复杂函数单调性
函数的奇偶性、单调性、周期性

一. 函数的奇偶性
2.对函数奇偶性的理解 . (1)函数的奇偶性是函数在整个定义域上的性质,是函 )函数的奇偶性是函数在整个定义域上的性质, 数的整体性质. 数的整体性质 (2)函数奇偶性中对定义域内任意一个 ,都有 (-x) = )函数奇偶性中对定义域内任意一个x,都有f - f (x),f (-x) = -f (x)的实质是:函数的定义域关于原点 的实质是: , - 的实质是 对称,这是函数具备奇偶性的必要条件. 对称,这是函数具备奇偶性的必要条件 函数的奇偶性是 其相应图象特殊的对称性的反映. 其相应图象特殊的对称性的反映
A.关于原点对称 A.关于原点对称 C.关于y C.关于y轴对称 关于
B.关于直线y B.关于直线y=-x对称 关于直线 D.关于直线y D.关于直线y=x对称 关于直线
解析: 解析:
由于定义域为( 由于定义域为(-2,2)关于原点对称,又 关于原点对称,
f(x)=-f(-x),故函数为奇函数,图象关于原点对称. )=),故函数为奇函数,图象关于原点对称. 故函数为奇函数
例3:(2008·山东)函数y=ln cos x (2008·山东)函数y 山东
(−
π
2
<x<
π
2
)
的图象是 (A )
解析: 解析:
为偶函数, y=ln cos x为偶函数,且函数图象在 [ 0 , π )上单
2
调递减. 调递减.
若函数f 的导函数 若函数 (x)的导函数 f ′(x) 在D上的函数 上的函数
值为正,则称 上为增函数; 值为正 则称y = f (x)在D上为增函数; 则称 在 上为增函数
四.函数的单调性
2. 函数单调性的等价定义
运用导数法解答函数单调性问题的步骤

知识导航对于简单的函数单调性问题,我们一般直接分析函数的解析式和图象,利用函数单调性的定义,便能快速求得问题的答案.对于较为复杂的函数单调性问题,如函数中含有高次式、指数式、对数式,我们常借助导数法来解题.而运用导数法来解答较为复杂的函数单调性问题,能将复杂问题简单化,提高解题的效率.运用导数法解答函数单调性问题,一般有以下几个步骤:1.根据已知条件,明确函数y =f ()x 的定义域;2.对函数f ()x 求导,求出其导函数y '=f '()x ;3.解不等式f '()x <0或f '()x >0.f '()x <0的解集为函数的单调递减区间;f '()x >0的解集为函数的单调递增区间;4.根据函数的单调性建立关系式,求得问题的答案.值得注意的是,运用导数法求解函数单调性问题,一定要先考虑函数的定义域,否则可能得到错解.例1.已知函数f ()x =x 4-3x 2+6,试判断函数f ()x 的单调性.解:∵f ()x =x 4-3x 2+6,∴f '()x =4x 3-6x =4x (x+x-,令f '()x >0,解得<x <0或x.令f '()x <0,解得0<x <或x <.∴函数f ()x 在区间æèçöø÷和+∞)上为增函数;在区间æèçø-∞,和上为减函数.该函数式为4次式,需采用导数法来求解,先对函数求导,然后讨论导函数与0之间的关系,根据导函数与函数单调性之间的关系,判定函数的单调区间及单调性.例2.已知函数f ()x =13x 3+x 2+ax ,试判断函数f ()x 的单调性.解:∵f ()x =13x 3+x 2+ax ,∴f '()x =x 2+2x +a ,当∆=4-4a ≤0,即a ≥1时,x 2+2x +a ≥0恒成立,∴f '()x ≥0,函数f ()x 在R 上恒成立.当∆=4-4a >0,即a <1时,f '()x =x 2+2x +a =0存在两个不同的实根:x 1=-1-1-a ;x 2=-1+1-a ,且x 1<x 2.由f '()x =x 2+2x +a >0,得当x ∈(-∞,-1-1-a )或x ∈(-1+1-a ,+∞)时函数f ()x 单调递增.由f '()x =x 2+2x +a <0,得当-1-1-a <x <-1+1-a 时函数f ()x 单调递减.综上可知:当a ≥1时,f ()x 在R 上单调递增;当a <1时,f ()x 在(-∞,-1-1-a )和(-1+1-a ,+∞)上单调递增;在(-1-1-a ,-1+1-a )上单调递减.该函数的解析式中含有参数.在运用导数法求解时,要先运用求根公式求出导函数的零点,再用零点将函数的定义域划分为三个区间段,分别讨论每个区间段上函数的单调性即可解题.例3.若f ()x =-12x 2+b ln(x +2)在(-1,+∞)上为减函数,则b 的取值范围是.解:∵f ()x =-12x 2+b ln(x +2),∴f '()x =-x +b x +2≤0在(-1,+∞)上恒成立,即b ≤x (x +2)在(-1,+∞)上恒成立,∵x ()x +2=()x +12-1>-1,∴b ≤-1.该函数式中含有对数式,我们需运用导数法来解题,先对函数求导,使在(-1,+∞)上f '(x )≤0,便可确保函数在区间在(-1,+∞)上单调递减.解不等式即可解题.可见,导数法是解答复杂函数单调性问题的重要工具.在运用导数法解答函数单调性问题时,同学们要明确导函数与函数单调性之间的关系,运用导数法解答函数单调性问题的步骤,灵活运用导数来解题.(作者单位:甘肃省陇南市宕昌县第一中学)何发科40。
复合函数单调性、函数奇偶性

有关复合函数单调性的定义和解题方法一、复合函数的定义设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、函数的单调区间1.一次函数y=kx+b(k ≠0).解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k(k ≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax 2+bx+c(a ≠0).解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a ≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x(a >0,a ≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.三、复合函数单调性相关定理引理1 :已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数.引理2:已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数.证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。
复合函数的单调性与奇偶性

复合函数的性质与构成它的函数的性质密切相关,其规律可列表如下:
1.若函数 的定义域都是关于原点对称的,那么由 的奇偶性得到 的奇偶性的规律是:
函数
奇偶性
奇函数
奇函数
偶函数
偶函数
奇函数
偶函数
奇函数
偶函数
奇函数
偶函数
偶函数
偶函数
即当且仅当 和 都是奇函数时,复合函数 是奇函数.
2.若函数 在区间 上是单调函数,函数 在 或 上也是单调函数,那么复合函数 在区间 上是单调函数,其单调性规律是:
函数
单调性
增函数
增函数
减函数
减函数
增函数
减函数
增函数
减函数
增函数
减函数
减函数
增函数
即 , 增减性相同时, 为增函数,增减性相反时, 为减函数.
函数的单调性、奇偶性、周期性

函数的单调性、奇偶性、周期性一、函数的单调性 1.增函数定义设函数y=f(x)的定义域为A ,区间I ⊆A ,如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时, 都有f(x 1)<f(x 2),那么就说f(x)在区间I 上是单调增函数.I 称为y=f(x)的单调增区间。
2、减函数定义:设函数y=f(x)的定义域为A ,区间I ⊆A ,如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时, 都有f(x 1) >f(x 2),那么就说f(x)在区间I 上是单调减函数.I 称为y=f(x)的单调减区间。
注意:(1)函数的单调性是函数在定义域内的某个区间上的性质,是函数的局部性质; (2)必须是对于区间I 内自变量x 的任意两个值x 1,x 2,当x 1<x 2时,总有f(x 1)<f(x 2)(或f(x 1) >f(x 2)),才能说函数y=f(x) 在区间I 上具有单调增减性。
(3)判断函数的单调性:一利用定义,二利用函数的图象,三是利用导数。
(4)利用函数的图象分别指出: 一次函数y=kx+b 、 反比例函数y= kx(k ≠0)、二次函数y=a x 2+bx+c 的单调区间(5) 定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况; 外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减.②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.(6)、利用定义证明函数f(x)在给定的区间I 上的单调性的一般步骤:① 任取x 1,x 2∈I ,且x 1<x 2; ② 作差f(x 1)-f(x 2);③ 变形(通常是因式分解和配方); ④ 定号(即判断差f(x 1)-f(x 2)的正负); ⑤ 下结论(即指出函数f(x)在给定的区间I 上的单调性). (7)函数单调性的判定:(1)图象法;(2)定义法 (3导数法) 二、复合函数))((x g f y =单调性的判断:对于函数)(u f y =和)(x g u =,如果)(x g u =在区间),(b a 上是具有单调性, 当),(b a x ∈ ,),(n m u ∈,且)(u f y =在区间),(n m 上也具有单调性, 则复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同得增,异得减”或“同增异减”.三、单调性的有关结论:1.若f(x), g(x)均为增(减)函数,则f(x)+g(x) 函数; 2.若f(x)为增(减)函数,则-f(x)为 ;3.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性。
复合函数单调性的判断方法

【解】 (1)定义域: 0,
(4)外函数 y 2u 2 2u 1在
(2)此函数是由下列函数复合所得
y 2u 2 2u 1,( u x) log 1 x
2
(3)内函数 ( u x) log 1 x 在
2
1 1 u , 单调递减, u , 单调递增 2 2 2 1 , (5)原函数在 u , x 2 2
增减相异复合减
贰
判断
HI
贰
举例
【例 1】求函数 y log 1 x 2 4 x 3 的单调区间
2
贰
举例
【例 1】求函数 y log 1 x 2 4 x 3 的单调区间
2
【解】 (1)定义域: , 1 3,
(2)还原复合函数的复合过程:
x 2, 单调递增
(4) y log 1 u 在 u 0, 上单调递减
2
此函数是由下列函数复合所得
y log 1 u,( u x) x 4x 3
2 2
(5) y log 1 x 2 4 x 3 在
2
u x) x 4x 3 在 (3)内函数 (
2
1 单调递增, 3, 单调递减 ,
复合函数 单调性的判断方法
复合函数单调性的判断方法
1
1
2
定义
2
判断
一
定义
HI
设 y f (u ) 定义域为A, u g ( x) 的值域为B 若B A 则 y 关于 x 的函数 y f [ g ( x)] 叫做 函数 f 与 g 的复合函数, u 叫中间变量
函数的单调性证明

函数的单调性证明函数的单调性是数学分析中一个重要的概念,它描述了函数的增减关系。
在数学证明中,为了证明一个函数的单调性,我们通常需要使用导数的概念和相关的数学性质。
下面将从定义单调性开始,介绍函数单调性的证明方法和常用的技巧。
一、定义和性质在数学中,对于定义在区间上的函数f(x),我们说它是单调递增的,如果对于区间内的任意两个数a和b,当a小于b时,f(a)小于或等于f(b),即f(a)<=f(b)。
如果不等号取等号即为单调递增严格的定义。
类似地,函数f(x)是单调递减的,当且仅当对于区间内的任意两个数a和b,当a小于b时,f(a)大于或等于f(b),即f(a)>=f(b)。
同样,当不等号取等号时,为单调递减严格的定义。
对于一个单调递增的函数f(x),我们有以下性质:1.若函数在区间[a,b]上单调递增,则其在该区间上任意一点的左极限总是小于或等于右极限,即f(a-)≤f(a+)≤f(b-)≤f(b+);2.若函数在区间[a,b]上单调递增,则其必须在该区间内是有界的;3.若函数在区间[a,b]上单调递增,则其在该区间上是可积的;4.若函数在区间[a,b]上连续,则其在该区间上的函数值区间是连续的。
二、证明方法在证明函数的单调性时,我们常常使用导数的相关性质。
导数可以表示函数的变化率,而单调性对应于导数的正负性。
具体的证明方法主要有以下几种。
1.利用导数的定义证明利用导数的定义f'(x) = lim(h->0)(f(x+h) - f(x))/h来证明函数的单调性。
首先计算导数f'(x),然后判断f'(x)在给定区间内的正负性来推断函数的单调性。
2.利用导数的性质证明利用导数的性质来证明函数的单调性,包括导数大于0表示函数单调递增,导数小于0表示函数单调递减,以及导数恒为0表示函数是常数等。
这种方法通常适用于已知函数的导数形式的情况。
3.利用导数的比较性质证明对于两个函数f(x)和g(x),如果在给定区间内f'(x)>=g'(x),那么我们可以推断f(x)>=g(x),即f(x)单调递增;如果f'(x)<=g'(x),那么我们可以推断f(x)<=g(x),即f(x)单调递减。
3.1 函数的单调性和极值

1 2
图3-7
例4 3 2 解 函数 f ( x) (1 x) (3x 2) 的定义域为( , ),
3 2 f ( x ) ( 1 x ) ( 3 x 2 ) 求函数 的单调区间.
f ' ( x) 3(1 x) 2 (3x 2) 2 6(1 x) 3 (3x 2)
故只能有 f ' ( x0 ) 0 . 我们称使 f ' ( x0 ) 0 的点 x0 为 f ( x) 的驻点.
定理3.7说明,可导的极值点一定是驻点,但是,驻点却不
一定是极值点,如图3-9中的点x3就是其一;而不可导点,也不
23 2 f ( x ) ( x 5 ) ( x 1 ) 一定不是极值点,如图3-7中, 在点 x
x 3 x 的单调区间. 2 f ' ( x ) 3 x 1 >0 x (,) 解 由于
例1 求函数 f ( x) =
, 因此 f ( x) 在( , )内是单调增加的,如图 3 5 .
图3-5
x 例2 求函数 f ( x) x e 的单调区间. x x 1 e 解 由于 f '( x) 1 e ,令 f ' ( x) 0 ,即 = 0, 得 x 0 .列表3-1讨论如下:
则 f ( x)在 x0 处不取极值.
证 ⑴根据单调性判别法,在( x0 , x0 )内 f ( x) 单调减少,在 ( x0 , x0 )内 f ( x) 单调增加,由 f ( x) 在 x0 处的连续性 ,
对 x ( x0 ) ( x0 , x0 ) 有 f ( x) >
在 x0 处 取得极小值. ⑵同理可证.
f ( x0 )