西师版四年级下数学知识点整理

合集下载

西师版四年级下册数学思维导图

西师版四年级下册数学思维导图

西师版四年级下册数学思维导图1. 数的认识和运算1.1. 自然数•自然数的概念•自然数的大小比较和顺序关系•自然数的加法和减法运算•用整数表示钱的数目1.2. 除法与小数•除法的概念和性质•除法的算法和计算规则•小数的概念和读法•小数的大小比较和顺序关系•小数的加法和减法运算2. 数的整理和分类2.1. 分数•分数的概念和表示方法•分数的大小比较和顺序关系•分数的加法和减法运算•分数的乘法和除法运算•分数与小数间的相互转换2.2. 整数•整数的概念和表示方法•整数的大小比较和顺序关系•整数的加法和减法运算•正数和负数的相加减3. 几何图形与测量3.1. 图形的构造和分类•点、线、面的概念•直线、线段、射线的区别•长方形、正方形、三角形和圆的特点和分类3.2. 测量•长度的测量与单位•面积的测量与单位•容量的测量与单位•质量的测量与单位4. 数据的收集和表示4.1. 数据的收集和整理•数据的收集方法和过程•数据的整理和排序•数据的图表表示4.2. 图形的分析和判断•图形和图表的读取与分析•图形的判断与比较•找出规律与预测趋势5. 变量与方程5.1. 变量和代数式•变量的概念和表示方法•代数式的概念和性质•代数式的加法和减法运算5.2. 方程的概念和解法•方程的概念和解法•求解一元一次方程•求解应用问题中的方程通过以上思维导图,我们可以清晰地了解了西师版四年级下册数学内容的结构和主要知识点。

在数的认识和运算部分,我们学习了自然数的概念、大小比较、加法和减法运算等基本知识。

除此之外,我们还学会了用整数表示钱的数目,方便在生活中进行实际计算。

在数的整理和分类部分,我们学习了分数的概念、大小比较、加法、减法、乘法和除法运算,以及分数与小数的相互转换。

此外,我们对整数的概念、大小比较、加法和减法运算有了更深入的了解。

几何图形与测量部分,我们学习了点、线、面的概念,以及常见图形如长方形、正方形、三角形和圆的特点和分类。

西师版小学数学知识点

西师版小学数学知识点

西师版小学数学知识点篇一:西师版小学数学各年级重点西师版小学数学各年级重点一年级(上)1、数的认识及书写(读作、写作)2、 10以内的加减法(连加、连减、加减混合运算、大小于及等于符号的运用)3、 20以内的加减法(连加、连减、加减混合运算、大小于及等于符号的运用)4、认识物体(正方体、长方体、圆柱体、球体;物体的分类)一年级(下)1、100以内数的认识(进位加法、退位减法、连加、连减、加减混合运算、大小于及等于符号的运用)2、人民币的认识与换算3、方向与位置(前、后、上、下、左、右)4、认识图形(圆、三角形、长方形、正方形;图形的拼组)5、认识钟表6、实物分类统计二年级(上)1、乘法口诀表2、角的认识与运用3、测量长度(长度单位的认识与运用,单位间的换算。

1m=10dm=100cm)4、表内除法(除法的意义、平均分、商倍问题)二年级(下)1、万以内数的认识(读作、写作、比较大小)2、认识图形(正方形、长方形、平行四边形、拼组图形)3、三位数的加减法4、长度单位(千米、毫米。

1km=1000m,1cm=10mm)5、有余数的除法(余数必须比除数小)6、时分秒(1时=60分,1分=60s )7、统计(根据统计回答问题,象形统计)三年级(上)1、二、三位数乘一位数的乘法(口算、估算、笔算、0和任何数相乘都得0,解决问题)2、东南西北的认识(上北下南左西右东,在生活中的运用)3、旋转与平移现象(生活中的旋转与平移)4、周长(周长的意义,正方形、长方形周长的计算。

C正=边长×4,C长=(长+宽)×2。

)5、分数的初步认识6、年月日(大小月、平闰年、24时计时法,时间的计算)三年级(下)1、两位数乘两位数的乘法2、长方形和正方形的面积(S正=边长×边长,S长=长×宽。

单位换算:1m2=100cm2)3、三位数除一位数的除法(口算、估算、笔算)4、统计(简单条形统计)5、小数的初步认识(小数的读写、一位小数的加减法)6、轴对称(生活中的轴对称现象)四年级(上)1、四则混合运算(先括号,再乘除、再加减)2、多位数的认识(多位数的读写,比较大小,近似值)3、多位数的加减法(口算、估算、计算器的运用、加法运算规律。

2021年西师大版四年级数学下册知识点综合整理

2021年西师大版四年级数学下册知识点综合整理

2021年西师大版四年级数学下册知识点综合整理班级:_____________ 姓名:_____________【计算题】1. 利用规律看谁算得又对又快。

81÷9= 320÷4= 56÷7= 360÷30=810÷90= 640÷8= 560÷70= 3600÷300= 8100÷900= 160÷2= 5600÷700= 72÷6=2. 用计算器计算(得数保留两位小数)。

9.4÷6 38.2÷2.712.4÷11 305÷3.63. 脱式计算。

(1)720÷45×(798-616)(2)(15×40-364)÷4(3)24×[ 19-(2×6)] (4)(1010-960)×(65+15)(5)8000-(59+66)×64 (6)450÷[ (15+10)×3]4. 计算。

(1)1120–(280-96÷16)(2)(42+38)÷(473-457)(3)50-(45+35)÷10 (4)[(125-25)×5+35 ]×60(5)200÷25+120×11 (6)[150-3÷(30-27)]×105. 用计算器计算下面各题。

278+408×631 47×(923-586)21372÷(136+275) 55728÷(27×43)6. 先估算,再用计算器计算。

407×26+25440÷96=________ 38909-1209-3902=________ 25×125×(641-637)×8=________ 38614+17509=________7. 用计算器计算。

西师大版四年级下册数学第5单元 整理与复习课件

西师大版四年级下册数学第5单元 整理与复习课件
整理与复习
西南师大·四年级下册
本单元主要学习了哪些内容呢?
小数的意义
小数
小数的性质
小数点位置移动引起小数大小的变化
小数的近似数
1.把各图中的涂色部分用小数表示出来。
( 0.4 )
(0.21)
( 0.201 )
像这种把一个整体平均分成10份、100 份、1000份……,其中的一份或几份不但可 以用分数表示,还可以用一位小数、两位小 数、三位小数……来表示。
(1.2kg)>(1.05kg)>( 980g)>( 908g)
2.在 里填“>”“<”或“=”。



=


3.(1)1本书厚1.3cm,1000本同样的书厚(1300 )cm, 合( 13 )m。
(2)一堆货物重4.2吨,一辆小货车载重为600kg,这辆
车运( 7 )次,才能运完这堆货物。
(3)在湖面的四周插彩旗,每隔4m插1面,一共插了
280 面,湖面一周的长是11(24 )m,1合.1(24 )km。
4.一种棉纱1kg可织布7.2m,这种棉纱1g可织 布多少厘米?
1kg=1000g
7.2÷1000=0.0072m=0.72c m 答:这种棉纱1g可织布0.72厘米。
课堂小结
通过这.1,0.01,0.001……
2.在下图中表示0.05,0.16,0.24,并把这些数 按从小到大的顺序排列。
0.05
0.16
0.24
(0.24)> (0.16)>(0.05)
两个小数比大小,整数部分大的那个数就 大;整数部分相同,十分位上的数大的那个 数就大;整数部分和十分位上的数都相同, 百分位上的数大的那个数就大。

西师版四年级数学知识点

西师版四年级数学知识点

西师版四年级数学知识点多位数的认识一、概念1、计数单位:个、十、百、千、万、十万、百万、千万、亿、十亿......这些都是计数单位2、数位:用数字表示数时,把计数单位按照一定顺序排列起来,它们所占的位置叫数位3、十进制计数法:每相邻两个计数单位之间的进率是10,我们把这种计数方法叫做十进制计数法二、多位数的读法法则1、从高位读书起,一级一级往下读;2、读亿级或万级的数时,先按照个级的数的读法去读,然后在后面加“亿”字或“万”;3、每级末尾的0都不读,其他数位上有一个0或连续几个0,都只读一个“零”。

三、多位数的写法法则1、从高位写起,一级一级往下写;2、哪个数位上一个单位也没有,就在哪个数位上写0。

四、比较两数的大小从最高位比起,最高位上的数大的那个数就大,如果最高位的数相同就比较下一位,以此类推。

五、用万和亿作单位表示数1、改写用万和亿作单位的数(去0加万或亿用=连)a.改写用万作单位的数: 去0(四个0)加万b.改写用亿作单位的数:去0(八个0)加亿注意:在写得数的时候应写“=”,末尾加上万或者亿字。

2、省略万或者亿后面的尾数(找、看、去、加≈连)a、用“万”作单位表示数的规则:先看千位上的数,千位上的数小于5就舍去,千位上的数是5或大于5,就将万位上的数加1;b、用“亿”作单位表示数的规则:先看千万位上的数,千万位上的数小于5就舍去,千万位上的数是5或大于5,就将亿位上的数加1。

注意:在写得数的时候应写“≈”,末尾加上万或者亿字。

数的运算一、多位数的加减法1.口算:先把这些数改写成用"万"或“亿”作单位的数,再计算.2.估算:先把这些数看作最接近的"整万"或“整亿”的数,再计算.(方法:四舍五入法)3.用计算器计算:认识计算器各个部分的名称以及功能,掌握用计算器计算的方法.4.加咸法的关系:(1):求两个数的和用加法计算; 一个加数=和-另一个加数(2):求两个数的差用减法计算; 被减数=差+减数减数=被减数-差(3):减法是加法的逆运算.5.加法交换律:在加法算式中,加数相同,调换加数位置,得数相同.(a+b=b+a; a+b+c=b+c+a=c+a+b)6.加法结合律:在加法算式中,加数相同,任意把其中两个加数先结合起来想加,得数相同.a+b+c=(a+b)+c=a+(b+c) =(a+c)+ b7、减法的运算性质:一个数连续减去几个数,等于被减数减去这几个减数的和。

西师版四年级下册数学知识点

西师版四年级下册数学知识点

西师版四年级下册数学知识点西师版四年级下册数学知识点1、笔算小数加、减法的方法:(1)小数点对齐,也就是相同数位对齐;(2)从末位算起,算加法时,哪一位数相加满十都要向前一位进1;算减法时,哪一位不够减就要从前一位退1。

(3)得数末尾有 0,一般要把0去掉。

(4)不要忘记了小数点。

2、小数加减混合运算的顺序与整数加减混合运算的顺序相同:(1)没有括号,按从左往右的顺序依次计算;(2)有小括号,要先算小括号里面的。

3、整数的运算定律在小数运算中同样适用。

在小数四则运算中,恰当地运用加法交换律、结合律及连减的运算性质会使计算更简便。

4. 得数是小数时,(末尾)的0一般要去掉。

5. 一个整数与一个小数相加减时:①先在整数的右边点上小数点;②再添上与另一个小数部分同样多个数的0;③然后再按照小数加减法的计算方法计算。

6. 得数是小数时,(末尾)的0一般要去掉。

7、验算:加法验算:①交换加数的位置再加一遍,看结果与原来是否相同;②用减法,把和减去一个加数,看差是否与另一个加数相同。

减法验算:①用加法,把减数与差相加,看结果是否等于被减数;②用减法,把被减数减去差,看是否等于减数。

应用整数运算定律进行小数的简便计算:整数运算定律在小数运算中同样适用。

在小数四则运算中,恰当地运用加法(交换律)、(结合律)及减法的运算性质会使计算更简便。

8、简便运算方法:⑴几个小数连加时,如果其中的两个小数的尾数相加能凑整,先把这两个数相加,可使计算简便;如:0.36+18.09+2.64+4.91⑵一个数连续减去两个小数时,如果这两个小数相加的和能凑整,可以先把两个减数相加,再从被减数里减去这两个减数的和比较简便;如: 13.2-5.73-4.27⑶一个数减去两个小数的和,当这两个数中的一个数的小数部分与被减数的小数部分相同时,可以先从被减数里减去这个数,然后再减去另一个数,计算比较简便。

如: 18.63-(4.75+3.63)⑷整数乘法的运算定律在小数乘法中同样适用如: 3.65×42.6+3.65×57.4⑸在小数运算中,可以利用(添括号)或(去括号)使计算简便:→无论是去括号或添括号①括号前面是加号,去掉括号不变号;如: 6.59-4.86+2.86②括号前面是减号,去掉括号全变号(加号变减号,减号变加号)。

西师大版四年级数学下册知识点综合整理提升练习

西师大版四年级数学下册知识点综合整理提升练习

西师大版四年级数学下册知识点综合整理提升练习班级:_____________ 姓名:_____________【计算题】1. 用计算器计算.946×195 2416+970×7587×10.2 82.64÷0.04÷255.25÷(0.5-0.25)(18.9+9.81)÷0.92. 口算。

14×50= 55°+39°= 8÷100= 0.07×1000=49×0= 200÷50= 90°-21°= 1.7×100=880÷88÷10= 180°-67°-13°=3. 用计算器计算。

329+1548= 5216×324=3500-2984=12626÷214= 55543÷67= 80×275=4. 解方程。

12X-9X=8.7 4X-3×9=29 2.4X+1.2÷0.3=168X-0.2=15.8 5X=150 y-420=1063a+7.5=10.5 X÷3=21 5X-19×2=25. 估算。

31×107≈ 198×71≈ 27×402≈ 111×89≈6. 用计算器探索规律。

先用计算器计算前四个算式,再根据规律直接写出其他算式的结果。

1×8+1=___________ 12×8+2=___________123×8+3=___________ 1234×8+4=___________12345×8+5=___________ 123456×8+6=___________1234567×8+7=__________ 12345678×8+8=__________ 123456789×8+9=__________7. 用简便方法计算下面各题。

西南师大版四年级下册数学课件-整理与复习

西南师大版四年级下册数学课件-整理与复习
2cm 5cm 18cm
四个文具盒
方案一
方案四
方案二 方案三
方案五 方案六
包装方 案 方案一 方案二 方案三 方案四
方案五
方案六
拼装方法
左右重叠 前后重叠 上下重叠
前2后2 左2右2 上2下2 左2右2 前2后2 上2下2
长 (cm)
72 18 18 36
36
18
宽 (cm)
5 20 5 10
5
54
宽(cm)
5
高(cm) 表面积(c㎡)
2
776
方案二 前后重叠
18
15
2
672
方案三 上下重叠
18
5
6
456
我的发现 :
1、物体重合的面积越大,所用的包装纸越少。
2、把体积相同的物体拼成一个长方体,长、宽、 高越接 近,表面积就越小,所用的包装纸就越少。
活动四:如果将四个这样的文具盒拼在一 起包装,有几种拼法?怎样拼装最节约包装纸? (接口处忽略不计)
10
高 (cm)
2 2 8 2
4
4
表面积 (c㎡)
1028 872 548 904
688
584
在包装多个长方体时,注意包装过程中出现的新 的最大面。必须重合新的最大面,才会最节约包装纸。
活动五:把八个文具盒包装成一盒, 选择最省料的方案,并计算出来。
八个文具盒
知识窗
为什么要节约包装?
专家认为,包装是当前中国经济当中的巨大浪费。中 国的城市垃圾当中,三分之一的垃圾是包装,包装当中一 半以上是过度包装,我国每年用于过度包装的纸箱,折叠 起来可以绕地球一圈。解决过度包装的问题,预计每年可 以节约13亿元。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元四则混合运算加法、减法、乘法、除法统称为四则运算。

计算时要做到一看(符号),二想(顺序),三算(正确),四查(检查)。

在没有括号的算式里,如果只有加减法或者只有乘除法,要从左到右依次计算;如果既有加减法又有乘除法,要先算乘除法再算加减法。

有小括号的四则混合运算,要先算括号里面的,再算括号外面的。

如果括号里既有加减法,又有乘除法,要先算乘除法,再算加减法。

在一个算式里,既有中括号“[ ]”,又有小括号“()”,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。

如果一个算式含有两个小括号,可以先算第1个小括号里面的,然后再算第2个小括号里面的;也可以同时计算前后两个小括号里面的。

括号的位置不一样,运算顺序就不一样,那么计算结果也就不同。

括号主要包括小括号、中括号、大括号,中括号也叫方括号。

括号的作用是能改变运算顺序。

火车过桥时,“火车长度忽略不计”时,火车行驶的路程=桥的长度;如果没有“忽略不计”,那么火车行驶的路程=火车的长度+桥的长度。

第二单元乘除法的关系和乘法运算律加减法之间的关系:减法是加法的逆运算。

乘除法之间的关系:除法是乘法的逆运算。

注意:0不能作除数。

乘法算式中的积,也是除法算式中的被除数。

一个加数+另一个加数=和;一个加数=和-另一个加数;被减数-减数=差;被减数=差+减数;减数=被减数-差。

一个因数×另一个因数=积;一个因数=积÷另一个因数;被除数÷除数=商;被除数=商×除数;除数=被除数÷商;被除数÷除数=商……余数;被除数=商×除数+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。

乘法可以用除法验算,也可以交换两个因数的位置验算,除法用乘法验算。

简算:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);减法的运算性质:a-b-c=a-(b+c);加多了就减、减多了就加、加少了继续加、减少了继续减;先加后减变成先减后加(换位置方法)。

两个数相乘,交换因数的位置,积不变,这就是乘法交换律。

如果用a,b表示两个数,乘法交换律可以表示为:a×b=b×a。

3个数相乘,先把前两个数相乘,再乘第3个数;或者先把后两个数相乘,再乘第1个数,积不变。

这就是乘法结合律。

如果用a,b,c表示3个数,乘法结合律可以表示为:(a×b)×c=a×(b×c)。

除法的性质:a÷b÷c =a÷(b×c)。

25×4=100;125×8=1000。

两个数的和与一个数相乘,可以先把两个数分别与这个数相乘,再将两个积相加,结果不变。

这就是乘法分配律。

如果用字母a,b,c来表示三个数,乘法分配律可以表示为:(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c。

乘法分配律对减法的情况同时适用。

a×c-b×c=(a-b)×c;(a-b)×c=a×c-b×c。

速度×时间=路程;工作效率×工作时间=工作总量;单价×数量=总价。

相遇问题:速度和×相遇时间=两地相距路程;s=(v1+v2)×t;工作问题:工效和×工作时间=工作总量;工作总量÷工作时间=工效和;购物问题:在总价相同的情况下,如果单价越低,所买到的数量就越多;反之,单价越高,所买到的数量就越少。

人数最少,就应该是票价高的甲票尽量多卖。

人数最多,就应该是票价低的乙票尽量多卖。

思考题:小狗跑的时间=小强和小华的相遇时间同时同地、相反方向:距离=速度和×时间同时同地、相同方向:距离=速度差×时间同时不同地、相遇:距离=速度和×时间第三单元确定位置用数对表示位置时,用两个数加小括号表示,将点所在的列数写在前,行数写在后。

用数对表示为:(列数,行数),列数表示第几列,行数表示第几行。

点的位置左右移动,列数变、行数不变:列数左减右加;点的位置上下移动(或前后移动),列数不变、行数变:行数上加下减(或后加前减)。

第四单元认识三角形由3条线段围成的图形叫做三角形。

三角形有3个顶点,3条边,3个角。

每相邻的两条线段端点相连。

三角形具有稳定性。

从三角形的一个顶点向对边作垂线,顶点和垂足之间的线段是三角形的高,这条对边是三角形的底。

高和底互相垂直。

注意:作高使用虚线,并记住标注直角符号。

三角形有3条高,注意底和高一一对应。

三角形的三边关系:三角形任意两边的和大于第三边。

三角形任意两边之差小于第三边。

第三边比两边之差大,比两边之和小。

即:两边之差<第三边<两边之和。

只要满足较小的两条线段之和大于第三条线段,便可围成三角形;若不满足,则不能围成三角形。

先确定较小的两根,再找较大的第三根。

确定三角形内角和的方法:测量法,撕拼法,折拼法。

三角形内角和是180°,可以量三个角的度数计算,也可以通过折一折拼成一个平角,还可以把三个内角剪下来拼在一起是平角来验证。

三角形按角分类:锐角三角形、直角三角形、钝角三角形。

一个三角形中最多只有一个直角或一个钝角。

三个角都是锐角的三角形是锐角三角形。

有一个角是直角的三角形是直角三角形。

有一个角是钝角的三角形是钝角三角形。

锐角(小于90°);直角(等于90°);钝角(大于90°,小于180°)三角形至少有两个锐角。

最大角是锐角的三角形是锐角三角形;最大角是直角的三角形是直角三角形;最大角是钝角的三角形是钝角三角形只露出一个锐角,无法判断出是什么三角形,但是露出了两个锐角就能判断了。

三角形按边的长短分类:等腰三角形、等边三角形、其他三角形。

两边相等的三角形叫做等腰三角形。

等腰三角形有2条腰,1条底,2个底角,1个顶角,2条腰的长度相等,2个底角的大小相等。

锐角三角形、直角三角形、钝角三角形中都有等腰三角形。

等腰三角形是轴对称图形,只有1条对称轴。

三条边相等的三角形叫做等边三角形。

等边三角形的三条边都相等,三个角都相等,都是60°;它是轴对称图形,有3条对称轴,是锐角三角形。

等边三角形是特殊的等腰三角形。

多边形的内角和=180°×(边数-2)。

第五单元小数像0.7,0.45,0.025,0.107……这样用来表示十分之几、百分之几、千分之几……的数,就是小数。

小数的计数单位有0.1,0.01,0.001,……每相邻两个计数单位间的进率是10。

(注意:十分之几用零点几表示,百分之几用零点几几表示,千分之几用零点几几几表示。

)小数的读法:整数部分按照整数的读法来读,小数点读作“点”,小数部分从左到右顺次读出每一个数位上的数字。

小数的写法:圈出小数点的“点”,小数点左边是整数部分,整数部分按照整数部分的写法来写(整数部分是零的写作“0”),小数点写在个位的右下角,小数点右边是小数部分,小数部分顺次写出每一个数位上的数字。

小数由整数部分、小数点、小数部分组成。

整数部分最小的计数单位是1,小数部分最大的计数单位是0.1,这两个计数单位之间的进率是10。

小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

在小数点的后面添上0或去掉0,小数的大小不变。

”这句话对吗?举例说明。

不对,如2.5,在小数点后面添0,就是2.05,2.005,小数的大小就变了。

所以不能在小数点后面添0,只能是小数末尾添0。

将整数改写成小数时,小数点应该打在整数部分个位的右下角,然后根据需要在小数点的右边添0。

整数比较大小:先比较数位的多少,数位多的数就大,如果数位相同,从高位比起,相同数位上的数大的那个数就大。

两个小数比大小,整数部分大的那个数就大;整数部分相同,十分位上的数大的那个数就大;整数部分和十分位上的数都相同,百分位上的数大的那个数就大。

(整数部分、十分位、百分位、千分位……按顺序依次比较,直到比较出大小为止)小数点位置移动引起小数大小的变化:小数点向右移动一位、两位、三位……,小数就扩大到原数的10倍、100倍、1000倍……;小数点向左移动一位、两位、三位……,小数就缩小到原数的小数点向左移动,如果位数不够,用“0”补足。

小数点向右移动,如果位数不够,也用“0”补足。

一个数乘10,100,1000……就是扩大到原数的10倍、100倍、1000倍……也就把小数点向右移动一位、两位、三位……;一个数除以10,100,1000 ……就缩小到原数的……也就把小数点向左移动一位、两位、三位……。

单位换算分三步:(1)找(找两个单位之间的进率)(2)定(确定用乘法还用除法)(3)移动(根据算式移动小数点)单位变小,数字变大,数字变大用乘法,用这个数乘它们的进率;单位变大,数字变小,数字变小用除法,用这个数除以它们的进率。

小结:单位互化的方法就是高级单位化低级单位乘进率,低级单位化高级单位除以进率,然后利用小数点位置移动引起小数大小变化的规律来移动小数点。

只有在单位相同时才能进行比较。

单名数:只带有一个单位名称的数;复名数:带有两个或两个以上单位名称的数。

复名数转换成单名数:把复名数分成两部分,相同单位的部分不变,把不同单位的部分改写成和单名数相同的单位,再把这两部分合并起来。

单名数转换成复名数:把单名数分成两部分,把和复名数相同单位的那部分照写,把和复名数不同单位的那部分进行换算就行了。

求一个小数的近似数,要先看清保留的位数,然后再看保留位数的后一位上的数,再按四舍五入法决定是舍还是入。

保留两位小数时,近似数 1.40 末尾的“0”能去掉吗?为什么?近似数1.40末尾的0不能去掉。

如果去掉0,它表示的近似数的精确程度就变了。

“改写”就是不能改变数的大小,只改变计数单位。

把一个数改写成用万或亿作单位的数,应该把这个数的小数点向左移动4位或8位,去掉小数末尾的“0”,再加上“万”或“亿”;或者在这个数万位或“亿位”的右下角点上小数点,去掉小数末尾的“0”,再加上“万”或“亿”。

在直线上,越往右,数越大;越往左,数越小。

也就是在直线上右边的数大于左边的数。

数的改写与求小数的近似数有哪些相同点?哪些不同点?相同点:它们的计数单位都变了。

不同点:数的改写时数的大小不变。

求小数的近似数时,小数的大小变了。

第六单元 平行四边形和梯形两组对边分别平行的四边形,就是平行四边形。

平行四边形有4条边(2组对边),4个角(2组对角),2组对边分别平行且相等,2组对角分别相等。

平行四边形不稳定,很容易变形。

相关文档
最新文档