线如果相交,那么交点在对称轴上。

3)确定条件不同A平移:距离与方向旋转:旋转的三要素。

2023年深圳中考数学22题

2023年深圳中考数学22题

2023年深圳中考数学22题在2023年深圳中考数学试卷中的第22题中,考查的是关于概率的计算问题。

本题要求考生利用给定的条件,计算出某一事件发生的概率。

首先,我们来具体看一下这道题的内容。

题目描述如下:已知某学校有180名学生,其中60人选修了数学课程。

现在从这180人中随机选取一人,请回答以下问题:(1)该学生没有选修数学课程的概率是多少?(2)随机选取的学生选修数学课程并且是男生的概率是多少?(3)随机选取的学生不选修数学课程或者是男生的概率是多少?接下来,我们将针对每一个问题逐一进行讨论和解答。

(1)该学生没有选修数学课程的概率是多少?根据已知条件可知,总共有180名学生,其中60人选修了数学课程。

因此,没有选修数学课程的学生人数为180-60=120人。

所以,该学生没有选修数学课程的概率可以表示为没有选修数学课程的学生人数120除以总学生人数180,即120/180=2/3。

(2)随机选取的学生选修数学课程并且是男生的概率是多少?根据已知条件可知,总共有180名学生,其中60人选修了数学课程。

由于题目没有提到关于男生和女生的具体数量,所以我们无法准确计算这一特定事件的概率。

但是,我们可以根据常识和经验来判断。

通常来说,男生和女生在选修课程上不会存在差异,即男生和女生选择数学课程的比例应该相近。

因此,我们可以暂时假设男生和女生选择数学课程的比例相同。

在这种情况下,我们可以得到一个近似的答案。

根据已知条件可知,选修数学课程的学生总数为60人。

假设男生和女生选修数学课程的比例相同,那么约有一半的选修数学课程的学生是男生。

所以,我们可以估计随机选取的学生既选修数学课程又是男生的概率为1/2。

(3)随机选取的学生不选修数学课程或者是男生的概率是多少?根据已知条件可知,总共有180名学生,其中60人选修了数学课程。

我们要计算的是随机选取的学生不选修数学课程或者是男生的概率,即计算出选修数学课程的男生数量、不选修数学课程的女生数量和不选修数学课程的男生数量。

2021年中考数学一轮复习训练22 三角形中位线定理应用问题(解析版)

2021年中考数学一轮复习训练22 三角形中位线定理应用问题(解析版)

专题22 三角形中位线定理应用问题1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。

2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

3.对三角形中位线的深刻理解(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.【例题1】(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14 【答案】D【解析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.∵D ,E ,F 分别是AB ,BC ,CA 的中点,1214∴DE =12AC ,DF =12BC ,EF =12AB ,∴DF BC =EF AB =DE AC =12,∴△DEF ∽△ABC ,∴S △DEFS △ABC =(DE AC )2=(12)2=14, ∵等边三角形ABC 的面积为1,∴△DEF 的面积是14.【对点练习】(2019内蒙古赤峰)如图,菱形ABCD 周长为20,对角线AC 、BD 相交于点O ,E 是CD 的中点,则OE 的长是( )A .2.5B .3C .4D .5【答案】A .【解析】∵四边形ABCD 为菱形,∴CD =BC ==5,且O 为BD 的中点, ∵E 为CD 的中点,∴OE 为△BCD 的中位线,∴OE =CB =2.5。

【点拨】掌握菱形特点,根据三角形中位线定理解决问题。

【例题2】(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .【解析】1.【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB ,解得EF =2,则DH =12EF =1. 【解析】∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,【对点练习】(2019广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,F 、G 分别是AD 、AE 的中点,且FG =2cm ,则BC 的长度是 cm .【答案】8.【解析】利用三角形中位线定理求得FG=DE,DE=BC.如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=8cm【点拨】连续两次应用三角形中位线定理处理本题,是关键。

2022内蒙古包头中考数学试卷+答案解析

2022内蒙古包头中考数学试卷+答案解析

2022年内蒙古包头中考数学一、选择题(每小题3分,共36分,下列各小题均有四个选项,其中只有一个是正确的)1. 若24×22=2m ,则m 的值为 ( )A.8B.6C.5D.22. 若a ,b 互为相反数,c 的倒数是4,则3a +3b -4c 的值为 ( ) A.-8B.-5C.-1D.163. 若m >n ,则下列不等式中正确的是 ( )A.m -2<n -2B.-12m >-12nC.n -m >0D.1-2m <1-2n4. 几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为( )A.3B.4C.6D.95. 2022年2月20日北京冬奥会大幕落下,中国队在冰上、雪上项目中,共斩获9金4银2铜,创造中国队冬奥会历史最好成绩。

某校为普及冬奥知识,开展了校内冬奥知识竞赛活动,并评出一等奖3人。

现欲从小明等3名一等奖获得者中任选2名参加全市冬奥知识竞赛,则小明被选到的概率为 ( )A.16B.13C.12D.236. 若x 1,x 2是方程x 2-2x -3=0的两个实数根,则x 1·x 22的值为( )A.3或-9B.-3或9C.3或-6D.-3或67. 如图,AB ,CD 是☉O 的两条直径,E 是劣弧BC 的中点,连接BC ,DE 。

若∠ABC =22°,则∠CDE 的度数为( )A.22°B.32°C.34°D.44°8.在一次函数y=-5ax+b(a≠0)中,y的值随x值的增大而增大,且ab>0,则点A(a,b)在()A.第四象限B.第三象限C.第二象限D.第一象限9.如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为()A.1∶4B.4∶1C.1∶2D.2∶110.已知实数a,b满足b-a=1,则代数式a2+2b-6a+7的最小值等于()A.5B.4C.3D.211.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3√3B.2√3C.3D.212.如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC。

上海中考数学第22题解题方法(一)

上海中考数学第22题解题方法(一)

上海中考数学第22题解题方法(一)关于上海中考数学第22题解题的讨论引言上海中考数学第22题是一道考察学生数学逻辑推理能力的典型题目。

本文将探讨该题目的解题方法,并详细说明各种方法的具体步骤。

问题描述题目描述如下:某班全体学生参加田径比赛,成绩按照得到的分数从高到低顺序排列,相邻两名同学的分数差不超过3。

现已知得到了第1名至第50名同学的分数,求可能得到第51名同学的最高分数。

解题思路要解决这个问题,我们需要根据已给出的信息进行分析,找到一种可能得到第51名同学最高分数的情况。

我们可以按照以下三个步骤来解题:步骤一:列举条件首先,我们应该列举已知的条件。

根据题目描述,已知如下条件:•学生参加田径比赛,成绩按照得到的分数从高到低顺序排列。

•相邻两名同学的分数差不超过3。

•已知得到了第1名至第50名同学的分数。

步骤二:分析条件接下来,我们需要分析已知的条件,找到其中的规律和限制。

通过观察题目描述,我们可以得出以下结论:•总体分数的范围是有限的,即不可能无限制地增长或减少。

•第51名同学的分数最高,因此应该尽量接近已知分数中的最大值。

步骤三:找出最高分数根据以上分析,我们可以采用以下方法来求得可能得到第51名同学最高分数的情况:1.首先,我们将已知的前50名同学的分数按照从大到小的顺序排列。

2.然后,我们观察已知分数的差值情况。

如果某两个相邻的分数差值大于3,那么我们就可以在这两个分数之间插入一个数,使得插入后的分数值仍然满足题目要求。

3.根据以上方法,我们可以不断插入分数,直到插入到第50名同学的分数位置。

这样,我们就找到了可能得到第51名同学最高分数的情况。

结论通过以上步骤,我们成功地解答了上海中考数学第22题。

根据题目要求,我们找到了一种可能得到第51名同学最高分数的情况。

不过需要注意的是,这只是一种可能情况,并不保证是唯一的解答。

总结起来,解决这道题目需要运用数学逻辑推理能力,通过列举条件、分析条件和找出最高分数的方法,我们可以有效地解决类似的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)类比延伸
如图2,在原题的条件下,若 (m>0),则 的值是(用含m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上一点,AE和BD相交于点F.
若 (a>0,b>0),则 的值是(用含a、b的代数式表示).
22.(1)AB=3EH;CG=2EH; . (3分)
由①可知△ADC是等边三角形,DE∥AC,
∴DN=CF,DN=EM.
∴CF=EM.图2
∵∠ACB=90º,∠B=30º,
∴AB=2AC.
又∵AD=AC,
∴BD=AC.
∵S1= CF·BD,S2= AC·EM,图3
∴S1=S2.
证明:如图3,作DG⊥BC于点G,AH⊥CE交EC延长线于点H.
∵∠DCE=∠ACB=90º∴∠DCG+∠ACE=180º.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).
若在射线BA上存在点F,使S△DCF=S△BDE,
请直接写出相应的BF的长.
【解析】
试题分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60º,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30º角所对的直角边等于斜边的一半求出AC= AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB, 即∠ACD= ∠BCE
∴△ACD≌△BCE. ………………………………………………………………6分
∴AD = BE, ∠BEC=∠ADC=1350.
∴∠AEB=∠BEC-∠CED=1350-450=900.…………………………………7分
第一种情况:如图①,过点A作AP的垂线,交BP于点P/,
可证△APD≌△AP/B,PD=P/B=1,
CD= ,∴BD=2,BP= ,∴AM= PP/= (PB-BP/)=
第二种情况如图②,可得AM PP/= (PB+BP/)=
22.(10分)(2013河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(2)①DC=BE,理由如下
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=600,
∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB, ……………5分
∴△CAD≌△EAB(SAS),∴DC=BE ………………………………6分
②BE长的最大值是4. …………………………………………………8分
22.(10分)(2012河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在□ABCD中,点E是BC边的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若 ,求 的值.
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是_______________,CG和EH的数量关系是_________________, 的值是.
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又AE=DF,∴四边形AEFD为平行四边形.……3分
∵AB=BC·tan30°=
若使 为菱形,则需
即当 时,四边形AEFD为菱形.…………………………………5分
(3)①∠EDF=90°时,四边形EBFD为矩形.
在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10-2t=2t, .………7分
②∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.
∵∠A=90°-∠C=60°,∴AD=AE·cos60°.
即 ………………………………………………………9分
③∠EFD=90°时,此种情况不存在.
综上所述,当 或4时,△DEF为直角三角形.……………………10分
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是_________;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________________.
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
∴BD=AC=4 ;
如图5,当△EDC在BC下方,且A、D、E
三点共线时,△ADC是直角三角形,
由勾股定理得,AD=8, ∴AE=6,
根据 ,得BD=
22.(10分)(2014河南)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE
填空:(1)∠AEB的度数为;(2)线段AD、BE之间的数量关系是。
22.(10分)(2015河南))如图1,在Rt△ABC中,∠B=900,BC=2AB=8,点D,E分别是边BC,AC的中点,连DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当α=00时, =;②当α=1800时, =.
(2)拓展探究
试判断:当00≤α≤3600时, 的大小有无变化?请仅就图2的情形给出证明.
(3)解决问题
当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.
解:(1)① …………………………………………1分
② …………………………………………………2分
提示:①当α=00时,在Rt△ABC中,BC=2AB=8,∴AB=4;AC= =4
又点D,E分别是边BC,AC的中点,∴CE∥AB,
∴ = +2 =6
∵BC=8;CD=4;∴BD=8+4=12
∴ =
(2)无变化。(若误判断,但后续证明正确,不扣分)…………………………3分
在图1中,∵点D,E分别是边BC,AC的中点,∴CE∥AB,
∴ ,∠EDC=∠B=900;
如图2,∵△EDC在旋转过程中形状大小不变,
在等腰直角三角形DCE中,CM为斜边DE上的高,
∴CM= DM= ME,∴DE=2CM.
∴AE=DE+AD=2CM+BE………………………………………………………8分
(3) 或 …………………………………………………………10分
【提示】PD =1,∠BPD=900,
∴BP是以点D为圆心、以1为半径的OD的切线,点P为切点.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.
又∵AE=t,∴AE=DF.……………2分
(2)能.理由如下:
∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=0.×60°=30°,
又∵BD=4,∴BE= ∴BF1= ,BF2=BF1+F1F2=
故BF的长为 或 .
22. (1)①60;②AD=BE. ……………………………………………………………2分
(2)∠AEB=900;AE=2CM+BE. ………………………………………………4分
(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)
理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,
此时S△DCF=S△BDE,过点D作DF2⊥BD,
∵∠ABC=60°,∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=0.5×60°=30°
,∴∠CDF1=180°-30°=150°,∠CDF2=360°-150°-60°=150°,
又∵∠ACH+∠ACE=180º,∴∠ACH=∠DCG.
又∵∠CHA=∠CGD=90º,AC=CD,
∴△AHC≌△DGC.
∴AH=DG.又∵CE=CB,∴S1=S2.
又∵CE=CB,∴S1=S2.
(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,
(3)AM的最大值为3+ ,点P的坐标为(2- , )……10分
【提示】如图3,构造△BNP≌△MAP,则NB=AM,由(1)知,当点N在BA的延长线上时,NB有最大值(如备用图)。易得△APN是等腰直角三角形,AP=2,∴AN= ,∴AM=NB=AB+AN=3+ ;
过点P作PE⊥x轴于点E,PE=AE= ,又A(2,0)∴P(2- , )
中考数学第22题解析
22.(10分)(2016河南)(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b。
填空:当点A位于时线段AC的长取得最大值,且最大值为
(用含a,b的式子表示)
(2)应用
点A为线段B除外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由
②直接写出线段BE长的最大值.
相关文档
最新文档