(word完整版)七年级数学列方程解应用题的常用公式梳理
数学解方程公式整理

数学解方程公式整理数学解方程是数学中的重要概念和技巧之一,它在各个领域的数学问题中都起到了重要的作用。
为了更好地理解和应用解方程的方法,我们需要对解方程所使用的一些公式进行整理和总结。
本文将系统地介绍数学解方程中常用的公式,并给出相应的例子加深理解。
一、一元一次方程一元一次方程是最简单的方程形式,它可以表示为ax + b = 0,其中a和b是已知的实数,x是未知数。
解一元一次方程的常用公式为x = -b/a。
在使用这个公式时,我们需要注意当a为零时,方程变为bx + c = 0的形式,此时解为x = -c/b。
例子1:解方程2x + 3 = 0根据公式x = -b/a,代入a = 2,b = 3,得到x = -3/2。
因此,方程2x + 3 = 0的解为x = -3/2。
例子2:解方程4x - 8 = 0将方程转化为标准形式得到4x + 0 = 8,根据公式x = -b/a,代入a = 4,b = 8,得到x = 8/4 = 2。
因此,方程4x - 8 = 0的解为x = 2。
二、一元二次方程一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c为已知实数,且a不等于零。
求解一元二次方程有两个常用公式:求根公式和配方法。
1. 求根公式根据求根公式,一元二次方程ax^2 + bx + c = 0的解为x = (-b ±√(b^2 - 4ac))/(2a)。
在使用这个公式时,首先需要判断∆ = b^2 - 4ac的值。
a. 当∆大于零时,方程有两个不相等的实数解。
b. 当∆等于零时,方程有两个相等的实数解。
c. 当∆小于零时,方程无实数解,但可以有复数解。
例子3:解方程x^2 - 4x + 4 = 0根据公式x = (-b ± √(b^2 - 4ac))/(2a),代入a = 1,b = -4,c = 4,得到x = (4 ± √(16 - 16))/(2*1) = (4 ± 0)/2。
完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
初中数学方程公式大全

初中数学方程公式大全1、行程问题:(1)基本公式:路程=速度×时间速度=路程÷时间时间=路程÷速度;(2)相遇问题:快路程+慢路程=原距离速度和×时间=路程;(3)追及问题:快路程-慢路程=原距离(快车先跑又折返遇到慢车时候用)。
行程问题:(1)基本公式:路程=速度×时间速度=路程÷时间时间=路程÷速度(2)相遇问题:快路程+慢路程=原距离速度和×时间=路程(3)追及问题:快路程-慢路程=原距离(快车先跑又折返遇到慢车时候用)速度差×时间=路程(4)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺水(风)路程=顺水(风)速度×顺水(风)时间逆水(风)路程=顺水(风)速度×顺水(风)时间水(风)速=(顺水(风)速度-逆风(水)速度)÷2(5)列车过桥问题:(桥长+列车长)÷速度=过桥时间2、工程问题中的:(1)工作效率:单位时间完成的工作量(2)工程问题的基本关系:工作量=工作效率×工作时间(3)总工作量在未知的情况下可以看作“1”(4)合作的效率:各效率之和(5)各部分工作量之和=工作总量3、调配问题(配套问题):(1)例如课本中:1个螺钉要配2个螺母,即螺钉/螺母=1/2 得到:1×螺母=2×螺钉(2)例如甲乙两种零件分别取3个、2个才能配成一套。
即甲/乙=3/2得到:2×甲的零件数=3×乙的零件数4、销售中的利润问题:(1)售价、进价、利润的关系是:商品利润=商品售价-商品进价(成本)(2)进价、利润、利润率的关系:利润率=商品利润/商品进价×100%(3)标价、折扣数、商品售价关系:商品售价=标价×(折扣数÷10)(4)商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)。
(word完整版)初中行程问题专题讲解

初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。
我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。
原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。
下面我们将行程问题归归类,由易到难,逐步剖析。
1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。
甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】310080=-x x .例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。
求火车的速度和长度。
【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长-火车长 【列出方程组】⎩⎨⎧-=+=yx y x 100040100060举一反三:1.小明家和学校相距km 15。
小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。
2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。
初中数学方程公式大全

初中数学方程公式大全一、方程解法公式:1. 一元一次方程求解公式:对于形如ax + b = 0的一元一次方程,其解为x = -b/a。
2. 一元二次方程求解公式:对于形如ax^2 + bx + c = 0的一元二次方程,其解为x = (-b ± √(b^2 - 4ac))/ 2a。
3.二元一次方程组求解公式:对于形如{a1x+b1y=c1{a2x+b2y=c2的二元一次方程组,其解为x=(b2c1-b1c2)/(a1b2-a2b1),y=(a1c2-a2c1)/(a1b2-a2b1)。
4.消元法求解方程组:对于形如{a1x+b1y=c1{a2x+b2y=c2先通过消去一个未知量的方式,将两个方程化为一个未知量的一元一次方程,然后通过求解一元一次方程的方法得到结果。
5.因式分解法求解方程:对于形如a(x-p)(x-q)=0的一元二次方程,通过对等式进行因式分解,得到(x-p)(x-q)=0,进而得到x=p或x=q。
二、等式变形公式:1.合并同类项公式:对于a+b+c+...的形式,将其中的同类项合并,得到合并后的表达式。
2.移项公式:对于等式a+b=c,可以通过移动项的方式将其中的其中一项移到等式的另一边,得到a=c-b。
3. 分配律公式:对于a(b + c) = ab + ac的形式,将括号中的表达式用a分别与括号内的各个项相乘,然后再将相乘得到的结果相加,得到最终结果。
4. 因式分解公式:对于ab + ac的形式,可以将其因式分解为a(b+ c)的形式。
5.平方差公式:对于(a+b)(a-b)的形式,将其用平方差公式展开,得到a^2-b^2的形式。
三、计算方法公式:1.百分数计算公式:对于a%的百分数,可以将其转化为a/100的形式,然后进行计算。
2.分数计算公式:对于分数的加减乘除运算,可以将分数化简后,按照加减乘除法的规则进行计算。
3.平均数计算公式:对于求一组数据的平均数,可以将所有数据相加,然后除以数据的个数。
七年级数学公式大全表必背知识点

七年级数学公式大全表必背知识点一、代数1. 一元一次方程- 标准形式:ax + b = c- 解方程公式:x = (c - b) / a2. 一元一次不等式- 解不等式的方法:将不等式化为一元方程,然后解出值3. 一元二次方程- 标准形式:ax^2 + bx + c = 0- 解方程公式:x = (-b ± √(b^2 - 4ac)) / 2a4. 因式分解- 判断一个多项式是否能够因式分解的方法- 先将多项式分解为一次因式的乘积- 再判断每一个一次因式是否能够继续分解5. 公式:- (a + b)^2 = a^2 + 2ab + b^2- (a - b)^2 = a^2 - 2ab + b^2- a^2 - b^2 = (a - b)(a + b)二、几何1. 等腰三角形- 性质:两边相等,两底角相等- 面积公式:S = (底边长×高)/22. 直角三角形- 勾股定理:a^2 + b^2 = c^2- 三角函数公式:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边3. 圆- 周长公式:C = πd,C = 2πr- 面积公式:S = πr^24. 平行四边形- 性质:对边相等,对角线互相平分- 面积公式:S = 底×高5. 三角形- 海伦公式:S = √[p(p-a)(p-b)(p-c)],其中p = (a + b + c)/2三、概率1. 事件的概率- 基本概率公式:P(A) = n(A)/n(S)- 互斥事件概率:P(A ∪ B) = P(A) + P(B)2. 条件概率- 条件概率公式:P(B|A) = P(A∩B)/P(A)四、统计1. 平均数- 算术平均数:平均数 = 总和/个数2. 中位数- 将一组数据从小到大排列,中间位置的数字就是中位数3. 众数- 一组数据中出现次数最多的数字- 众数可能有一个,也可能有多个以上便是七年级数学中常见的公式和必备知识点,希望同学们能够根据这些知识进行复习和总结,做到熟练记忆和灵活运用。
初中数学方程式公式大全

初中数学方程式公式大全初中数学方程式公式同学们去认真总结过吗?如果没有,请来小编这里瞧瞧。
下面是由小编为大家整理的“初中数学方程式公式大全”,仅供参考,欢迎大家阅读。
初中数学方程式公式大全乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h拓展阅读:初中数学学习方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
(完整版)解方程问题的基本公式

解方程问题的基本公式【基本公式】行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:(甲速+乙速)×相遇时间=总路程总路程÷(甲速+乙速)=相遇时间甲乙速度和-已知的一个速度=另一个速度速度和×相遇时间=相遇路程一个人的行程+另一个人的行程=两者间的距离追及问题:追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。
由于速度不同,就发生快的追及慢的问题。
根据速度差、距离差和追及时间三者之间的关系,罕用下面的公式:路程差÷速度差=追及时间追及者的行程-被追及者的行程=相距的路程速度差×追及时间=距离差距离差÷追及时间=速度差速度差=快速-慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
流水问题:顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。
解答时要注意各种速度的涵义及它们之间的关系。
船在静水中行驶,单位时间内所走的距离叫做划行速度或叫做划力;顺水行船的速度叫顺流速度;逆水行船的速度叫做逆流速度;船放中流,不靠动力顺水而行,单位时间内走的距离叫做水流速度。
顺水行程=(船速+水速)×顺水时间流水问题的数量关系仍然是速度、时间与距离之间的关系。
即:速度×时间=距离;距离÷速度=时间;距离÷时间=速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于一元一次方程所涉及的各种问题的公式
一元一次方程应用题
1.列一元一次方程解应用题的一般步骤
(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.
2.和差倍分问题
增长量=原有量×增长率现在量=原有量+增长量
3.等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式V=底面积×高=S•h=r2h
②长方体的体积V=长×宽×高=abc
4.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
5.市场经济问题
(1)商品利润=商品售价-商品成本价(2)商品利润率=×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
7.工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1
8.储蓄问题
利润=本金×利润率利息=本金×利率×期数。