20.1.1加权平均数课件
合集下载
20.1.1加权平均数

提炼概念
加权平均数的定义: 若n个数x1, x2, x3,…,xn的出现次数
分别是f1, f2, f3 ,…,fn,则这n个数的平均数
x
x1
f1
x2 f1
f2
x3 f3 f2 fn
xn
fn
也叫做这n个数的加权平均数,其中f1, f2, f3 ,…,fn分别叫做x1, x2,…,xn的权.
这两种算法,哪一种方法更容易估算(估计) 出姚明的场均得分呢?
153 181 25 4 31 2 22.5 31 4 2
(1)加权平均数在数据分析中的作用是什么? 当一组数据中各个数据重要程度不同时,加权平
均数能更好地反映这组数据的平均水平.
(2)权的作用是什么? 权反映数据的重要程度,数据权的改变一般会影
算术平均数的表示:
x
1 n
( x1
x2
x3
xn
)
小明是这样计算姚明的平均得分:
得分 15 18 25 31 场次 3 1 4 2
小明的计算式:153 181 25 4 31 2 31 4 2
若姚明比赛得分分数情况如下表, 则姚明的场均得分如何计算?
得分 x1 x2 x3 …… xn
场次 f1 f2 f3 …… fn
• ①课本P115:练习1 • ②预习课本P111至P113,体会权除了
频数的其他形式
数学活动
(1)分小组进行身高统计,并求出每组 的身高平均值.
(2)你能根据每小组的平均值,计算出 全班身高的平均值吗?
Байду номын сангаас
课堂小结
通过这节课,你学到了什么? 1.算术平均数 2.加权平均数
3.运用加权平均数计算数学的平均数
人教版八年级数学 下册 第二十章 20.1.1 平均数 第1课时 加权平均数 课件

的各个数据同等重要,也就是权相等 时,计算平均数采用算术平均数;各 数据权不相等时,计算平均数时采用 加权平均数。
“权”能反映数据的重要程度, 数据的权重不一样,会形成不同的结 果。
某公司欲招聘一名公关人员.对甲、乙 两位应试者进行了面试和笔试,他们的成 绩(百分制)如下表所示。
应试者 甲 乙
面试 86 92
载客量/人 1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值 11 31 51 71 91 111
频数(班次) 3 5 20 22 18 15
注:(1)数据分组后,一个小组的组中值是 指这个小组的两个端点的数的 平均 数. (2)统计中常用各组的组中值代表各组的实 际数据,把各组的频数看作这组数据的 _权__.
人均耕地面积与哪些 人均耕 因素有关?它们之间 地面积
=
有何关系?
总耕地面积 人口总数
郊 人数 县 (万) A 15
B7 C 10
人均耕地面积 (公顷) 0.15
0.21 0.18
总耕
人均耕
地面积
地面积 =
人口总数
思考2:总耕地面积
三个郊县耕地面积之和
思考3:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 +0.21×7 + 0.18×10 ≈ 0.17(公顷) 15+7+10
加权平均数公式
x1ω1+x2ω2+x3ω3 +…+xnωn ω1+ω2+ω3 +…+ωn
例1:如果公司想招一名笔译能力较强的翻译,用 算术平均数来衡量他们的成绩合理吗?
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度 不一样!
“权”能反映数据的重要程度, 数据的权重不一样,会形成不同的结 果。
某公司欲招聘一名公关人员.对甲、乙 两位应试者进行了面试和笔试,他们的成 绩(百分制)如下表所示。
应试者 甲 乙
面试 86 92
载客量/人 1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值 11 31 51 71 91 111
频数(班次) 3 5 20 22 18 15
注:(1)数据分组后,一个小组的组中值是 指这个小组的两个端点的数的 平均 数. (2)统计中常用各组的组中值代表各组的实 际数据,把各组的频数看作这组数据的 _权__.
人均耕地面积与哪些 人均耕 因素有关?它们之间 地面积
=
有何关系?
总耕地面积 人口总数
郊 人数 县 (万) A 15
B7 C 10
人均耕地面积 (公顷) 0.15
0.21 0.18
总耕
人均耕
地面积
地面积 =
人口总数
思考2:总耕地面积
三个郊县耕地面积之和
思考3:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 +0.21×7 + 0.18×10 ≈ 0.17(公顷) 15+7+10
加权平均数公式
x1ω1+x2ω2+x3ω3 +…+xnωn ω1+ω2+ω3 +…+ωn
例1:如果公司想招一名笔译能力较强的翻译,用 算术平均数来衡量他们的成绩合理吗?
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度 不一样!
20.1.1加权平均数(公开课)[优质PPT]
![20.1.1加权平均数(公开课)[优质PPT]](https://img.taocdn.com/s3/m/6818ceca84868762caaed5a1.png)
80.5
x乙 =
73×3 80×3 82×2 83×2 3322
78.9
x x > ∵ 甲
乙,
∴应该 录取甲
.
活动五:概念升华,灵活设计
例1 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效 果三个方面为选手打分.各项成绩均按百分制,然后再按演讲 内容占50%、演讲能力占40%、演讲效果占10%的比例,计算 选手的综合成绩(百分制).进入决赛的前两名选手的单项成 绩如下表所示:
权表示:数据的重要程度。
活动四:交流反馈,巩固新知
问题1 一家公司打算招聘一名英文翻译.对甲、乙两名应试 者进行了听、说、读、写的英语水平测试,他们的各项成绩 (百分制)如下表所示:
(1)如果这家公司想找一名综合能力较强的翻译,计算两 名应试者的平均成绩,从他们的成绩看,应该录取谁?
(2) 如果要招聘一名笔译能力较强的翻译,听、说、读、
写成绩按2权:1::3:比4的例比确定,计算两名应试者的平均成绩,
从他们的成绩看,应该录取谁?
(3) 如果要招聘一名口语能力较强的翻译,听、说、读、 写成绩按3:3:2:2的比确定,计算两名应试者的平均成绩, 从他们的成绩看,应该录取谁?
运用新知体验“权”的作用
第(1)问:
解:听、说、读、写成绩按照1:1:1:1的比确定,则:
x = x1x2 xn n
叫做这n个数的平均数,或称算术平均数。
活动二:创设情境,引入新知
2. 求下列数据的平均数: 3,3,5,5,5,6,6,6,6;
你有没有不 同的求解过 程?
2权+:3频+数4 次数
解 解x: : x33325553566466 565 9
20.1.1数据的分析---加权平均数

算术平均 数与加权 平均数 的本质 一致的 ,算术平 均数是各数据的权为 1 的加权平均数,当数据的 权相同时 ,加权平 均数与 算术平 均数是 相同的; 当数据的 权数不同 时,加 权平均 数能更 好地反映 数据的平均水平,应当计算加权平均数.
比、分析、交流等探索活 动,初步了解“权”的意 义,解释计算加权平均数 的理论依据,为概念的引 入作铺垫.
引导学生对比、分析、讨论,初步理解权的意义.
1 班 40 名学生的数学成绩 “取长 补短 ”均 衡的结 果,反映该班 40 名学生 数学成绩的一般“平均水 平 ”,设 计 的目 的是 引 导 并体会 平均 数的 统计意 义.问题(2)中,以“任务 布置─ ─发 现问 题──
(2)你能 求出该 校初二年 级在这 次数学考试中的平均成绩吗?
1、第一种平均数,我们称之为算数平均数,简称 平 均 数 , 它 所 反 映 的是 数 据 的 平 均水 平 ,
生成问 题─ ─研 究问题 ──解决问题”为教学程 序,经历操作、观察、对
这两种平均数在计算方法上 有什么不一样?
;2、 第二 种我 们叫做 加权 平均
数, “权”反映了数据的相对“重要程度”;3、
会利用加权平均数解决实际问题.
情感态度
通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性, 激发学生学好数学的热情.
重点 加权平均数的概念以及运用加权平均数解决实际问题.
难点 对数据的权及其作用的理解.
活动流程图
教学流程安排
活动内容和目的
活动 1 创设情景,建立模型,揭 示概念
趣.
问题 2:教材 P138 例 2
教师出示问题 2 并指导学生阅读分析,学生在阅读
一次演讲比赛中,评委将从演 过程中明确下列问题:
比、分析、交流等探索活 动,初步了解“权”的意 义,解释计算加权平均数 的理论依据,为概念的引 入作铺垫.
引导学生对比、分析、讨论,初步理解权的意义.
1 班 40 名学生的数学成绩 “取长 补短 ”均 衡的结 果,反映该班 40 名学生 数学成绩的一般“平均水 平 ”,设 计 的目 的是 引 导 并体会 平均 数的 统计意 义.问题(2)中,以“任务 布置─ ─发 现问 题──
(2)你能 求出该 校初二年 级在这 次数学考试中的平均成绩吗?
1、第一种平均数,我们称之为算数平均数,简称 平 均 数 , 它 所 反 映 的是 数 据 的 平 均水 平 ,
生成问 题─ ─研 究问题 ──解决问题”为教学程 序,经历操作、观察、对
这两种平均数在计算方法上 有什么不一样?
;2、 第二 种我 们叫做 加权 平均
数, “权”反映了数据的相对“重要程度”;3、
会利用加权平均数解决实际问题.
情感态度
通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性, 激发学生学好数学的热情.
重点 加权平均数的概念以及运用加权平均数解决实际问题.
难点 对数据的权及其作用的理解.
活动流程图
教学流程安排
活动内容和目的
活动 1 创设情景,建立模型,揭 示概念
趣.
问题 2:教材 P138 例 2
教师出示问题 2 并指导学生阅读分析,学生在阅读
一次演讲比赛中,评委将从演 过程中明确下列问题:
人教版20.1.1平均数—加权平均数说课课件

人教版八年级数学(下册)第二十章 :数据的分析
三、教学目标
(一)知识技能 1.掌握加权平均数及权的概念。 2.会求一组数据的加权平均数。 3.会用加权平均数及权解决实际问题。
(二)过程方法
1.学生在参与猜想、验证、解决实际问题的数学活动中,体 会加权平均数及权的含义。 2.渗透从特殊到一般的数学归纳的方法,培养学生大胆质疑、 不断挑战、严谨的数学思维品质。
人教版八年级数学(下册)第二十章 :数据的分析
环节二:验证猜想 探究新知
(6)、白巧克力单价变为x 元/千克,黑巧克力单价 变为y元/千克,把m千克 白巧克力和n千克黑巧克 力混合,混合后的平均单 价该如何计算?
在以上问题的基础上,教 师把数字变为字母,给出 问题(6),学生继续计算混 合巧克力的平均单价。 教师追问:问题(6)中两种 巧克力的单价的权分别是 什么? 巩固加权平均数的计算方 法,强化学生对“权”和 “加权平均数”的认识。 渗透从特殊到一般的数学 思想方法,为加权平均数 公式的得出做好铺垫。
人教版八年级数学(下册)第二十章 :数据的分析
三、教学目标
(三)问题解决 培养学生从数学的角度发现问题的意识和解决问题的
能力,增强学生用统计知识解决实际问题的应用意识,提 高学生的实践能力。
(四)情感态度 通过解决身边的实际问题,让学生进一步认识
数学与人类生活的密切联系,激发学生学习数学的 兴趣,培养学生用数据说话的习惯和实事求是的科 学态度。
学生独立完成后三 种混合巧克力的平 均单价的计算.并根 据计算结果判断, 猜想是否正确.
学生通过计算,验 证猜想的正确性, 进而发展学生从合 情推理到演绎推理 的能力,培养学生 严谨的数学思维品 质。
人教版八年级数学(下册)第二十章 :数据的分析
三、教学目标
(一)知识技能 1.掌握加权平均数及权的概念。 2.会求一组数据的加权平均数。 3.会用加权平均数及权解决实际问题。
(二)过程方法
1.学生在参与猜想、验证、解决实际问题的数学活动中,体 会加权平均数及权的含义。 2.渗透从特殊到一般的数学归纳的方法,培养学生大胆质疑、 不断挑战、严谨的数学思维品质。
人教版八年级数学(下册)第二十章 :数据的分析
环节二:验证猜想 探究新知
(6)、白巧克力单价变为x 元/千克,黑巧克力单价 变为y元/千克,把m千克 白巧克力和n千克黑巧克 力混合,混合后的平均单 价该如何计算?
在以上问题的基础上,教 师把数字变为字母,给出 问题(6),学生继续计算混 合巧克力的平均单价。 教师追问:问题(6)中两种 巧克力的单价的权分别是 什么? 巩固加权平均数的计算方 法,强化学生对“权”和 “加权平均数”的认识。 渗透从特殊到一般的数学 思想方法,为加权平均数 公式的得出做好铺垫。
人教版八年级数学(下册)第二十章 :数据的分析
三、教学目标
(三)问题解决 培养学生从数学的角度发现问题的意识和解决问题的
能力,增强学生用统计知识解决实际问题的应用意识,提 高学生的实践能力。
(四)情感态度 通过解决身边的实际问题,让学生进一步认识
数学与人类生活的密切联系,激发学生学习数学的 兴趣,培养学生用数据说话的习惯和实事求是的科 学态度。
学生独立完成后三 种混合巧克力的平 均单价的计算.并根 据计算结果判断, 猜想是否正确.
学生通过计算,验 证猜想的正确性, 进而发展学生从合 情推理到演绎推理 的能力,培养学生 严谨的数学思维品 质。
人教版八年级数学(下册)第二十章 :数据的分析
加权平均数ppt课件

加权平均数的意义
在一组数据中,由于每组数据 的权重不同,所以计算平均数 时,用加权平均数才符合实际.
数据权重的意义
能够反映数据的相对“重要程度”
加权平均数的公式
若n个数x1, x2 ,xn的权分别w1,w2, wn,则 这n个数的加权平均数可表示为:
x
x1w1
x2w2 x3w3 xnwn w1 w2 wn
解:听思、考说:、读、写的成绩按照3:3:2:2的比确定,则:
13甲、 :3:的招2:平口2的均语比成能确绩力定为较,8强5说的3明翻公8译33司,33侧听重72、8哪说2几2、个7读5方、面2写的成8成1绩(分绩按)?照
2乙、的它平们均的成权绩分为别7是3多3 少80? 3 85 2 82 2 79.3(分) 3322
显然甲的成绩比乙高,所以从成绩上看应该录取甲.
比较例题中的 两个问题的结 果,你能体会 到权的作用吗?
(2) 听、说、读、写的成绩按照2:2:3:3的比确定,则:
甲的平均成绩为85 2 83 2 78 3 75 3 79.5(分) 2233
乙数的平据均的成绩权为73能2 够80反2 8映53数 82据3 的80.相7(分对) 重要程度 2233
应试者 听
说
读
写
甲
85
83
78
75
乙
73
80
85
82
(2)如果这家公司想招一名笔译能力较强的翻译,听、
说、读、写成绩按照2:2:3:3的比确定,计算两名应试者 的平均成绩(百分制). 从他们的成绩看,应该录取谁? 解思:考听:、说、读、写的成绩按照2:2:3:3的比确定,则:
1、招甲笔的译平能均力成较绩为强8的5翻2译 8,3听2、 7说8、3读 7、5写3成 绩79按.5(照分) 2、2它:乙2:们的3:的平3的权均比成分确绩别定为是,7多3说少2明? 8公202司222侧83重35哪333几 8个2方3面 8的0.成7(分绩)?
人教版八年级数学下册精品教学课件20.1.1第1课时平均数和加权平均数

(4)将问题(1)、(2)、(3)比较,你能体会
到权的作用吗? 数据的权能够反映数据的相对重要程度! 应试者 甲 乙 听 85 73 说 78 80 读 85 82 写 73 83
同样一张应试者的应聘成绩单,由于各个数据 所赋的权数不同,造成的录取结果截然不同.
典例精析
例1 一次演讲比赛中,评委将从演讲内容,演 讲能力,演讲效果三个方面为选手打分,各项成绩 均按百分制,然后再按演讲内容占50%,演讲能力 占40%,演讲效果占10%的比例,计算选手的综合 成绩(百分制).进入决赛的前两名选手的单项成绩 如下表所示:
选手B的最后得分是
95 50% 85 40% 95 10% 47.5 34 9.5 91 50% 40% 10%
由上可知选手B获得第一名,选手A获得第二名.
议一议
你能说说算术平均数与加权平均数的区别和联系吗?
1.算术平均数是加权平均数的一种特殊情况(它特
殊在各项的权相等); 2.在实际问题中,各项权不相等时,计算平均数时 就要采用加权平均数,当各项权相等时,计算平均 数就要采用算术平均数.
x
15 24 16 2 13 8 14 16 = 8 16 24 2
14 ≈______(岁) .
岁 答:这个跳水队运动员的平均年龄约为14 _____.
做一做
某校八年级一班有学生50人,八年级二班有学生 45人,期末数学测试中,一班学生的平均分为81.5分, 二班学生的平均分为83.4分,这两个班95名学生的平 均分是多少? 解:(81.5×50 +83.4×45)÷95
(2)若三项测试得分按3:6:1的比例确定个人的测试
成绩,此时第一名是谁?
20.1.1 第1课时 加权平均数

课件目录
首页
末页
第1课时 加权平均数
解:(1)甲:(91+80+78)÷3=83(分), 乙:(81+74+85)÷3=80(分), 丙:(79+83+90)÷3=84(分), ∴小组的排名顺序为丙、甲、乙. (2)甲:91×40%+80×30%+78×30%=83.8(分), 乙:81×40%+74×30%+85×30%=80.1(分), 丙:79×40%+83×30%+90×30%=83.5(分), ∴甲组的成绩最高.
课件目录
首页
末页
第1课时 加权平均数
归类探究
类型之一 算术平均数 已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,
x4+3的平均数是 8 .
课件目录
首页
末页
第1课时 加权平均数
类型之二 加权平均数
[2018·日照]某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、
如下:
天数/天 1 2 1 3
最高气温/℃ 22 26 28 29
则这周最高气温的平均值是( B )
A.26.25 ℃
B.27 ℃
C.28 ℃
D.29 ℃
课件目录
首页
末页
第1课时 加权平均数
2.[2019 ·河南] 某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元,3
元,2元,1元.某天的销售情况如图20-1-1所示,则这天销售矿泉水的平均单
全 效学 习
数学八年级下册[RJ]
第二十章 20.1.1 第1课时
第1课时 加权平均数
第二十章 数据的分析
20.1 数据的集中趋势 20.1.1 平均数
第1课时 加权平均数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+xnwn +wn
叫做这n个数的加权平均数.
问题3 如果公司想招一名口语能力较强的翻译,则 应该录取谁?
听、说、读、写的成绩按照3:3:2:2的比确定.
问题4 与问题(1)、(2)、(3)比较,你能体 会到权的作用吗?
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
练习
应试者 甲 乙
2 :1 : 3:4 听 说 读写
85 78 85 73
73 80 82 83
思考 形式吗?
85
2+78
1+85 2+1+3+4
3+73
4
=79.5
能把这种加权平均数的计算方法推广到一般
一般地,若n个数x1,x2,…,xn的权分别
是w1,w2,…,wn,则
x=
x1w1+x2w2 + w1+w2 +
2:1:3:4
重要程度 不一样!
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
解:
x甲 =
85
2+78
1+85 2+1+3+4
3+73
4
=79.5
权
x乙 =
73
2+80
1+82 2+1+3+4
3+83
4
=80.4 .
因为乙的成绩比甲高,所以应该录取乙.
某公司欲招聘一名公关人员,对甲、乙两位应试者进行了 面试与笔试,他们的成绩(百分制)如下表所示.
(2)如果公司认为,作
为公关人员面试成绩应该比 应试者 笔试成绩更重要,并分别赋 甲 予它们6 和4 的权,计算甲、 乙 乙两人各自的平均成绩,谁
面试 86 92
笔试 90 83
将被录取?
866 90 4
x
87.6
甲
64
926 83 4
x
88.4
乙
64
因为乙的成绩比甲高,所以应该录取乙.
总结梳理 内化目标
(1)加权平均数在数据分析中的作用是什么? 当一组数据中各个数据重要程度不同时,加权平
均数能更好地反映这组数据的平均水平. (2)权的作用是什么?
权反映数据的重要程度,数据“权”的改变一般会 影响这组数据的平均水平.
第二十章
创设情景 明确目标
1、如何求一组数据的平均数?
4, 5, 6, 6, 4, 5
x 456645 5 6
探究点一 加权平均数
问题1 如果公司想招一名综合能力较强的翻译,请
计算两名应试者的平均成绩,应该录用谁?
应试者
某公司欲招聘一名公关人员,对甲、乙两位应试者进 行了面试与笔试,他们的成绩(百分制)如下表所示.
(1)如果公司认为面试 和笔试成绩同等重要,从他 们的成绩看,谁将被录取?
应试者 甲 乙
面试 86 92
笔试 90 83
x 86 90 88 甲2
x 92 83 87.5 乙2
因为甲的成绩比乙高,所以应该录取甲.
课后作业 1.上交作业:课本第113页第2题;
谢谢指导!
听
说
读
写
甲
85
78
85
73
乙
73
80
82
83
解: 甲的平均成绩为 85+78+85+73 =80.25
4
乙的平均成绩为
73+80+82+83 =79.5 4
显然甲的成绩比乙高,所以从成绩看,应该录取甲.
生活中我们常用平均数表示一组数据的“平均水平”.
问题2 如果公司想招一名笔译能力较强的翻译,使 听、说、读、写成绩按2:1:3:4 计算平均数,应该录用谁