初一数学方程应用题习题
初一数学《一元一次方程解应用题》典型例习题及答案

初一数学《一元一次方程解应用题》典型例习题及答案《一元一次方程解应用题》典型例习题1.作业问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变体1:一个水利施工现场派出48人挖掘和运输土壤。
如果每人每天平均挖掘5立方米或运输3立方米土壤,如何安排人员以便及时运走挖掘的土壤?变式2:某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果两辆车都租了,60座的车比45座的车多租一辆,那么租一辆车的总成本比租一辆车更经济。
按照这个计划租一辆车要多少钱?2、匹配问题:例2。
一个车间有22名工人生产螺钉和螺母。
每人平均每天生产1200个螺丝或2000个螺母。
一个螺钉应配备两个螺母。
每天应该分配多少工人来生产螺钉和螺母,以便与产品匹配?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、5个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变体2:使用白铁皮制作罐头。
每块铁可以做成10盒或底部30盒。
一个盒体和两个盒底构成一套罐。
有100块白铁皮。
有多少个箱体和箱底可以用来使箱体和箱底匹配并充分利用白铁皮?3、利润问题销售这类商品时,每件商品降价2.25%。
这种商品的价格是多少?变式1:一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______;一件衣服的进价为x元,若要利润率是20%,应把售价定为________.变体2:一件衣服的购买价格是X元,销售价格是80元。
如果以原价20%的价格出售,利润为人民币元,利润率为____变式3:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.;一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变量5:商品的价格根据成本价上涨20%,然后以10%的折扣出售。
完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
7年级数学方程应用题100道

7年级数学方程应用题100道1. 猴子爬山一个猴子爬山,白天爬3米,夜晚滑下2米。
如果山高100米,猴子需要多久才能爬到山顶?解答:设猴子需要x天才能爬到山顶,那么猴子在白天能爬3x米高度,在夜晚会滑下2x米高度。
根据题目中的信息,我们可以得到以下方程: 3x - 2x = 100 化简得到: x = 100,答案为100天。
2. 小明的花园小明有一个长方形的花园。
如果长度是x米,宽度是y米。
已知长和宽的比例为3:4,且周长为24米。
问花园的长度和宽度各是多少?解答:设花园的长度为3x,宽度为4x。
根据周长公式,我们可以得到以下方程: 2(3x + 4x) = 24 化简得到: 14x = 24 x = 24/14,答案为12/7米。
所以花园的长度为3 * (12/7)米,宽度为4 * (12/7)米。
3. 购买水果小王去市场买水果,他买了苹果、橙子和香蕉,总共花了30元。
已知苹果每个1元,橙子每个2元,香蕉每个0.5元。
问小王买了多少个水果?解答:设小王买了x个苹果,y个橙子和z个香蕉。
根据题目中的信息,我们可以得到以下方程: x + 2y + 0.5z = 30 化简得到: 2x + 4y + z = 60 答案不唯一,可以有多组解。
4. 买书小明去书店买书,他买了数学书和英语书,总共花了50元。
已知数学书每本8元,英语书每本10元。
问小明买了多少本书?解答:设小明买了x本数学书和y本英语书。
根据题目中的信息,我们可以得到以下方程:8x + 10y = 50 答案不唯一,可以有多组解。
5. 分苹果小明、小红和小李一起分苹果,已知小明得到的苹果数量是小红的4倍,小李得到的苹果数量是小红的2倍。
如果一共有45个苹果,问三个人各自分到了多少个苹果?解答:设小红得到x个苹果,那么小明得到4x个苹果,小李得到2x个苹果。
根据题目中的信息,我们可以得到以下方程: x + 4x + 2x = 45 化简得到: 7x = 45 x = 45/7,答案为6个苹果。
初一数学方程练习题

初一数学方程练习题一、一元一次方程1. 解方程:3x 7 = 112. 解方程:5 2x = 3x + 13. 解方程:4(x 2) = 84. 解方程:7 3(x + 1) = 25. 解方程:2(3x 4) + 5 = 21二、二元一次方程组1. 解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]2. 解方程组:\[\begin{cases}3x 4y = 7 \\2x + y = 6\end{cases}\]3. 解方程组:\[\begin{cases}5x + 2y = 15 \\4x 3y = 2\end{cases}\]4. 解方程组:\[\begin{cases}2x 3y = 9 \\x + 4y = 8\end{cases}\]5. 解方程组:\[\begin{cases}4x + 5y = 23 \\3x 2y = 7\end{cases}\]三、分式方程1. 解方程:$\frac{2x 3}{5} = \frac{x + 1}{2}$2. 解方程:$\frac{3}{x 2} = \frac{4}{x + 1}$3. 解方程:$\frac{1}{x + 3} + \frac{2}{x 1} = 1$4. 解方程:$\frac{2}{x 4} \frac{3}{x + 2} = 1$5. 解方程:$\frac{5}{2x + 3} = \frac{2}{x 3}$四、一元二次方程1. 解方程:$x^2 5x + 6 = 0$2. 解方程:$2x^2 4x 6 = 0$3. 解方程:$3x^2 + 12x + 9 = 0$4. 解方程:$4x^2 12x + 9 = 0$5. 解方程:$5x^2 + 10x 3 = 0$五、应用题1. 某数的2倍与3的和等于13,求这个数。
2. 甲、乙两人年龄之和为35岁,甲的年龄是乙的2倍,求甲、乙的年龄。
初一方程应用题带答案大全

初一方程应用题带答案大全
一、小明的身高问题
小明今年13岁,他的身高为x厘米。
一年后,他的身高将是他现在身高的1.1倍。
请问小明明年多高?
解答:小明明年身高为1.1x厘米。
二、小红的年龄问题
小红现在的年龄是x岁,三年前她的年龄是x - 3岁。
请问她3年后年龄是多少?
解答:小红3年后的年龄为x + 3岁。
三、小李的数学成绩
小李数学考试的分数是x分,如果他再多得10分,分数将是他现在的1.2倍。
请问小李这次数学考试得了多少分?
解答:小李这次数学考试得了x + 10分。
四、小张的大米问题
小张的家里有一袋大米,重x千克。
他领走了一半的大米,还剩下10千克。
请问小张领走了多少千克大米?
解答:小张领走了0.5x千克大米。
五、小王的钱袋问题
小王的钱袋里有x元钱,他花了一半的钱之后还剩下8元。
请问小王一共有多
少元钱?
解答:小王一共有2x元钱。
六、小刘的苹果问题
小刘一共有x个苹果,他卖掉一半的苹果之后还剩下6个。
请问小刘一共有多
少个苹果?
解答:小刘一共有2x个苹果。
以上为初一方程应用题带答案大全,希望对初中学生学习方程有所帮助。
七年级一元一次方程应用题例题

七年级一元一次方程应用题例题
例题一:
问题描述:
某家庭共有父亲和儿子两人,父亲今年26岁,比儿子年龄大30岁。
求儿子目前的年龄。
解题过程:
设儿子目前的年龄为x岁,根据题意,可以得到方程:父亲的年龄 = 儿子的年龄 + 30 26 = x + 30 通过移项和化简方程,可以得到: x = 26 - 30 x = -4 即儿子目前的年龄为负4岁,这显然不符合实际情况。
因此,儿子目前的年龄无解。
例题二:
问题描述:
小红和小明共有零花钱190元,如果小红的零花钱是小明的2倍,求小红和小明各自的零花钱数。
解题过程:
设小红的零花钱为x元,小明的零花钱为y元,根据题意,可以得到方程: x + y = 190 x = 2y 将第二个方程代入第一个方程,得到: 2y + y = 190 3y = 190 y = 190 / 3 y = 63.33 小明的零花钱不能是小数,因此我们重新计算小明的零花钱: y = 63 代入第二个方程,计算小红的零花钱: x = 2*63 x = 126 因此,小红的零花钱为126元,小明的零花钱为63元。
通过以上两个例题,我们可以看到在解决一元一次方程应用题时,需要仔细分析题意,建立与变量的关系,并逐步求解方程,最终得到问题的答案。
希望同学们在做题时能够灵活运用方程求解的方法,解决实际问题。
七年级解方程练习题带答案

七年级解方程练习题带答案七年级解方程练习题带答案P91甲,乙两人登山,甲每分登高10米,并且先出发30分,乙每分登高15米,两人同时登上山顶.甲有多少时间登山?这座山高?方法一:解:设乙用X分钟登山。
15*X=10*15X=300+10X5X=300X=6060+30=90*=1*=1X=13/3答:一共需要4小时20分钟.设总任务为1,则初一学生小时完成1/7.5,初二同学一小时完成1/初一初二一小时完成的工作为为:1/7.5+1/5=1/3则剩下的工作为:1-1/3=2/3初二生完成剩下任务的时间:2/3÷1/5=10/3所以总共用时:10/3+1=13/3一项工程,由一个人单独做需要80小时完成,先计划先由一部分人做2小时,再增加5人做8小时后完成了这项工程的3/4,怎样安排具体人数?设:先计划x人做2小时,再增加5人做8小时后完成了这项工程的3/则:2x+8=80*3/4得:x=2所以:先计划2人做2小时,再增加5人做8小时后完成了这项工程的3/4。
还有80*1/4=20个工时才能完工。
一些鸽子和鸽舍,每笼住6只剩3,在飞来5只连同原来的每笼住8,原有多少只鸽子鸽舍?设:有x个鸽舍。
6x+3+5=8x解得:x=4所以原有4个鸽舍,原有4*6+3=27只鸽子。
哈哈一元一次方程!有甲乙两个牧童,甲对乙说:把你的一只羊给我1只,我的羊数就是你的2倍。
乙回答说:最好还是把你的一只羊给我1只,我们的羊数就一样了。
两个牧童各有多少只羊?解:设甲牧童有X只羊,则乙牧童有只羊,得:2=X+12X-4-2=X+12X-X=1+4+2X=7X-2=7-2=5答:甲牧童有7只羊,乙牧童有5只羊。
设:甲为X只,由乙的话可知:乙比甲少2只,所以乙:X-2由甲的话可列方程:*2=X+1X=7。
乙为5只。
现对某商品降低10%促销,为了使销售价总额不变,销售量要比原价销售时增加百分之几?设比按原价销售是增加X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测评卷——方程应用题
一.解答题(共12小题)
1.(8分)某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?
2.(12分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地
区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还
多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?
3.(8分)学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?
4.(12分)现有180件机器零件需加工,任务由甲、乙两个小组合作完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成任务.求甲、乙两组分别加工机器零件多少个.
5.(8分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.
6.(8分)某商品进货价便宜8%,而售价保持不变,那么它的利润率(按进货价而定)可增加10个百分点(即若原利润率为5%,则增长后为15%).求该商品原来的利润率.
7.(8分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
8.(12分)粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?
9.(8分)一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.
10.(12分)新城中学七年级学生步行到距学校2千米的峙山公园秋游,一(1)班的学生组成前队,步行速度为6千米/时,一(2)班的学生组成后队,两队之间由一名联络员骑自行车进行联络.前队出发6分钟后,发现后队还没出发,于是就派联络员去联络后队.联络员骑车的速度为12千米/小时,联络员回到学校通知后队,然后马上回头追赶前队,问联络员在半路能否追上前队?若能追上,试求出追上的地点;若不能,则试求联络员应该以多大速度才能追上?
12.(12分)一牛奶制品厂现有鲜奶9吨.若将这批鲜奶制成酸奶销售,则加工1吨鲜奶可获利1200元;若制成奶粉销售,则加工1吨鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3吨;若专门生产奶粉,则每天可用去鲜奶1吨.由于受人员和设备的限制,酸奶和奶粉两种产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?。